329,999 research outputs found

    Computer numerical control vertical machining centre feed drive modelling using the transmission line technique

    Get PDF
    This study presents a novel application of the Transmission Line Matrix Method (TLM) for the modelling of the dynamic behaviour of non-linear hybrid systems for CNC machine tool drives. The application of the TLM technique implies the dividing of the ball-screw shaft into a number of identical elements in order to achieve the synchronisation of events in the simulation, and to provide an acceptable resolution according to the maximum frequency of interest. This entails the use of a high performance computing system with due consideration to the small time steps being applied in the simulation. Generally, the analysis of torsion and axial dynamic effects on a shaft implies the development of independent simulated models. This study presents a new procedure for the modelling of a ball-screw shaft by the synchronisation of the axial and torsion dynamics into the same model. The model parameters were obtained with equipments such as laser interferometer, ball bar, electronic levels, signal acquisition systems etc. The MTLM models for single and two-axis configurations have been simulated and matches well with the measured responses of machines. The new modelling approach designated the Modified Transmission Line Method (MTLM) extends the TLM approach retaining all its inherent qualities but gives improved convergence and processing speeds. Further work since, not the subject of this paper, have identified its potential for real time application

    Speech Recognition Using HMM/ANN Hybrid Model

    Get PDF
    By the analysis on the principle of speech recognition system, a speech recognition system was designed by using LPC2148 as the hardware platform and MATLAB 2012 as the software platform. Speech recognition is an important component of biological identification which is an integrated technology of acoustics, signal processing and artificial intelligence. Recognition systems based on hidden Markov models are effective under particular circumstances, but do suffer from some major limitations that limit applicability of ASR technology in real-world environments. Attempts were made to overcome these limitations with the adoption of artificial neural networks as an alternative paradigm for ASR, but ANNs were unsuccessful in dealing with long time sequences of speech signals. So taking the limitations and advantages of both the systems it was proposed to combine HMM and ANN within a single, hybrid architecture. The goal in hybrid systems for ASR is to take advantage from the properties of both HMM and ANNs, improving flexibility and ASR performance For Speech recognition features from speech sample are extracted & mapping is done using Artificial Neural Networks. Multilayer pattern mapping neural network, which works on the principle of back propagation algorithm is proposed. Finally Speaker Recognition is done using Hidden Markov Model (HMM). The specialty of this model is the flexible and expandable hidden layer for recognition. DOI: 10.17762/ijritcc2321-8169.150613

    Parametrizable fixed-point arithmetic for HIL with small simulation steps

    Full text link
    Hardware-in-the-loop (HIL) techniques are increasingly used for test purposes because of their advantages over classical simulations. Field-programmable gate arrays (FPGAs) are becoming popular in HIL systems because of their parallel computing capabilities. In most cases, FPGAs are mainly used for signal processing, such as input pulsewidth modulation sampling and conditioning, while there are also processors to model the system. However, there are other HIL systems that implement the model in the FPGA. For FPGA implementation and regarding the arithmetics, there are two main possibilities: fixed-point and floating-point. Fixed-point is the best choice only when real-time simulations with small simulation steps are needed, while floating point is the common choice because of its flexibility and ease of use. This paper presents a novel hybrid arithmetic for FPGAs called parametrizable fixed-point which takes advantage of both arithmetics as the internal operations are accomplished using simple signed integers, while the point location of the variables can be adjusted as necessary without redesigning the model of the plant. The experimental results show that a buck converter can be modeled using this novel arithmetic with a simulation step below 20 ns. Besides, the experiments prove that the proposed model can be adjusted to any set of values (voltages, currents, capacitances, and so on.) keeping its accuracy without resynthesizing, showing the big advantage over the fixed-point arithmeticThis work has been supported by the Spanish Ministerio de Economía y Competitividad under project TEC2013-43017-

    Control Design and Filtering for Wireless Networked Systems

    Get PDF
    This dissertation is concerned with estimation and control over wireless networked systems. Several problems are addressed, including estimator design over packet loss links, control and estimation over cognitive radio systems, modeling and prediction of wireless sensor networks (WSNs), and localization with the Theater Positioning System (TPS). The first problem addressed is the state estimation of a discrete-time system through a packet loss link modeled by a Bernoulli random variable. The optimal filter is derived by employing exact hybrid filtering. The performance of the optimal filter is illustrated by numerical simulations. Next, we consider the problem of estimation and control over cognitive radio (CR) systems. A two-switch model is first used to model this link. The linear optimal estimator and controller are derived over a single CR link. Also discussed here is estimation and control of the closed-loop system over two CR links. Furthermore, a more practical semi-Markov model for the CR system is proposed. Two cases are considered, where one assumes that acknowledgement of the information arrival is not available while the other assumes it is available. In the former, a suboptimal estimator is proposed and, in the latter, sufficient conditions are derived for the stability of a peak covariance process. Then, a controller design for the semi-Markov model is developed using linear matrix inequalities (LMIs). Additionally, the third problem addressed is modeling, identification, and prediction of the link quality of WSNs, such as the packet reception rate (PRR) and received signal strength indicator (RSSI). The state-space model is applied for this purpose. The prediction error minimization method (PEM) is employed for estimating parameters in the proposed model. The method employed is demonstrated through real measurements sampled by wireless motes. The last problem analyzed is localization using a new navigation system, TPS. In this study, we focus on users\u27 position estimation with the TPS when a GPS signal is not available. Several models are proposed to model transmission delays utilizing previous GPS signals. Last, a navigation scheme is provided for the TPS to improve its localization accuracy when the GPS signal is unavailable

    Multi-objective Optimization in Traffic Signal Control

    Get PDF
    Traffic Signal Control systems are one of the most popular Intelligent Transport Systems and they are widely used around the world to regulate traffic flow. Recently, complex optimization techniques have been applied to traffic signal control systems to improve their performance. Traffic simulators are one of the most popular tools to evaluate the performance of a potential solution in traffic signal optimization. For that reason, researchers commonly optimize traffic signal timing by using simulation-based approaches. Although evaluating solutions using microscopic traffic simulators has several advantages, the simulation is very time-consuming. Multi-objective Evolutionary Algorithms (MOEAs) are in many ways superior to traditional search methods. They have been widely utilized in traffic signal optimization problems. However, running MOEAs on traffic optimization problems using microscopic traffic simulators to estimate the effectiveness of solutions is time-consuming. Thus, MOEAs which can produce good solutions at a reasonable processing time, especially at an early stage, is required. Anytime behaviour of an algorithm indicates its ability to provide as good a solution as possible at any time during its execution. Therefore, optimization approaches which have good anytime behaviour are desirable in evaluation traffic signal optimization. Moreover, small population sizes are inevitable for scenarios where processing capabilities are limited but require quick response times. In this work, two novel optimization algorithms are introduced that improve anytime behaviour and can work effectively with various population sizes. NS-LS is a hybrid of Non-dominated Sorting Genetic Algorithm II (NSGA-II) and a local search which has the ability to predict a potential search direction. NS-LS is able to produce good solutions at any running time, therefore having good anytime behaviour. Utilizing a local search can help to accelerate the convergence rate, however, computational cost is not considered in NS-LS. A surrogate-assisted approach based on local search (SA-LS) which is an enhancement of NS-LS is also introduced. SA-LS uses a surrogate model constructed using solutions which already have been evaluated by a traffic simulator in previous generations. NS-LS and SA-LS are evaluated on the well-known Benchmark test functions: ZDT1 and ZDT2, and two real-world traffic scenarios: Andrea Costa and Pasubio. The proposed algorithms are also compared to NSGA-II and Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D). The results show that NS-LS and SA-LS can effectively optimize traffic signal timings of the studied scenarios. The results also confirm that NS-LS and SA-LS have good anytime behaviour and can work well with different population sizes. Furthermore, SA-LS also showed to produce mostly superior results as compared to NS-LS, NSGA-II, and MOEA/D.Ministry of Education and Training - Vietna

    Resource efficient on-node spike sorting

    Get PDF
    Current implantable brain-machine interfaces are recording multi-neuron activity by utilising multi-channel, multi-electrode micro-electrodes. With the rapid increase in recording capability has come more stringent constraints on implantable system power consumption and size. This is even more so with the increasing demand for wireless systems to increase the number of channels being monitored whilst overcoming the communication bottleneck (in transmitting raw data) via transcutaneous bio-telemetries. For systems observing unit activity, real-time spike sorting within an implantable device offers a unique solution to this problem. However, achieving such data compression prior to transmission via an on-node spike sorting system has several challenges. The inherent complexity of the spike sorting problem arising from various factors (such as signal variability, local field potentials, background and multi-unit activity) have required computationally intensive algorithms (e.g. PCA, wavelet transform, superparamagnetic clustering). Hence spike sorting systems have traditionally been implemented off-line, usually run on work-stations. Owing to their complexity and not-so-well scalability, these algorithms cannot be simply transformed into a resource efficient hardware. On the contrary, although there have been several attempts in implantable hardware, an implementation to match comparable accuracy to off-line within the required power and area requirements for future BMIs have yet to be proposed. Within this context, this research aims to fill in the gaps in the design towards a resource efficient implantable real-time spike sorter which achieves performance comparable to off-line methods. The research covered in this thesis target: 1) Identifying and quantifying the trade-offs on subsequent signal processing performance and hardware resource utilisation of the parameters associated with analogue-front-end. Following the development of a behavioural model of the analogue-front-end and an optimisation tool, the sensitivity of the spike sorting accuracy to different front-end parameters are quantified. 2) Identifying and quantifying the trade-offs associated with a two-stage hybrid solution to realising real-time on-node spike sorting. Initial part of the work focuses from the perspective of template matching only, while the second part of the work considers these parameters from the point of whole system including detection, sorting, and off-line training (template building). A set of minimum requirements are established which ensure robust, accurate and resource efficient operation. 3) Developing new feature extraction and spike sorting algorithms towards highly scalable systems. Based on waveform dynamics of the observed action potentials, a derivative based feature extraction and a spike sorting algorithm are proposed. These are compared with most commonly used methods of spike sorting under varying noise levels using realistic datasets to confirm their merits. The latter is implemented and demonstrated in real-time through an MCU based platform.Open Acces
    • …
    corecore