5 research outputs found

    Modeling method of failure dependent system based on time varying copula function

    Get PDF
    This paper aims at solving the dynamic correlation of the complex dependence system with multiple failures. A correlation model and parameter estimation method based on time-varying copula function are proposed to solve the joint distribution between the interaction mechanism. In particular, three types of definition method for the time-varying copulas’ parameters are introduced. Finally, a comparative study and applicability analysis are performed to validate our proposed method

    SIL verification for SRS with diverse redundancy based on system degradation using reliability block diagram

    No full text
    Safety integrity level (SIL) verification is a critical step in safety lifecycle of safety-related systems (SRS). Introducing redundancy into SRS raises two issues: voting group configuration and common cause failures (CCF). In order to minimize CCF, diverse redundancy is widely adopted by SRS. However, in the past, almost all attention of SIL verification has been paid to identical redundancy, this is reflected in IEC 61508, ISA-TR84.00.02 and scientific literatures. Therefore, a novel method for SIL verification of SRS with diverse redundancy based on system degradation is proposed. Key idea of the method is to calculate average probability of dangerous failure on demand (PFDG) at each stage of system degradation, which is caused by failures of redundant channels. To validate proposed method, it has been applied on safety shutdown system of Nuclear Power Control Test Facility, and numerical result is compared with FTA and FRANTIC model. Sensitivity studies and comparison of numerical results indicate that the method has very good consistency with FTA and FRANTIC model. Moreover, two sets of general formulae for PFDGof any MooN(D) group with diverse redundancy are provided. From engineering practice point of view, it makes SIL verification process simpler

    Strategies to Recover from Satellite Communication Failures

    Get PDF
    In natural and manmade disasters, inadequate strategies to recover from satellite communication (SATCOM) failures can affect the ability of humanitarian organizations to provide timely assistance to the affected populations. This single case study explored strategies used by network administrators (NAs) to recover from SATCOM failures in humanitarian operations. The study population were NAs in Asia, the Middle East, Central Africa, East Africa, and West Africa. Data were collected from semistructured interviews with 9 NAs and an analysis of network statistics for their locations. The resource-based view was used as the conceptual framework for the study. Using inductive analysis, 3 themes emerged from coding and triangulation: redundancy of equipment, knowledge transfer, and the use of spare parts to service the SATCOM infrastructure. The findings showed that the organization\u27s use of knowledge, and collaboration among NAs and nontechnical staff improved the organization\u27s ability to recover from SATCOM failures. The implication of this study for social change was the reduced cost of satellite services due to the efficient use of the bandwidth. These savings can be channeled into the purchase of vaccines, shelter, and the improvement in the quality of water and sanitation for displaced persons in humanitarian disasters, which improve the organization\u27s delivery of humanitarian services to the affected populations in the disaster

    Reliability of multi-channel IEC 61850 mission-critical substation communication networks based on Markov process incorporating linear dynamical systems and calculus inferences.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.IEC 61850 based Substation Communication Networks (SCN) enable substation processes to be digitalised to fulfil the most sought substation monitoring, protection and control of electrical systems. The standard enables peer-to-peer communication of mission critical messages, aided by onboard diagnostic capabilities to ease the identification of system faults. The implementation of Safety-Related Systems in industrial facilities comprising sensors, logic solvers and final elements in power distribution centres necessitate compliance to IEC 61508 standard, where circuit breakers act as final elements to isolate electrical machines. In recent times, combinatorial methods such as the Reliability Block Diagram have been used to evaluate the architecture of IEC 61850 based SCN reliability and availability due to the simplicity of the approach. These methods, however, assume that all system faults are identified and fully repaired, which is not the case in practice. In this thesis, the reliability of a repairable multi-channel IEC 61850 based SCN architecture is modelled using a structure function and the Markov process while Systems Thinking integrates imperfect repair factors into the model. Thereafter, a novel eigenvalue analysis method based on Markov partitions and symbolic dynamics in the context of linear dynamical systems is used to investigate the impact of imperfect repairs on the system's reliability based on the number of mean state transitions and dynamical behaviour. The eigenvalue method is then advanced by a complimentary analysis technique based on the absorbing Markov Chain process and matrix calculus methods to determine the system's responsiveness to repair factors. The case studies results demonstrate that imperfect repairs cannot be ignored for mission-critical applications because the simplifying assumptions of combinatorial analysis methods greatly over-state the system's reliability performance. The results also indicate that common causes of failure coupled with imperfect repairs significantly negatively impact the system's performance. Moreover, system performance is highly dependent on the diagnostic coverage of the individual subsystems than their repair efficiencies for high diagnostic coverages at 90% and 99% based on ISO 13849-1. Hence, the results demonstrate that emphasis should be more on the system diagnostic coverage for the fact that it is embedded in the system design itself that cannot easily be changed once the system is commissioned and operational
    corecore