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Abstract

This dissertation is concerned with estimation and control over wireless networked

systems. Several problems are addressed, including estimator design over packet loss

links, control and estimation over cognitive radio systems, modeling and prediction

of wireless sensor networks (WSNs), and localization with the Theater Positioning

System (TPS).

The first problem addressed is the state estimation of a discrete-time system

through a packet loss link modeled by a Bernoulli random variable. The optimal

filter is derived by employing exact hybrid filtering. The performance of the optimal

filter is illustrated by numerical simulations.

Next, we consider the problem of estimation and control over cognitive radio (CR)

systems. A two-switch model is first used to model this link. The linear optimal

estimator and controller are derived over a single CR link. Also discussed here is

estimation and control of the closed-loop system over two CR links.

Furthermore, a more practical semi-Markov model for the CR system is proposed.

Two cases are considered, where one assumes that acknowledgement of the informa-

tion arrival is not available while the other assumes it is available. In the former, a

suboptimal estimator is proposed and, in the latter, sufficient conditions are derived

for the stability of a peak covariance process. Then, a controller design for the semi-

Markov model is developed using linear matrix inequalities (LMIs).

Additionally, the third problem addressed is modeling, identification, and pre-

diction of the link quality of WSNs, such as the packet reception rate (PRR)

vii



and received signal strength indicator (RSSI). The state-space model is applied for

this purpose. The prediction error minimization method (PEM) is employed for

estimating parameters in the proposed model. The method employed is demonstrated

through real measurements sampled by wireless motes.

The last problem analyzed is localization using a new navigation system, TPS. In

this study, we focus on users’ position estimation with the TPS when a GPS signal

is not available. Several models are proposed to model transmission delays utilizing

previous GPS signals. Last, a navigation scheme is provided for the TPS to improve

its localization accuracy when the GPS signal is unavailable.
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Chapter 1

Introduction

1.1 Background and Overview

1.1.1 Packet Losses Links

Networks are applied in many modern technologies and extend the range of

information communications to huge distances as well as resulting in significant

financial savings. In recent years, the combination of network and control has been

a major topic in the control community and is developing rapidly where systems

are distributed in different places. However, due to network constraints, e.g., packet

loss, transmission delay, and bandwidth, traditional control algorithms do not provide

satisfactory performance. Thus, algorithms must be developed. In recent decades,

the packet loss problem has received a great deal of attention. Different kinds of state

estimators over packet loss links have been developed.

In this dissertation, we derived the optimal filter explicitly over a packet loss

link. For example, consider a Bernoulli lossy link from the output of the plant to

the estimator. We modeled the Bernoulli packet loss indicator as a Markov process,

and then the system can be considered as a special case of the problem in [14] where

the exact hybrid filter can be applied. In this way, we obtained an explicit solution

and thus provided the optimal filter to this problem. Also, there are many studies of
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state estimation on Markov jump linear systems (MJLS) [15]∼[21]. However, most

of them computed only suboptimal estimators or linear estimators.

The main idea of exact hybrid filter is the change of measure method, which

transfers the problem from the current probability space where the optimal filter is

difficult to derive to another probability space where the optimal filter derivation is

tractable.

1.1.2 Control and Estimation over Cognitve Radio System

The rapid development of communication and networking has extended the areas of

traditional science. These remote techniques are employed everywhere to facilitate

user application in different areas. However, the wide use of various technologies,

such as radio, satellite, and phone service, also increases the need of bandwidth used

for the transmission. Most of the current spectrum has been licensed to different

users to ensure the coexistence of diverse wireless systems [32]. Thus an important

question: How can bandwidth be saved without affecting the performance too much?

The Federal Communications Commission’s (FCC) frequency allocation chart [33]

shows that although the majority of frequency spectrum has been assigned to different

users, large portions of spectrum are frequently unused [34]. To increase spectrum

use, cognitive radio architecture [35] [36] is proposed as a communication system

to sense available spectrum, search for unutilized spectrum, and communicate over

the unused spectrum with minimal disturbance to primary users. In the CR system,

each secondary user is able to sense the licensed spectrum band and detect unused

spectrum holes. If a frequency channel is not being used by primary users, secondary

users can access it for communications. Due to sparse activities of primary users,

CR can provide a large amount of spectrum for communications. With a CR system,

the question above is answered as bandwidth, thus, money can be saved for the

transmission.
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An interesting application of CR is in control engineering, which, however, raises

new issues. For instance, when the user wants to do remote control without having

any authorized bandwidth or without enough funds to purchase large bandwidth.

CR can be employed to help the user reach his target; however, CR suffers from

interruptions from primary users since secondary users must leave the licensed channel

when primary users emerge. Hence, the CR-based communication link may not be

reliable, which can cause significant impact on the system state estimation and control

since observations from sensor may not be able to reach the controller in a timely

fashion.

In Chapter 3, the CR system is modeled by a two-switch model with distributed

and dynamic spectral activity introduced in [32]. This model employs two sensors

located at the transmitter and the receiver of secondary users, respectively, where

they can sense whether the channel is free for secondary users to transmit. The

switching variables are assumed to be Bernoulli variables. The advantage of the two-

switch model is that it can avoid disturbing the primary users and thus preserves the

benefit of primary users. The details of this model are provided in Chapter 3.

On the other hand, the two-switch model suffers from two shortcomings: (a)

The influence of the secondary receiver is not so obvious unless the receiver is very

close to primary users, (b) The sensor located at the secondary receiver increases

the cost. Thus, it is more practical to not put a sensor at the secondary receiver,

and CR system is reduced to a model with only one switching variable, the same

as packet loss model considered in 1.1.1. Moreover, as shown through theory and

experiments [39], a semi-Markov process captures the stochastic behavior of each

channel in the CR system more accurately. Based on these facts, a semi-Markov

model is proposed, where measurements are governed by N independent semi-Markov

processes, where N represents the number of channels that can be sensed in CR

system. State estimation over the semi-Markov model is addressed. In particular,

two different cases are considered: one case assumes acknowledgement of information

arrival is not available at the estimator while the other assumes it is available. In
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the first case, sufficient conditions are derived for the stability of the peak covariance

process which is an estimate of filtering deterioration caused by packet losses, and

in the second case, an estimator is proposed based on Interacting Multiple Method

(IMM). In Chapter 5, we will discuss the controller design over such a CR link.

1.1.3 Link Quality Prediction for Wireless Sensor Networks

One key component of the emerging networked embedded systems, such as wireless

sensor networks (WSN), is efficient and reliable data collection and aggregation. This

task is complicated by various factors, and of the most notable is the extremely

unreliable nature of wireless links through which data are collected, causing several

problems such as congestion and packet losses. Inappropriate selection and use of

wireless links will cause tremendous energy cost, shortened system lifetimes, and

degrade performance.

So far, the basic structure for the collection is usually considered to be a multi-

hop tree topology [119]: Each node is connected to the root through multiple hops,

forming a tree structure. Routing protocols establish the routing tree based on the

wireless link quality to reduce the end-to-end path cost, thus, decreasing the cost of

sending a packet to the root.

However, even though enormous efforts have been invested in choosing the best

link to deliver packets, reports from the field are far from satisfactory. In a well

known study monitoring volcano activities, the data yielded was estimated to be only

between 20% and 80% [122]. Other experiments yielded similar results [121].

We observed that data losses were inevitable as long as the size of internal buffers of

intermediate nodes were limited in the presence of poor link quality. This is because

the sender could easily fill up the buffer given that there is not sufficient time to

reliably transmit all packets. One of the key reasons for this problem is the lack of the

feedback of the link-layer information to the upper-layer applications and protocols.

For example, in a sensor network developed to gather the real-time information of
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passing vehicles (e.g., the VigilNet project [120]), whenever the target appears, the

traffic volume surges, causing internal packet queues to grow dramatically. At the

same time, simultaneous transmissions along the tree cause interference, decreasing

the link quality of pre-established trees. On the other hand, the application tries to

guarantee reliable packet delivery by retransmissions, only to cause cascading effects

that further reduce available bandwidth, a problem that finally leads to packet losses

when internal queues become full.

While packet losses may not be a big problem for applications that are tolerant to

them due to the redundancy in sensor data, for those applications that require high

degree of fidelity in data records, the problem will be extensive. For example, for a

smart camera sensor network that transmits one single image using multiple encoded

packets, losing any packet will lead to failures in reconstructing the complete original

picture. Another problem with lost packets is wasted energy, such as a path of N

hops where a packet is lost in the Nth hop. The energy spent on the transmission

and the retransmission of these N − 1 hops will be wasted. Therefore, losing packets

that have traveled for long distances is especially cost inefficient. For these reasons,

losing packets poses serious challenges for the cost effectiveness of WSNs.

In this dissertation, we propose a new idea: We use a state-space model to predict

the link quality and provide these estimates as a system-level service to application

developers. This idea is based on the premise that to achieve the best performance,

the application-layer behavior should be aware of the networking-layer conditions, e.g.

in the collection protocol, and adjust its behavior accordingly, to achieve balanced

performance with the link quality. The resulting integrated framework is what we

call LIPS, or Link Predictions as a Service, and represents an integrated solution.

1.1.4 Localization in the Theater Positioning System

The last topic discussed in this dissertation is localization, using what we call the

Theater Positioning System (TPS). The Global Positioning System (GPS) has been
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widely employed for both military and civil purposes. However, the nearly exclusive

dependence on the GPS satellite constellation for accurate position information

becomes a major operational concern for deploying U. S. military and law-enforcement

personnel. Such concern comes from the comparatively weakness of the GPS, e.g. it

may suffer from multipath and RF interference (intentional and unintentional), or

even invasion from an adversary, which results in inaccurate localization. A backup

to the GPS when GPS signals are out of reception is inertial navigation systems (INS)

[99, 100]. These units can be viewed as short-term backups to GPS but are in general

too costly, inaccurate, and/or power-hungry to be deployed except in a few specialized

applications. Thus, a much more robust, inexpensive, and reliable GPS augmentation

technique is badly needed for dismounted personnel and most platforms.

TPS is less expensive and offers far more consistent coverage than with the GPS

alone was developed in [89]. It operates at 90-110 kHz ground-wave radio-frequency

(RF) and can be used with or without the GPS. Like the GPS, this enhanced

low frequency (LF) component of the system uses spread-spectrum transmission

to improve the accuracy, exhibits a large processing gain for greater interference

immunity, and thus has a significant advantage over conventional LORAN-C radio-

navigation systems. It can be considered to be a navigation system that uses

terrestrial signal transmitters and a much lower RF compared with the GPS. The

low frequency property improves the capability of TPS signals penetration through

obstacles such as buildings, canyons, and forrests, where the GPS may be disabled

due to signal blocking. For example, my GPS did not work well or even provide close

navigation in downtown Chicago due to skyscrapers and bridges. The independence

of the TPS allows it to provide localization information for users when GPS signals

are denied.

The predecessor of the TPS component of the navigation system is LORAN,

which was the original wide-area radio-navigation system that preceded the GPS.

Its relatively long wavelength (3000 meters) provides wide geographic coverage

via ground-wave propagation without the need for satellites. Furthermore, its
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long wavelength provides significant immunity from false locations due to local

multipaths. However, conventional LORAN is limited by a lack of resolution and is

highly susceptible to interference. Incorporating spread-spectrum signals at LORAN

frequencies provides more precise location and better interference immunity [89].

In the usual operating mode, GPS serves as the principal positioning source.

Continuity of their fixes are assured since, during the normal TPS tracking process,

the TPS and GPS position data are continually compared. As long as the recent

and current GPS signal quality is good, the displayed TPS fix will be automatically

adjusted to overlay GPS values; this is generally done to provide an ongoing in-situ

calibration of TPS signal propagation delay figures and thus ”drag” the TPS fix to

match the GPS. If the GPS suddenly fails to provide a clean or continuous fix, the

TPS value will track the last good GPS coordinates. Once the GPS signal integrity

is restored for at least a few seconds and a new lock is satisfactorily obtained, the

system will smoothly revert to the GPS fix and return to the normal operation. In

the event that the GPS is jammed or otherwise unavailable for an extended period,

the TPS will be employed in a standalone mode to derive the unit’s fix, with a caution

to the user that the fix accuracy may be reduced. Another specific advantage of the

TPS concept lies in the use of the TPS as an antispoofing detector for the GPS. For

instance, if the TPS (presumed stable) and GPS planar fix do not essentially coincide

(i.e., where the GPS solution differs considerably from the TPS fix), this could be an

indicator of GPS receiver problems or of the presence of a spoofing signal. However,

the fix accuracy is reduced when the TPS works alone [89]. Thus, compensation

methods need to be developed for the purpose of improving the accuracy.
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1.2 Literature Review

1.2.1 Optimal Filtering over Packet Loss Links

Many studies have been conducted, in particular, on the limitations of networks such

as packets loss and communication delays [1]∼[9]. Other research has focused on

communication properties such as bandwidth limitation and quantization levels in

[10] and [11]. The study of networking and communications, together with control

systems, is a major direction for modern control now and in the near future.

Several investigations have been performed on the combination of network and

control systems, and some optimal control and estimation algorithms have been

derived under certain situations. An optimal LQG controller taking the factors of

bounded delays between the sensor and the controller, and the controller and the

actuator is proposed [1], but packet losses were not taken into consideration. Other

studies [2] and [3] considered uncertain observations. More recently, a suboptimal

estimator was provided [4]. Another study [5] proposed a Kalman Filter with

intermittent observations under a Bernoulli distribution. In [6], an optimal LQG

controller with packet losses both between the sensor and the controller, and between

the controller and the actuator was developed. There the authors considered both

the TCP protocol and the UDP protocol between the controller and actuator and

assumed available information of packet arrival from the sensor to the estimator.

Then, [7] derived stability conditions for Kalman filtering with Markovian packet

losses. Moreover, another work [9] proposed an optimal LQG algorithm by positioning

the encoder and the decoder at the transmitter and the receiver, respectively. All these

papers tackled problems on the packet dropouts model with time stamp. Furthermore,

[12] considered the optimal estimator of the packet loss model assuming no packet

arrival information; however, it is only the linear optimal estimator of the problem as

it assumed that the optimal state estimate was a linear function of the measurement.
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Later, the work [13] provided a way to compute the optimal state estimate without

any assumption of the form of the estimator.

1.2.2 Estimation and Control over CR systems

Significant research has been performed in control and estimation over communication

links under constraints such as packet losses, transmission delays, and bandwidth con-

straints [1]∼[11], but minimal research has been initiated regarding CR architecture.

The state estimation of the system over a CR system was first considered by [37],

where the CR link was modeled by a two-switch model with distributed and dynamic

spectral activity [32]. The switching variables were assumed to be Bernoulli variables.

Control and estimation of the closed-loop system over the same CR links were then

discussed by [38].

As the CR system can be modeled as a semi-Markov model, the problem can be

further formulated as a semi-Markov jump linear system (SMJLS) problem. Control

and estimation of SMJLSs can be extended from those for Markov jump linear systems

(MJLSs). There are many studies of the estimator design of MJLSs, e.g., particle

filters [15, 16], exact hybrid filter [14], linear mean square estimator [17], and others

[19]∼[24].

Control design over MJLSs has been developed comprehensively over the past

several decades. There are some studies focused on the system governed by

one Markov process, e.g., [60]∼[70]. Those works computed the optimal control

expressions using standard dynamic programming method and derived different

stability conditions, e.g., mean-square stability, stochastically stability, exponential

mean square stability, and almost sure stability. The first three stability notions have

been shown to be equivalent and concluded as second-moment stability (SMS) by

[66]. Moreover, it showed that the first three were also sufficient but not necessary

conditions for the fourth stability notion. For SMJLSs, several works have been

conducted on the control design for continuous-time systems [72, 73, 74]. For example,
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the optimal control of SMJLSs was computed by [72], but it is difficult to compute the

optimal solution explicitly due to coupled Riccati equations. Later, a suboptimal but

tractable control solution was developed in [73] by applying techniques that had been

used in MJLSs [69]. More recently, a robust state feedback controller was developed

in [74]. In additional, [75] considered the control design over a discrete-time SMJLS;

the cost function employed did not depend on the sojourn time.

With the increasing popularity of NCSs, the theorems developed in the control

design of MJLSs were also widely applied in NCSs by assuming the network or

communication factors to be Markovian random variables (see [76] for a survey in

NCSs). For example, an H∞ approach to Markovian packet loss links was developed

in [71] by employing the stability conditions derived for MJLSs.

1.2.3 Link Quality Prediction in WSNs

Previous works on link quality prediction have been undertaken in several papers

[82, 83, 85]. In [82, 83], the AR model was applied to model the behaviour of the

quality metrics, e.g., signal to noise ratio (SNR) in [82], and PRR in [83]. Moreover,

three different methods, Bayes classifier, logistic regression, and artificial neural

networks were employed for modeling metrics [84]. The modeling step implemented

the model obtained from offline training and selection. From a experimental point

of view, they showed that the logistic regression performed the best among the

three methods. Additionally, a link quality estimator was proposed by [86] which

used packet loss rate (PLR), round trip time (RTT), available bandwidth (ABW),

and feedback information to track the channel error probability and the collision

probability of the receiver using unscented Kalman filter. However, it assumed a

known model to avoid the procedure of the parameter estimation. Similarly, the

relationship model between the chip correlation indicator (CCI) and the PRR was

considered under the case of perceive packet loss [84]. It used Kalman filter to extract

the CCI from the noise background through a known discrete-time state-space model.
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1.2.4 Navigation with the TPS

The concept and detail configuration of the TPS were proposed by [89]. Most GPS

techniques can be employed directly [90]. There are also some methods that have

been already applied in solving GPS pseudorange equations, e.g., Newton-Raphson

[90, 91], Kalman filter [92, 93, 94] or particle filter [95].

1.3 Contributions

Contributions of the research undertaken here are summarized as follows:

1. Derivation of the optimal filter over Bernoulli i.i.d packet losses link.

The derivation of the optimal filter provided in this dissertation employs exact hybrid

filter and shows the optimal filter is a non-linear function of the measurement.

2. Derivation of a linear optimal estimator and a linear optimal controller over a

single CR link, which is represented by the two-switch model.

The CR system is first modeled by a two-switch model proposed in the communication

community. The linear optimal estimator is derived by placing a CR link between

the sensor and the estimator, and the linear optimal controller is also derived with a

CR link between the controller and the actuator.

3. Derivation of the estimator and the controller of the closed-loop system over

double CR links with stability conditions.

The linear optimal estimator is obtained, and it is demonstrated that the optimal

controller is not a linear function of the state estimate. It is also proven that the

separation principle does not hold.

4. Derivation of sufficient stability conditions for the case with acknowledgement

of packet arrivals.

Sufficient stability conditions of the peak covariance process of the state estimator

when acknowledgement of packet arrivals is known are derived in terms of statistics

of the semi-Markov process.
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5. Design of the state estimator without acknowledgement of packet arrivals.

The switching variable is governed by N semi-Markov processes and is further

modeled by a process with 2N states. The time varying transition probability matrix

is computed, and the IMM algorithm is employed to complete the estimation.

6. Prediction of link quality metrics in WSNs.

The state-space model is proposed to model, identify and predict RSSI, LQI, and

PRR in WSNs and demonstrated with real measurements from WSNs..

7. Development of a navigation scheme for the TPS when the GPS signal is not

available.

Three different models are employed and predicted the delays caused during the TPS

transmission by utilizing past GPS signals to improve the localization accuracy of the

TPS.

1.4 Thesis Organization

The thesis is organized as follows:

Chapter 2 considers the filtering over wireless communication channels subject

to packet losses. The packet losses are assumed to follow a Bernoulli distribution.

It is interpreted as a special case of a Markov process for which hybrid filtering

theory is shown to provide an exact solution. The optimal filter is derived and shown

to be a non-linear function of the measurement. Illustrative examples compare the

performance of the linear optimal estimator and the optimal filter and show that the

latter offers superior performance.

Chapter 3 considers control and estimation via the two-switch model, which

represents the CR system. The linear optimal estimator and the linear optimal

controller are derived through a single CR link. Attention is then turned to control

and estimation of the closed-loop system over double cognitive radio links and it is

demonstrated that the optimal controller is nonlinear in the state estimate. As a

result, it is also shown that the separation principle does not hold. Several stability
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conditions are also discussed. Numerical examples are provided to illustrate the

results.

Chapter 4 proposes to communicate through a CR link represented by a semi-

Markov model between the sensor and the estimator based on results in [39]. In

this way, the link is governed by multiple semi-Markov processes, each of which can

capture the stochastic behavior of each channel to be sensed. Two different cases

are considered, where one assumes acknowledgement of the information arrival is not

available at the estimator, while the other assumes it is available. In the first case,

sufficient conditions are derived for the stability of the peak covariance process, and

in the second case, the state estimator is proposed based on IMM.

Chapter 5 first computes the optimal controller of the discrete-time system over

the semi-Markov based CR link between the controller and the actuator. However,

the optimal solution is untractable; thus, a suboptimal controller that is tractable

and based on linear matrix inequalities (LMIs) is derived.

Chapter 6 considers the link quality prediction of WSNs. The link quality metrics

employed are RSSI, LQI, and PRR. State-space model is proposed to model these

metrics using past measurements; the model built is then used to predict future

quality metrics to seek the best transmission channel. Real experimental data is used

to demonstrate the proposed method.

Chapter 7 addresses the accuracy problem of the TPS when it works alone. The

transmission delay, which is one of the main reasons that degrade the accuracy,

is modeled by three different models by using past GPS signals. Then, they are

employed to compute the delays. A navigation scheme based on these methods is

also proposed for the TPS when it works alone.
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Chapter 2

Optimal Filtering over Packet

Losses Link

Control theories currently enjoy very broad cooperation with communication links.

The uncertainties, such as packet losses, delays, capacity constraints, and bandwidth

limit, introduced by transmission links require the existing control algorithms to

adjust these uncertainties when control systems are connected through these links.

This chapter considers the optimal filtering over a Bernoulli i.i.d packet loss link,

where the arrival information is unknown to the estimator. Parts of this work have

been published in [128].

2.1 Linear Optimal Estimator

[12] first considered this problem by assuming the state estimate is a linear function

of the measurement. In this section, we formulate the problem and give this linear

optimal estimator.
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2.1.1 Problem Formulation

For the following linear discrete-time system:

xk+1 = Axk + υk

yk = Ckxk + ωk (2.1)

where xk ∈ Rn is the state at time k, yk ∈ Rl is the observation received at the

estimator, υk ∈ Rn is the Gaussian white noise with zero mean, ωk ∈ Rl is another

Gaussian white noise with zero mean and independent of υk. Let V and W denote the

covariance matrices of υk and ωk, respectively. The matricesA andB are deterministic

parameters of the system, while Ck = γkC is the stochastic parameter taking the

factor of packet losses into account. We assume there are packet losses between the

sensor and the estimator and use γk to represent packet arrival at time k, where γk is

a Bernoulli random variable with probability P(γk = 1) = p and P(γk = 0) = 1 − p.

We assume that the state, the noise and γk are independent of each other. Moreover,

We assume the estimator does not have knowledge of packet arrivals, which

means that the information set Ik = {yk}k and the estimator does not know γk. The

arrival probability p is used to design the optimal estimator.

The estimator minimizes the following cost function:

Jk = E((x(k)− x̂(k))T (x(k)− x̂(k))|Ik) (2.2)

where x̂(k) is the optimal state estimate.

We first give the state estimate and the error covariance prior to received

measurements at the current time as follows:

x̂k|k−1 = Ax̂k−1|k−1

Pk|k−1 = APk−1|k−1A
T + V (2.3)
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where x̂k−1|k−1 is the posterior state estimate at time k − 1, x̂k|k−1 is the prior state

estimate at time k. Pk−1|k−1 and Pk|k−1 are corresponding covariances.

Assume that the optimal state estimate after received measurements can be

written in the following form:

x̂k|k = E{x̂k|k−1 +Kk(yk − Ckx̂k|k−1)}

= x̂k|k−1 +Kk(yk − pCx̂k|k−1) (2.4)

Then, the linear optimal estimator has been computed as follows [12]:

x̂k|k = x̂k|k−1 +Kk(yk − pCx̂k|k−1)

W
′

= W + (p− p2)CXk C
T

Pk|k = (I −KkpC)Pk|k−1(I −KkpC)T +KkW
′
KT

k

Kk = Pk|k−1pC
T (pCPk|k−1pC

T +W
′
)−1 (2.5)

If we go back to (2.1) and observe that the measurement is not Gaussian as it is the

summation of a Bernoulli process and a Gaussian process, it may be not appropriate

to assume the state estimate to be a linear function of the measurement because the

state is Gaussian. To obtain the optimal filter, the next subsection employs the exact

hybrid filter theory [14] and derives the optimal state estimate and error covariance.

2.2 Optimal Filter

In this section, we examine the problem by formulating it into a Markov jump linear

system and derive the optimal filter.
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2.2.1 Problem Reformulation

In this subsection, the problem in (2.1) is reformulated for convenience of the

application of the exact hybrid filter. Note the reformulated one below is the same

as (2.1).

We start with some mathematical preliminaries. Let (Ω,Γ,P) be a probability

space upon which υk ∈ R and ωk ∈ R are independent Gaussian white sequences with

zero mean and unit variance. For convenience, we assume a scalar system, however

we will indicate how to extend the result to the general case later on. Consider the

following linear discrete-time system:

xk+1 = Axk +Bυk

yk = h(Zk)xk + ωk (2.6)

where xk ∈ R is the state of the system at time k, yk ∈ R is the measurement received

at the estimator; The scalars A ∈ R and B ∈ R are system parameters. x0 is the

initial value of processes {xk}k∈N. Let {Γk}k∈N be the complete filtration generated by

{x0, ...xk, Z0, ...Zk, ω0, ...ωk−1} and {Σk}k∈N be the complete filtration generated by

{Z0, ...Zk}. {Zk}k∈N is assumed to be a Σk-Markov process: Zk+1 = ΠZk+Mk with a

state-space S = {e1, e2} where e1, e2 are 2-canonical unit vectors, and Z0 is uniformly

distributed and independent of other processes. Mk is an Σk-martingale increment

and Π = (πji) is a 2× 2 matrix with i, j = 1, 2 and πji = P(Zk = ej|Zk−1 = ei). Here

we consider an i.i.d Bernoulli packet loss model, we have the relationship: πji = πii

and the transition probability matrix is 1− p p

1− p p


in this case. In our model, we set h(Zk) = 0 when Zk = e1 represents the packet loss

and h(Zk) = C (C is a scalar) when Zk = e2 represents the packet arrival at that
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time. The complete filtration generated by {y0, ..., yk} is labeled by {Ik}k∈N. The

optimal state estimate is defined as the minimizer of the following cost function:

Jk = E((xk − x̂k)
2|Ik) (2.7)

Note that from equation (2.6) we see that the measurement is the summation of a

Markov process and a Gaussian process which renders measurements not Gaussian.

2.2.2 Optimal Filter over the Bernoulli Packet Loss Link

In this subsection, we rely on hybrid filtering theory [14] to derive the optimal filter.

The main idea is to use a change of measure method, which transforms the filtering

problem from the original probability space to a new probability space where the

measurement and the state are both Gaussian. The optimal filter under the original

probability space is then obtained by using the conditional Bayes’ theorem.

Initially, assume that all processes are defined on a new probability space (Ω,Γ,Q),

and under Q:

1) {xk}k∈N is a sequence of independent and identically distributed real Gaussian

random variables N(0, 1) with density function Φ;

2) {yk}k∈N is a sequence of independent and identically distributed real Gaussian

random variables N(0, 1) with density function Φ;

Under the new probability measure Q, it is able to compute the optimal estimate

as both xk and yk are Gaussian. Then, the optimal filter with respect to P can be

obtained.

For k = 0, 1, 2, ..., let λ̄0 :=
Φ(y0−h(Z0)x0)

Φ(y0)
and define:

λ̄k+1 :=
Φ(yk+1 − h(Zk+1)xk+1)

Φ(yk+1)

Φ(xk+1−Axk

B
)

BΦ(xk+1)
(2.8)
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Λ̄n =
n

Π
k=1

λ̄k (2.9)

Then the process {Λ̄k}k∈N is an Q-martingale with respect to the filtration Γk,

k ∈ N [22].

Define the probability measure P on Ω that is absolutely continuous with respect

to Q and the Radon-Nikodym derivative on (Ω,Γ) with restriction to Γk is given by

: dP/dQ = Λ̄k. Then, on {Ω,Γk} and under P, {υk}k, {ωk}k, are i.i.d. standard

Gaussian random processes, such that

υk =
xk+1 − Axk

B

ωk = yk − h(Zk)xk (2.10)

Let g : R → R be a ”test function”. From the Bayes’ theorem, for Γ-adapted

sequence {⟨Zk, ei⟩g(xk)}k∈N:

E[⟨Zk, ei⟩g(xk)|Ik] =
Ē[Λ̄k⟨Zk, ei⟩g(xk)|Ik]

Ē[Λ̄k|Ik]

where Ē(•) denotes the expectation with respect to probability measure Q. Then,

define qik(x), p
i
k(x) as the unnormalized conditional density and normalized density as

follows [14]:

Ē[Λ̄k⟨Zk, ei⟩g(xk)|Ik] =

∫
R
g(η)qik(η)dη (2.11)

E[⟨Zk, ei⟩g(xk)|Ik] =

∫
R
g(η)pik(η)dη (2.12)

Then still from a version of Bayes’ theorem, we have

pik(η) =
qik(η)∑2

j=1

∫
R q

j
k(ζ)dζ

(2.13)
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A recurrence relationship is obtained between the unnormalized probability

densities qik+1(x) and qik(x):

qik+1(x) =
Φ(yk+1 − h(Zk+1)xk+1)

Φ(yk+1)

2∑
j=1

πji

B

∫
R
Φ(

x− Aζ

B
)qjk(ζ)dζ (2.14)

Then the unnormalized probability density is computed as follows:

Lemma 2.0.1. Suppose qi0(x) is Gaussian for i = 1, 2. Then qik(x) is a finite sum of

Gaussian densities and

qik(x) =
2k∑
l=1

Ak(i, l) exp[−αk(i, l)x
2 + βk(i, l)x]

where

Ak(i, l) =
πqrAk−1(q,r)

B
√

2Dk−1(i,l)
exp[1

2
(βk−1(q,r)

2

2Dk−1(i,l)
)]

Dk−1(i, l) =
(A)2

2B2 + αk−1(q, r),

βk(1, l) =
Aβk−1(q,r)

2B2Dk−1(1,l)
,

βk(2, l) = Cyk +
Aβk−1(q,r)

2B2Dk−1(2,l)

αk(1, l) =
1

2B2 − A2

4B4Dk−1(1,l)

αk(2, l) =
C2

2
+ 1

2B2 − A2

4B4Dk−1(2,l)

The integers q, r are defined by the following equation:

(q, r) =

 (q̃, 2k−1), if r̃ = 0

(q̃ + 1, r̃), otherwise

with the integers q̃, r̃ being the quotient and rest of the division of l by 2k−1.

Proof. The proof of this lemma follows from arguments in [14] directly, and is omitted

here.

The next lemma computes the optimal state estimate and error covariance through

(2.13) and the results are in terms of Ak(i, l), αk(i, l) and βk(i, l).
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Lemma 2.0.2. The optimal state estimate x̂k and error covariance Pk are:

x̂k =
1

Sk

2∑
i=1

2k∑
l=1

Ak(i, l) exp(
βk(i, l)

2

4αk(i, l)
)
βk(i, l)

2αk(i, l)

√
2π

2αk(i, l)

Pk =
1

Sk

2∑
i=1

2k∑
l=1

Ak(i, l) exp(
βk(i, l)

2

4αk(i, l)
)

√
2π

2αk(i, l)

2αk(i, l) + βk(i, l)
2

4αk(i, l)
2 − x̂2

k

(2.15)

where Sk =
2∑

i=1

∫
R q

i
k(ζ)dζ is computed below and both of x̂k and Pk are nonlinear

functions of measurements.

Proof. As qik(x) =
2k∑
l=1

Ak(i, l) exp[−αk(i, l)x
2 + βk(i, l)x], we have:

Sk =
2∑

i=1

∫
R q

i
k(ζ)dζ =

2∑
i=1

2k∑
l=1

Ak(i, l) exp(
βk(i,l)

2

4αk(i,l)
)
∫
R exp[−

1
2 1
2αk(i,l)

(ζ − βk(i,l)
2αk(i,l)

)
2
]dζ

=
2∑

i=1

2k∑
l=1

Ak(i, l) exp(
βk(i,l)

2

4αk(i,l)
)
√

2π
2αk(i,l)

Then, the normalized density can be computed as:

pik(x) =

2k∑
l=1

Ak(i, l) exp[−αk(i, l)x
2 + βk(i, l)x]

Sk

Thus, the optimal state estimate is computed as:

x̂k = E{xk|Ik} =
2∑

i=1

∫
R x

i
kp

i
k(x

i
k)dx

i
k

= 1
Sk

2∑
i=1

2k∑
l=1

Ak(i, l)
∫
R x

i
k exp[−αk(i, l)(x

i
k)

2 + βk(i, l)x
i
k]dx

i
k

= 1
Sk

2∑
i=1

2k∑
l=1

Ak(i, l) exp(
βk(i,l)

2

4αk(i,l)
)
∫
R x

i
k exp[− 1

2 1
2αk(i,l)

(xi
k −

βk(i,l)
2αk(i,l)

)
2
]dxi

k

= 1
Sk

2∑
i=1

2k∑
l=1

Ak(i, l) exp(
βk(i,l)

2

4αk(i,l)
) βk(i,l)
2αk(i,l)

√
2π

2αk(i,l)
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Similarly for covariance , we have:

Pk = E{(xk − x̂k)
2|Ik} = E{x2

k|Ik} − x̂2
k

where E{x2
k|Ik} is computed as:

E{x2
k|Ik} =

2∑
i=1

∫
R (x

i
k)

2pik(x
i
k)dx

i
k

= 1
Sk

2∑
i=1

2k∑
l=1

Ak(i, l) exp(
βk(i,l)

2

4αk(i,l)
)
∫
R (x

i
k)

2 exp[− 1
2 1
2αk(i,l)

(xi
k −

βk(i,l)
2αk(i,l)

)
2
]dxi

k

= 1
Sk

2∑
i=1

2k∑
l=1

Ak(i, l) exp(
βk(i,l)

2

4αk(i,l)
)
∫
R (x

i
k −

βk(i,l)
2αk(i,l)

)
2
exp[− 1

2 1
2αk(i,l)

(xi
k −

βk(i,l)
2αk(i,l)

)
2
]dxi

k

+ 1
Sk

2∑
i=1

2k∑
l=1

Ak(i, l) exp(
βk(i,l)

2

4αk(i,l)
)
∫
R

βk(i,l)
αk(i,l)

xi
k exp[− 1

2 1
2αk(i,l)

(xi
k −

βk(i,l)
2αk(i,l)

)
2
]dxi

k

− 1
Sk

2∑
i=1

2k∑
l=1

Ak(i, l) exp(
βk(i,l)

2

4αk(i,l)
)
∫
R (

βk(i,l)
2αk(i,l)

)
2
exp[− 1

2 1
2αk(i,l)

(xi
k −

βk(i,l)
2αk(i,l)

)
2
]dxi

k

= 1
Sk

2∑
i=1

2k∑
l=1

Ak(i, l) exp(
βk(i,l)

2

4αk(i,l)
)
√

2π
2αk(i,l)

1
2αk(i,l)

+ 1
Sk

2∑
i=1

2k∑
l=1

Ak(i, l) exp(
βk(i,l)

2

4αk(i,l)
)
√

2π
2αk(i,l)

βk(i,l)
αk(i,l)

βk(i,l)
2αk(i,l)

− 1
Sk

2∑
i=1

2k∑
l=1

Ak(i, l) exp(
βk(i,l)

2

4αk(i,l)
)
√

2π
2αk(i,l)

( βk(i,l)
2αk(i,l)

)2

= 1
Sk

2∑
i=1

2k∑
l=1

Ak(i, l) exp(
βk(i,l)

2

4αk(i,l)
)
√

2π
2αk(i,l)

2αk(i,l)+βk(i,l)
2

4αk(i,l)
2

Extension to General Case: One can easily extend the result to matrix case

as in [22] and [23]. Assume (2.6) to be a vector version problem where parameters A,

B and C are matrices of compatible dimensions, then qik(x) can be represented by:

qik(x) =
2k∑
l=1

Ak(i, l) exp[−xTαk(i, l)x+ βT
k (i, l)x]
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where T denotes the transpose, and

Ak(i, l) =
πqrAk−1(q,r)

|B|
√

2|Dk−1(i,l)|
exp[1

2
(βT

k−1(q, r)(2Dk−1(i, l))
−1βk−1(q, r))]

Dk−1(i, l) = AT (2BB′)−1A+ αk−1(q, r),

βk(1, l) = (2BBT )−1A(Dk−1(1, l)
−1)βk−1(q, r),

βk(2, l) = C ′yk + (2BBT )−1A(Dk−1(2, l))
−1βk−1(q, r)

αk(1, l) = (2BBT )−1 − (2BBT )−1A(Dk−1(1, l))
−1AT (2BBT )−1

αk(2, l) =
CTC
2

+ (2BBT )−1 − (2BBT )−1A(Dk−1(2, l))
−1AT (2BB′)−1

The state estimate and the covariance for the vector case can be derived similarly as

in Lemma 2.0.2.

Comparing the result obtained here and from [13], we observe that: In [13], the

derivation involved the Kalman filter and Bayesian theorem, while in our work, we

employed the change of measure method and Bayesian theorem. The difference in

the derivation methods results in totally different forms of the solution, where in

this work the optimal estimate and error covariance are represented explicitly by

several recursive characteristics while in [13], the optimal state estimate is written

as a function of the error covariance and previous estimate. Obviously, the solution

provided in this work is much more explicit. This form of the solution may provide

another insight into deriving the suboptimal estimator to this problem.

Note that from the expression (2.15), we can conclude that the optimal filter is not

a linear function but rather an exponential function of measurements. As a result,

the state estimate and the covariance require the calculation of a summation from 1

to 2k where k is time. Since k is increasing, the computation of this optimal filter

require exponentially increasing memory (as also mentioned in [13]). This is the price

that one has to pay to obtain the optimal filter. However, two important features

can be deduced from the optimal filter. The first feature is that the optimal filter can

be used as a benchmark for suboptimal filters to determine how far they are from
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optimality. The second, and more important feature, is that the optimal filter shows

superior performance for unstable systems compared with the linear optimal filter.

2.3 Numerical Examples

In this section, we compare the performance of the linear optimal estimator and the

optimal filter.

2.3.1 Comparison between the Optimal Filter and the Linear

Optimal Estimator

To illustrate the performance, we consider a linear system with packet arrival

probability p = 0.8, A = 0.9, B = 0.01, h(e1) = 0, h(e2) = 1, and

∏
=

 0.20 0.80

0.20 0.80


Simulations are performed for 30 runs from k = 0 to k = 15. There are packet

losses at k = 4, 6, 13. The performance of our estimator and the linear optimal

estimator are compared. It is seen from fig 2.1 that both filters estimate the true

system state very well while the root mean square error (RMSE) for the optimal

filter is a bit smaller.

To further compare the performance, the system parameter A is increased from 0.9

to 1.14, that is, now the system is unstable. The result of RMSEs is shown in fig 2.2.

The figure clearly shows that the performance of the optimal filter is much better since

the performance of unstable systems degrades rapidly as the linear optimal estimator

diverges [26].
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Figure 2.1: Root mean square error between the optimal filter (solid curve) and the
linear optimal estimator (dash curve) when A = 0.9.
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Figure 2.2: Root mean square error between the optimal filter (solid curve) and the
linear optimal estimator (dash curve) when A = 1.14.

26



Chapter 3

Estimation and Control over

Cognitive Radio Systems Based on

a Two-Switch Model

The rapid development of various technologies such as radio, satellite, and phone

service, has increased the need for wider channel frequency bandwidth. The current

bandwidth spectrum has been licensed to different users to ensure the coexistence

of diverse wireless systems [32]. However, the FCC’s frequency allocation chart [33]

shows that the majority of frequency bandwidth has been assigned to different users

and that large portions of the spectrum are frequently unused [34]. CR [35] is proposed

for the purpose of the efficient spectrum use.

As noted in Chapter 1, a great deal of research has been performed in the area

of control and estimation over communication links under constraints, but limited

research has been performed regarding the CR architecture. In this study, we provide

comprehensive work in estimation and control over this CR system. As far as we

know, our work with the combination of CR and control theory is the first in this

area. This chapter employs a two-switch model proposed from the communication

community [32] as the model of the CR system. This model avoids the disturbance
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Figure 3.1: Channels in CR system.

from secondary users completely and thus protects the benefit of primary users. Parts

of this work have been published in [38] and [37].

3.1 The Two-Switch Model

In this section, we introduce the two-switch model used to model the CR system

throughout this chapter.

The general idea of the CR system can be interpreted by fig 3.1. Assume there

are N independent licensed channels that can be sensed named as f1, f2,..., fN ; each

channel is divided into parts by vertical lines and each part represents that channel

in one time slot; the marked slot represents that the channel is utilized by PUs and

the SUs can not use it at that time while the blank one means that it is free to be

used by SUs.

In CR systems, PUs represent the users that occupy the spectrum as they pay

or as they are assigned to it. SUs take advantage of inactivity periods of PUs to

transmit information through the available channel. SUs have to avoid transmitting

to minimize interference with PUs. The model considered in this chapter is proposed

in the communication community [32].
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Figure 3.2: Conceptual model of a cognitive radio system with secondary
transmitter ST and receiver SR [32].

First, consider the CR link shown in fig 3.2. We assume one secondary transmitter

(ST) and one secondary receiver (SR) in the presence of several PUs, e.g. 3 PUs A,

B, and C (assume 3 PUs only for convenience). The circles represent sensing regions

where the ST and SR can detect activities of PUs. In fig 3.2, for example, the ST can

only sense whether A or B is active, and then reports that the spectrum as available

for the transmission when both A and B are inactive. Similarly, the SR does the same

to B and C.

Due to the independence of each channel, we can consider this as a problem where

only one channel in the CR system and design the estimator and controller over it.

The conceptual model in fig 3.2 produces the two-switch mathematical model

shown in fig 3.3. Here, we use st and sr to denote sensing variables of the ST and

the SR. Let st = 0 if the ST senses active PUs and st = 1 if no active PUs. sr = 0 if

the SR senses active PUs and sr = 1 if no active PUs. We also assume that PUs are

independent with each other. Assume that st and sr are i.i.d Bernoulli variables.
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Figure 3.3: Mathematical model of two-switch model [32].
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Figure 3.4: Estimation over cognitive radio system.

The switch state st is known only to the transmitter, while sr is known only to

the receiver. The correlation which exists between them as can be seen from the fig

3.2. They both depend on PUs that exist in the intersecting region of both sensing

regions. The mathematical model can be written as Y = sr(stX + Z), where Y is

the received signal at the receiver, and X and Z are the transmitted signal and the

noise, respectively.

3.2 Linear Optimal Estimator

In this section, we derive the linear optimal estimator through a single CR system.
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3.2.1 Problem Formulation

First, we consider estimation over a single CR link between the sensor and the

estimator as shown in fig 3.4. For the following discrete-time system:

xk = Axk−1 + υk

yk = skr(s
k
tCxk + ωk) (3.1)

where xk ∈ Rn is the state at time k, yk ∈ Rl is the observation received at the receiver,

x0 is the initial value of the processes {xk}k∈N. υk ∈ Rn and ωk ∈ Rl are independent

Gaussian white sequences with zero mean and positive definite covariance matrices

V and W . The matrices A and C are system matrices, and (A,C) is observable. skt

and skr are switching variables of the ST and the SR at time k, respectively. The CR

system is located between the sensor and the estimator. We assume that skt and skr are

two i.i.d Bernoulli variables with the probability P{skt = 1} = λ and P{skr = 1} = q.

Note that the two Bernoulli variables are assumed to be independent with the states

and noises, but may depend on each other due to the intersection of sensing regions.

The switching variable skt is not known while skr is known at the estimator. Denote

by {Ik}k∈N the complete filtration (σ-algebra) generated by {y0, ..., yk, s1r, ..., skr}.

The optimal estimation problem can be posed as the minimization of the cost

function:

Jk = E{(xk − x̂k|k)
T (xk − x̂k|k)|Ik}

3.2.2 Linear Optimal Estimator

In this section, we derive the linear optimal estimator by assuming the state estimate

is a linear function of the measurement.
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Theorem 3.1. The linear estimator that minimizes the cost function (3.1) is given

by:

x̂k|k−1 = Ax̂k−1|k−1 (3.2)

Pk|k−1 = APk−1|k−1A
T + V (3.3)

x̂k|k = x̂k|k−1 +Kk(yk − skrpCx̂k|k−1) (3.4)

Pk|k = Pk|k−1 − skrpKkCPk|k−1 (3.5)

Kk = Pk|k−1pC
T (pCPk|k−1pC

T +W
′
)−1 (3.6)

W
′

= W + (p− p2)CXkC
T (3.7)

Xk+1 = AXkA
T + V (3.8)

where p = P(skt = 1|skr = 1).

Proof. : The prediction step is given by:

x̂k|k−1 = E{xk|Ik−1} = Ax̂k−1|k−1

Pk|k−1 = E{(xk − x̂k|k−1)(xk − x̂k|k−1)
T |Ik−1} = APk−1|k−1A

T + V

where x̂k|k−1 is the a priori state estimate at time k and x̂k−1|k−1 is the a posterior state

estimate at time k− 1, Pk|k−1 is the covariance of the estimation error of xk − x̂k|k−1;

Pk−1|k−1 is the covariance of the estimation error of xk − x̂k−1|k−1.

Assume that the state is a linear function of the measurement:

x̂k|k = x̂k|k−1 + E{Kk(yk − skrs
k
tCx̂k|k−1)|Ik} (3.9)

where Kk is the linear optimal estimator gain matrix at time k and yk − skrs
k
tCx̂k|k−1

is the innovation process.
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In (3.9) while disregarding the term skrs
k
tCx̂k|k−1, other terms do not depend on

skt and skr . Thus, (3.9) becomes:

x̂k|k = x̂k|k−1 +Kk(yk − skrE{skt |skr}Cx̂k|k−1)

since skr is measurable with respect to Ik and skt only depends on skr .

The mean estimator error then is computed as:

E{εx,k|k|Ik} = E{xk − x̂k|k|Ik} = E{xk − x̂k|k−1 −Kk(yk − skrptCx̂k|k−1)|Ik}

= (I − skrKkptC)E{εx,k|k−1|Ik} − skrKkE{ω
′

k|Ik}

where pt =: E{skt |skr}; ω
′

k := ωk + (skt − pt)Cxk is viewed as the new measurement

noise. Then, by independence of the state, the noise and skt , we have:

E{ω′

k|Ik} = E{ωk + (skt − pt)Cxk|Ik} = E{ωk}+ E{skt − pt|Ik}E{Cxk|Ik} = 0

Also we have E{ω′

kυ
T
k
} = 0. Then the estimation error covariance Pk|k at time k

is:

Pk|k = E{εx,k|kεT x,k|k|Ik}

= (I − skrKkptC)E{εx,k|k−1ε
T
x,k−1|Ik}(I − skrKkptC)T − skrKkE{ω

′

kε
T
x,k|k−1|Ik}

×(I − skrKkptC)T − (I − skrKkptC)E{εx,k|k−1ω
′T
k |Ik}skrKT

k + skrKkE{ω
′

kω
′T
k |Ik}skrKT

k

Note that εx,k|k−1 is the estimation error at time k before receiving the mea-

surement, ω
′

k is combined with the measurement noise ωk at time k. Thus, ω
′

k is

independent of εx,k|k−1. Therefore, E{ω
′

kε
T
x,k|k−1} = E{εx,k|k−1ω

′T
k } = 0 and we have

Pk|k = (I − skrKkptC)Pk|k−1(I − skrKkptC)T + skrKkW
′
KT

k (3.10)
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where W
′
= E{ω′

kω
′T
k |Ik} is the variance of w

′
and is determined by

W
′
= E{ω′

kω
′T
k |Ik} = E{(ωk + (skt − pt)Cxk)(ωk + (skt − pt)Cxk)

T |Ik}

= W + (E{(skt )2|skr} − (pt)
2)CXkC

T

where Xk = E{xkx
T
k |Ik}.

Following [26] we obtain Xk+1 = AXkA
T +V , and X0 = x0x

T
0 +P0 to make {Xk}

a known sequence.

The optimality criterion is set to minimize the cost function Jk. Note Jk =

Trace(Pk|k) [27]. Differentiating Jk with respect to (w.r.t) Kk yields

∂Jk
∂Kk

=
∂Trace((I − skrKkptC)Pk|k−1(I − skrKkptC)

T
+ skrKkW

′
KT

k )

∂Kk

= 2(I − skrKkptC)Pk|k−1(−skrptC
T ) + 2skrKkW

′
(3.11)

Letting (3.11) be equal to 0, and solving for Kk results:

Kk = Pk|k−1ptC
T (ptCPk|k−1ptC

T +W
′
)−1

Plug Kk back to (3.10)

Pk|k = Pk|k−1 − skrptKkCPk|k−1 (3.12)

Next pt is computed. As skt ∈ {0, 1}, pt = 1 × P(skt = 1|skr) + 0 × P(skt = 0|skr) =

P(skt = 1|skr), which includes are two cases: skr = 0 and skr = 1. Note when skr = 0, the

receiver is closed, so yk = 0. Then, the second term on the right hand side in both

(3.9) and (3.12) vanishes, which means pt does not affect the estimation algorithm

when skr = 0. Thus, we only need to compute pt = P(skt = 1|skr = 1) and (3.9) can be

represented as:

x̂k|k = x̂k|k−1 +Kk(yk − skrP(skt = 1|skr = 1)Cx̂k|k−1)
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which includes both cases.

Similarly, in W
′
, we have E{(skt )2|skr} = p(skt = 1|skr). Using the same argument

as above, we can write:

E{(skt )2|skr} − (pt)
2 = P(skt = 1|skr = 1)− P(skt = 1|skr = 1)2

including both cases. For convenience, we denote p = P(skt = 1|skr = 1) and finish the

proof.

In the next lemma, we compute p in the linear optimal estimator.

Lemma 3.1.1. Assume in the two-switch model, there are n independent PUs

{u1, ...un} in the sensing region of ST only (not in the sensing region of the SR), and

another m independent PUs {un+1, ...un+m} in the intersection of sensing regions of

both ST and SR, and another o independent PUs {un+m+1, ...un+m+o} in the sensing

region of the SR only. Let the sequence {p1, ..., pn+m+o} denote probabilities that PUs

are inactive respectively. Then,

p = P(skt = 1|skr = 1) =
n

Π
i=1

pi (3.13)

(3.13)) means that the linear optimal estimator depends on probabilities of inactive

PUs that only exist in the sensing region of the ST.

Proof. Note that: P(skt = 1) =
n+m

Π
i=1

pi, P(skr = 1) =
n+m+o

Π
i=n+1

pi Then,

P(skt = 1|skr = 1) =
P(skt = 1, skr = 1)

P(skr = 1)
=

n+m+o

Π
i=1

pi

n+m+o

Π
i=n+1

pi

=
n

Π
i=1

pi

Note that (i) A must be stable to guarantee the convergence of the estimator due

to the term Xk in (3.8); (ii) Pk+1|k is a random variable that depends on skr .
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3.2.3 Example: Application to An Inverted Pendulum-Cart

System

To illustrate the performance of the linear optimal estimator, an application to

estimate states of an inverted pendulum-cart system via the CR system is performed.

Parameters of the system, a stable inverted pendulum-cart system, are given by:

A =


1.0000 − 0.0002 0.0010 − 0.0000

0.0000 0.9996 0.0001 0.0010

0.0315 − 0.3901 1.0518 0.0417

0.0726 − 0.8763 0.1193 0.9038

,

C =

 1 0 0 0

0 1 0 0

, W =

 0.001 0

0 0.001

, V =


0.0100 0.0090 0.0020 0.0050

0.0060 0.0100 0.0080 0.0060

0.0040 0.0080 0.0030 0.0070

0.0090 0.0040 0.0050 0.0100


Here x = [s; θ; v; ω]T is the state vector, with s the position of the cart; θ the

angle of the pendulum with the vertical line; v the velocity of the cart; and ω the

angular velocity of the pendulum.

The output signals are given by the position and the angle of the inverted

pendulum. The position should act as the reference signal at approximately 1m

and the angle should be around 0. The two-switch model CR system as in fig

3.2 is considered. Assume that three PUs are detected in sensing regions, and

p1 = p2 = p3 = 0.8. The estimates of the position and the angle from the proposed

estimator is shown in fig 3.5. From the figure, it is obvious that the estimated states

converge to real ones.

3.2.4 Multi-channels Case

In the previous section, we discuss only one channel sensed in the CR system. Due

to the independence of each channel, it can be easily extended from single channel

case to multi-channels. The term needed to compute in the estimation algorithm is
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Figure 3.5: State estimates of the position and the angle.
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Figure 3.6: Control over cognitive radio system.

E{skt |skr} = pt, and based on the same arguments in section 3.2.2, we have E{skt |skr} =

P{skti|s
k
ri
}, where skti and skri are switching states of the ST and the SR under the ith

channel.

3.3 Controller Design Through the CR System

In this section, the linear optimal controller over a single CR link between the

controller and the actuator shown in fig 3.6 is derived.
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The system is modeled as:

xk+1 = Axk +Bskr(s
k
t uk + υk) (3.14)

The linear state feedback controller is computed as the minimizer of the quadratic

cost function:

VN =
1

N
E{xT

NQNxN +
N−1∑
k=0

(xT
kQkxk + uT

kRkuk)}

where Qk and Rk are respectively positive semi-definite and positive definite. The

linear controller is:

uk = u(xk) = Lkxk

Similarly as in [4] using dynamic programming, we get the gain matrix Lk:

Lk = −ΨkE{skrskt |Uk}BTHk+1A

and

Ψk = (Rk + E{skrsktBTHk+1Bskrs
k
t |Uk})−1

where the matrices Hk are given by the recursive equation:

HN = QN

Hk = ATHk+1A− ATHk+1BE{skrskt |Uk}ΨkE{skrskt |Uk}BTHk+1A+Qk (3.15)

Lk is a function of skr and skt . Note that in (3.14) skt is known and the information

set {Uk}k∈N is the complete filtration generated by {x0, ..., xk, s
1
t , ..., s

k
t }. Therefore,

when skt = 0, it is obvious that uk = 0 as Lk = 0. Hence to compute the control

signal, we only need to consider skt = 1. The problem reduces to:

xk+1 = Axk +Bskr(uk + υk) (3.16)
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The equation above is similar to a packet loss model without arrival information.

The linear optimal controller based on (3.16) can be derived similarly as [29]. The

Riccati-like equation (3.15) with skt = 1 has the following form:

Hk+1 = ATHkA− α2ATHkB(R + αBTHkB)−1BTHkA+Qk

where α = P(skr = 1|skt = 1) and is computed similarly to the derivation in Lemma

3.1.1. The stability conditions are discussed in [29].

Next, we present an example to show the performance of the linear optimal

controller under the CR link. Consider fig 3.2 again as an example, and the instable in-

verted pendulum-cart system has parameters: A =


1.0000 0.0000 0.0010 − 0.0000

0.0000 1.0000 − 0.0000 0.0010

0.0000 0.0022 0.9842 − 0.0000

0.0000 0.0278 − 0.0363 0.9999

,
B =[0.0000 , 0.0000 , 0.0023 , 0.0052]T , p1 = 0.9, p2 = 0.8, p3 = 0.5 and the LQR

gain for a deterministic system xk+1 = Axk +Buk where uk = −Gxk is:

G = [−13.9382173.6752− 29.903018.4750]

The infinite horizon linear optimal controller gain computed by the proposed

algorithm is:

K = [−19.6887, 217.4028,−56.7957, 32.8859]T

Fig 3.7 and fig 3.8 compare the LQR gain and the new controller gain using the

step response of the system. As can be seen from fig 3.7, the position controlled by

the new controller converges at 1m while it diverges for the standard LQR controller.

Also in fig 3.8 the new controller stabilizes the system by forcing the angle to be near

0, while the standard LQR controller makes the angle oscillates away from 0.
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Figure 3.7: Step response of the position with comparison.
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Figure 3.8: Step response of the angle with comparison.
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3.4 Estimation and Control Through Cognitive

Radio

3.4.1 Estimation

In this section, we consider estimation and control of the closed-loop system when CR

links exist between both the sensor to the estimator and the controller to the actuator,

as shown in fig 3.9. There are two STs, located at the sensor and the controller ends,

respectively, similarly two SRs at estimator and actuator ends. Observe that the

sensing variables are the same for the receiver at the estimator and the transmitter

at the controller, thus for convenience we use skr to denote sensing variables of the

transmitter at the controller and receiver at the estimator. Similarly, we use skt for

the receiver at the actuator and the transmitter at the sensor.
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The system described in fig 3.9 becomes:

xk+1 = Axk +Bskt (s
k
ruk + υk)

yk = skr(s
k
tCxk + ωk) (3.17)

The linear optimal estimator for this system is to minimize the cost function

defined in section 3.2.1 by assuming that the state estimate is a linear combination

of measurements.

The a priori state estimate can be computed similarly as follows:

x̂k+1|k = Ax̂k|k + pskrBuk

Pk+1|k = APk|kA
T + p(1− p)skrBuku

T
kB

T + pdBV BT (3.18)

where pd = p when skr = 1 and pd = P(skt = 1|skr = 0) when skr = 0, the latter

probability can be computed similar as lemma 3.1.1 and P(skt = 1|skr = 0) =

(
n+m

Π
i=1

pi(1−
n+m+o

Π
n+m+1

pi))/(1−
n+m+o

Π
n+1

pi).

After receiving the measurement we can obtain the a posterior state estimate:

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − sk+1
r pCx̂k+1|k)

Wk+1
′

= W + (p− (p)2)CXk+1C
T

Pk+1|k+1 = Pk+1|k − sk+1
r pKk+1CPk+1|k

Kk+1 = Pk+1|kpC
T (pCPk+1|kpC

T +Wk+1
′
)−1

Xk+1 = E{xk+1x
T
k+1} (3.19)

After additional computations, we have:

Xk+1 = E{xk+1x
T
k+1|Ik} = E{(Axk +Bskt (s

k
ruk + υk))(Axk +Bskt (s

k
ruk + υk))

T |Ik}

= (Ax̂k|k + pskrBuk)(Ax̂k|k + pskrBuk)
T + Pk+1|k

due to E{ex̂T} = 0 and E{euT} = E{e}uT = 0.
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Note that the error covariance in (3.19) can be written in the following form:

Pk+1 = APkA
T − skrpAKkCPkA

T + p(1− p)skrBuku
T
kB

T + pdBV BT (3.20)

3.4.2 Control

In this section, we discuss control design of the closed-loop system. We can see above

that the error covariance is a function of the control input, which implies that the

separation principle does not hold. We give an example to illustrate that it is indeed

the case. Assume a SISO system with A = 1, B = 1, C = 1, W = 1 and V = 0.

Consider the value function defined as:

VN(xN) = E{xN
TQNxN |IN}

Vk(xk) = min
uk

E{xk
TQkxk + skt s

k
ruk

TRkuk + Vk+1(xk+1)|Ik} (3.21)

Also assume QN = Qk = 1 and R = 0.

When k = N , VN(xN) = E{x2
N |IN}. When k = N − 1,

VN−1(xN−1) = min
uN−1

E{(xN−1
2 + VN(xN))|IN−1}

= min
uN−1

E{(2xN−1
2 + 2sN−1

t sN−1
r uN−1xN−1 + sN−1

t sN−1
r uN−1

2)|IN−1}

= E{(2xN−1
2)|IN−1}+ min

uN−1

{2psN−1
r uN−1x̂N−1|N−1 + psN−1

r uN−1
2}

To compute the control action for step k = N − 1 we need to differentiate the

above equation on both sides with respect to uN−1:
∂VN−1

∂uN−1
= 0 ⇒ u∗

N−1
= −x̂N−1|N−1

and plug back to above equation we get:

VN−1(xN−1) = E{(2xN−1
2)|IN−1} − sN−1

r px̂2
N−1|N−1

= E{(2− sN−1
r p)xN−1

2|IN−1}+ sN−1
r pPN−1|N−1 (3.22)
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When k = N − 2, we have:

VN−2(xN−2) = min
uN−2

E{(xN−2
2 + VN−1(xN−1))|IN−2} = E{(3− sN−1

r p)xN−2
2|IN−2}

+pq(1− q)PN−2|N−2 +
q2

p
+ min

uN−2

{2psN−2
r (2− pq)x̂N−2|N−2 + psN−2

r (2− pq)uN−2
2

+p2q(1− p)(1− q)sN−2
r uN−2

2 − q2(1− p)XN−1 +
2q2W ′(pPN−2|N−2+p2(1−p)sN−2

r uN−2
2)

D

+ q2W ′

pD
}

where W ′ = W + p(1 − p)XN−1, D = p2(PN−2|N−2 + p(1 − p)sN−2
r uN−2

2) + W ′,

XN−1 = (x̂N−2|N−2 + psN−2
r uN−2)(x̂N−2|N−2 + psN−2

r uN−2)
T + PN−1|N−2.

It is obvious from the minimization of the cost function VN−2, when p ̸= 1, the

optimal control action u∗
N−2 is a nonlinear function of the state estimate x̂N−2|N−2.

Moreover, it is a function of the error covariance PN−2|N−2 which means the separation

principle does not hold.

The only case where the optimal controller is a linear gain of the state estimate is

when p = 1, which means that no PU exist in the transmitter sensing region. Using

fig 3.2 as an example, when the PU A does not exist or exists in the intersection of

both sensing regions, there is an optimal controller that is a linear function of the

state estimate. This provides us with an interesting insight: In order to obtain the

optimal controller in the linear function of the state estimate, the receiver should be

located at a position where all PUs are covered by its sensing region.

3.4.3 Some Discussion of the Closed-Loop System Stability

As seen above, the optimal controller depends on the estimation error covariance and

is in fact a nonlinear function of the state estimate. Therefore it is not obvious to

study in details the stability of the closed-loop system without an explicit expression

of the controller. To simplify the problem, we assume a suboptimal controller that is

a linear function of the state estimate, such as uk = −Fx̂k|k−1, where F is a constant

matrix that is chosen such that uk stabilizes the original system xk+1 = Axk + Buk.

We are going to derive stability conditions of the closed-loop system through this
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linear controller. Note in this case the error covariance is still a function of the

control input. State equations of the closed-loop system are derived as:

x̂k+1 = (A− pskrBF − pAKks
k
rC)x̂k + AKks

k
rs

k
tCxk + AKks

k
rωk

xk+1 = Axk − skrs
k
tBFx̂k +Bskt υk (3.23)

where x̂k+1 := x̂k+1|k.

Define ek+1 := εx,k+1|k = xk+1 − x̂k+1|k. Subtracting the equations above and

incorporating them in the closed-loop system, we have: ek+1

x̂k+1

 =

 A− AKks
k
rs

k
tC

AKks
k
rs

k
tC

(AKkC +BF )skr(p− skt )

A− pskrBF − AKkCskr(p− skt )

×

 ek

x̂k


+

 Bskt

0

−AKks
k
r

AKks
k
r

 υk

ωk

 (3.24)

The conditions for the mean stability [26] of the closed-loop system are given in

the following Theorem.

Theorem 3.2. The closed-loop system equation (3.24) is m-stable (mean stable) if

the following conditions are satisfied:

(i) |ρ(A− pqBF )| < 1;

(ii) |ρ(A− pqAK̃kC)| < 1, ∀N , for all k ≥ N .

where ρ(Z) represent the spectral radius of the matrix Z and K̃k = E{Kk},where Kk

is a function of {s1r, ..., sk−1
r } computed in section 3.2.

Proof. By the definition of the mean stability [26], taking the expectation of both

sides of (3.24) and we get:

E


 ek+1

x̂k+1

 =

 A− pqAK̃kC

pqAK̃kC

0

A− pqBF

E


 ek

x̂k

 (3.25)
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where K̃k comes from E{Kks
k
rs

k
t } = pqE{Kk} = pqK̃k.

From (3.25) we get so that the m-stability conditions (i) and (ii) of Theorem

3.2.

Remark 1. : Condition (i) can be used as a necessary condition for the stability of

F when p, q are known. It provides a way to update the suboptimal linear controller

for known p, q, with a new gain F̃ which stabilizes xk+1 = Axk + pqBuk. We show in

examples that this new gain will improve the performance of the closed-loop system.

In condition (ii), {K̃k} is a deterministic time varying sequence. It can be computed

as follows:

E{Kk} = qE{Kk| sk−1
r = 1}+ (1− q)E{Kk| sk−1

r = 0}

= qE{K̃1
k}+ (1− q)E{K̃0

k}

where K̃1
k and K̃0

k are functions of {s0r, s1r, ..., sk−2
r } and can be computed by plugging

sk−1
r = 1 and sk−1

r = 0 back into the estimator equations (3.8). Similarly, E{K̃1
k} =

qE{K̃1
k |sk−2

r = 1 } + (1 − q) × E{K̃1
k |sk−2

r = 0}, E{K̃0
k} = qE{K̃0

k | sk−2
r = 1} + (1 −

q) × E{K̃0
k |sk−2

r = 0}, and so on. Thus, through the same deduction from sk−1
r to s0r

and apply equations (3.8), K̃k is obtained.

Similarly, we can obtain the mean square stability in the next theorem.

Theorem 3.3. The closed-loop system equation (3.24) is ms-stable (mean square

stable) if and only if |ρ(Φk)| < 1, ∃N , for all k ≥ N , where

Φk =

 Φ1
k

Φ3
k

Φ2
k

Φ4
k

 (3.26)

and Φi
k, i = 1, 2, 3, 4 are given in the Appendix A.2.1.
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Proof. Let

Gk =

 A− AKks
k
rs

k
tC

AKks
k
rs

k
tC

(AKkC +BF )skr(p− skt )

A− pskrBF − AKkCskr(p− skt )


Then, the ms-stability follows from |ρ(Φk)| = |ρ(Gk ⊗Gk)| by [26].

Next we turn to a special but simplified case. This is the case when p = 1, (3.17)

becomes:

xk+1 = Axk +Bskruk +Bski υk

yk = skr(Cxk + ωk) (3.27)

where ski represents whether PUs in the intersection region of both sensing regions

are active or not. The problem then becomes a packet loss problem that has been

considered in [6, 30]. However, the calculation of the optimal controller needs the

exact value of q which is difficult to predict in CR systems as it is governed by the

PUs’ behavior. Next, we will give sufficient conditions of the peak covariance process

which can be viewed as an estimate of filtering deterioration caused by disruptions

from PUs. First, we introduce the following definition.

Definition 1. Assume that (A,B) is controllable, and (A,C) is observabile, the

observability and controllability index are the smallest integer I0 and I1 such that

[C ′, A′C ′, ..., (AI0−1)′C ′] and [B,AB, ..., (AI1−1)B] have rank n, respectively.

When p = 1, (3.24) becomes:

 ek+1

x̂k+1

 =

 A− AKks
k
rC

AKks
k
rC

0

A− skrBF

 ek

x̂k

+
 Bski

0

−AKks
k
r

AKks
k
r

 υk

ωk
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Let Lk+1 = E


 ek+1

x̂k+1

 ek+1

x̂k+1

T

|Ik

. Assume the initial condition s1r = 1.

The following two stopping times are introduced [7]:

α1 = inf{k : k > 1, skr = 0}.

β1 = inf{k : k > α1, s
k
r = 1}.

Thus, α1 is the first time when primary users occur and β1 is the first time the

channel becomes idle again. The above procedure then generates two sequences:

α1, α2, ..., αn, ...

β1, β2, ..., βn, ...

where for j > 1:

αj = inf{k : k > βj−1, s
k
r = 0}.

βj = inf{k : k > αj, s
k
r = 1}.

Denote Lp
n = Lβn , and {Lp

n}n≥1 is called as the peak covariance process (also a

subsequence process) of {Lk}k≥1 [7]. The peak covariance is computed at the last

time instant of a consecutive skr = 0. The stability analysis of it is important and

useful for analyzing the system performance in that it provides an insight that due

to successive packet losses, how ”bad” the covariance process might be.

Definition 2. [7] We say the peak covariance sequence {Lp
n}n≥1 is stable if

sup
n≥1

E ∥ Lp
n ∥ < ∞

Accordingly, we say the system satisfies peak covariance stability.

Lemma 3.3.1. {Lp
n}n≥1 is stable if the following two conditions hold:

(i) q ≥ 1− 1
maxi|λi(A)|2

(ii) (1− q)qd
(1)
1 [1 +

∑I−1
i=1 d

(1)
i qi]

∑∞
j=1 ∥ Aj ∥ 2(1− q)j−1 < 1

where λA is an eigenvalue of the largest magnitude for matrix A, and I = max{I0, I1}

and d
(1)
i is a positive constant given in the proof in Appendix A.1.1.
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Proof. See Appendix A.1.1.

Remark 2. : Lemma 3.3.1 gives sufficient conditions for a linear gain to stabilize

the system xk+1 = Axk + Buk in the case the optimal controller cannot be obtained

(since the exact value of q is needed to compute the optimal controller).

3.4.4 Numerical Examples

In this section, we perform simulations to show improved performance of the closed-

loop system through CR links and test stability conditions.

We still consider the model of the CR system as shown in fig 3.3, and instable

inverted pendulum-cart system parameters are:

A =


1.0000 0.0000 0.0010 − 0.0000

0.0000 1.0000 − 0.0000 0.0010

0.0000 0.0022 0.9842 − 0.0000

0.0000 0.0278 − 0.0363 0.9999

, B =[0.0000 , 0.0000 , 0.0023 , 0.0052]T ,

First, assume p1 = p2 = p3 = 0.8. The controller is an LQR controller to the

linear deterministic system: xk+1 = Axk +Buk where uk = −Fxk:

F = [−13.9382 173.6752 − 29.9030 18.4750]

We can see the step response is satisfactory in fig 3.10. By fixing F and changing

p1 = 0.5, we can see the step response diverges in fig 3.11.

Next, we set p1 = 0.5, p2 = p3 = 0.8, but designing an LQR controller for the

system xk+1 = Axk + pqBuk as suggested, and running the step response for the

closed-loop system, produces fig 3.12. This improved design shows that the step

response of the system is stable.

Lastly, we would like to prove Lemma 3.3.1. Set p1 = 1, p2 = 0.7, p3 = 0.8. Here we

have I = I1 = I0 = 4 and ||F i(P )|| ≤ ||AiAiT ||||P || and ||Gi(M)|| ≤ ||AiAiT ||||M ||.

Thus, we take d
(1)
1 = 1.0395, d

(1)
2 = 1.0805, d

(1)
3 = 1.1230. After some computations,

the left-hand side of condition (ii) in Lemma 3.3.1 is approximately 0.9997 ≤ 1 and
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Figure 3.10: Step response of the closed-loop system when stability conditions are
satisfied.
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Figure 3.11: Step response with more activity of primary users.
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Figure 3.12: Step response for a better controller gain.
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Figure 3.13: Step response when p = 1.
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the condition is satisfied. The result is depicted in fig 3.13. Note that in this case the

optimal controller exists and is linear in the state estimate.
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Chapter 4

Estimation over Cognitive Radio

Links Modeled by Semi-Markov

Processes

The previous chapter addressed estimation and control over CR links represented

by a two-switch model. However, it can be simplified into one sensing variable due

to the following two reasons: First, the effect of the SR on PUs is negligible unless

their locations are very close; second, it is costly to use sensors to sense CR channels.

Thus, in communications, people are more willing to omit the influence of the SR

in the CR system and the two-switch model becomes a single switching state model.

What’s more, as has been shown in [39], a semi-Markov process captures the stochastic

behavior of each channel in the CR system more accurately. This study uses a semi-

Markov model to capture the behavior of CR links. The problem model in this chapter

thus coincides with the model of the state estimation through the packet loss link,

which has been previously examined [3]∼[9]. However, other studies have modeled

the packet loss indicator by either a Bernoulli or Markov process, while here the lossy

indicator in CR system is modeled by semi-Markov processes, which has not been

addressed before, and results in this chapter are more general as both Bernoulli and
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Markov processes are special cases of semi-Markov processes. Parts of this work have

been published in [58, 59, 127].

4.1 System Model

4.1.1 Cognitive Radio Model

Consider an example of the CR system as seen below in fig 4.1. Reference [39]

f1

f2

fN

k= 1 32 4 5 6 7 8 9 10

. . . . . .

Figure 4.1: Channels status in cognitive radio.

shows that each channel is governed by a semi-Markov process: In each channel,

there are two states (busy and idle). The times that the channel stays in one state

are i.i.d random variables following some probability distribution functions. The CR

structure considered in [37] [38] employs i.i.d Bernoulli variables to represent the

switch between idle and busy states. In fact, the Bernoulli distribution is a special

case of the Markov process and thus a special case of the semi-Markov process. In

this work, a homogeneous semi-Markov process is used to model each channel.

Assume the sensor in CR transmitter senses only one channel at each time step

(this avoids costly and complicated sensors which can sense multiple channels).

The sensor first chooses one channel to sense according to some sensing policy; if
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the channel is idle, the signal is transmitted through the channel; otherwise, stops

transmission to avoid the collision.

Denote the signal sent at time k as yk, then the received signal ỹk can be written

as:

ỹk = γkyk + ωk (4.1)

where γk is governed by N semi-Markov processes each of which represents the

behavior of one channel. γk = 1 if an unutilized channel is sensed and used to

transmit the signal, and γk = 0 if a busy channel is sensed and no information is

delivered. Let ωk denote the Gaussian white noise with zero mean and variance R.

4.1.2 Problem Formulation

For the discrete-time linear system:

xk+1 = Axk + vk (4.2)

yk = Cxk

where xk ∈ Rd×1 is the state vector at time k, A ∈ Rd×d, C ∈ Rm×d are system

parameters and A is assumed to be unstable, i.e., at least one eigenvalue is in the

right half plane, (A,C) is observable, vk represents Gaussian white noise with zero

mean and variance Q, yk ∈ Rm×1 represents the system output at time k. The

measurements received through the CR system is defined as:

ỹk = γkCxk + ωk (4.3)

Let γl
k denote the status of the lth channel at time k and {γl

k}k≥1 is the lth semi-

Markov process where γl
k = 1 means that the lth channel is idle at time k otherwise

it is busy.
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Two different cases will be addressed in the state estimation problem. In the first

case, γk is assumed to be known at each time step at the estimator (e.g., by using a

common control channel to synchronize the frequency channel or adding a time stamp

to inform failure of transmission). In the other case, γk is assumed as unknown (e.g.,

no time stamp or no reliable common control channel).

4.2 Preliminary on Semi-Markov Process

In this section, we introduce some preliminaries of the discrete-time semi-Markov

process that will be useful in the next section.

A semi-Markov chain is characterized by an imbedded Markov chain and a set of

sojourn time probability distribution functions. When the process enters state i, the

next state j, is chosen based on the imbedded Markovian transition probability, and

the time after which the jump takes place is obtained from the sojourn time (waiting

time) distribution function.

The associated homogeneous semi-Markov kernel Q is defined by [53]:

Qij(τ) = P{γn+1 = j, kn+1 − kn ≤ τ | γn = i}, (4.4)

where kn+1 denotes the time instant for the n + 1th jump (a jump denotes a state

switch) of the semi-Markov process; γn denote the state after the nth jump, and

i, j = {0, 1}, i ̸= j. The transition probability of the imbedded Markov chain satisfies

[54],

pij := lim
τ→∞

Qij(τ) = P{γn+1 = j | γn = i}, (4.5)

where T = [pij] is the transition probability matrix of the imbedded Markov chain.

In this work, for each semi-Markov process, there are only two states corresponding

to the busy and idle status of each channel, respectively. Thus, it is obvious that

p01 = p10 = 1 in the practical point of view (one state will always switch to the other

one).
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Now define the following conditional distribution function:

Sij(τ) := P{kn+1 − kn = τ | γn+1 = j, γn = i}, τ = 1, 2, 3, ... (4.6)

It is easy to see that
∑∞

τ=1 Sij(τ) = 1 for both i, j = {0, 1}, i ̸= j [55]. Moreover,

since there are only two states, we have

Sij(τ) = P{kn+1 − kn = τ | γn = i}

The conditional transition probability from 0 to 1 at time k is computed as [55, 56]:

p01(k) = P{γk+1 = 1 | γk = 0} = P{kn+1 − kn ≤ k | γn = 0} =
k∑

τ=1

S01(τ)(4.7)

Similarly, we have

p10(k) =
k∑

τ=1

S10(τ),

p00(k) = 1− p01(k),

p11(k) = 1− p10(k) (4.8)

Note that time k is different from the sojourn time τ . These conditional

probabilities are useful in state estimation when the second case when γk is unknown

at the estimator. Denote by Sl
ij(τ) the probability distribution of the sojourn time

(Sij above) of the lth channel (i.e., the lth semi-Markov process). In a practical

situation, statistical properties of each channel can be obtained over a period of time.

4.3 State Estimation over Cognitive Radio System

In this section, state estimation algorithms over CR are derived for both cases

described in Section 4.1.
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4.3.1 State Estimation when γk is known at the receiver

The Optimal Filter

The optimal state estimator for system (4.2) and (4.3) when γk is known at the

receiver becomes a standard state estimation of a linear time varying system subject

to Gaussian white noise. The optimal estimator is the standard Kalman Filter given

as follows [5]:

A Priori state estimate and error covariance:

x̂k|k−1 = Ax̂k−1|k−1 (4.9)

Pk|k−1 = APk−1|k−1A
T +Q (4.10)

A Posteriori state estimate and error covariance:

x̂k|k = x̂k|k−1 + γkKk(ỹk − Cx̂k|k−1) (4.11)

Kk = Pk|k−1C
T (CPk|k−1C

T +R)−1 (4.12)

Pk|k = Pk|k−1 − γkKkPk|k−1 (4.13)

where x̂k|k−1 is the a prior state estimate at time k; x̂k|k is the a posterior state estimate

at time k; Pk|k−1 is the error covariance of xk − x̂k|k−1;Pk|k is the error covariance of

xk − x̂k|k; Kk is the Kalman gain.

To characterize the prediction error covariance, one can easily derive the following

Riccati equation:

Pk+1 = APkA
T +Q− γkAPkC

T (CPk|k−1C
T +R)−1CPkA

T (4.14)

where Pk+1 := Pk+1|k. Assume without loss of generality that the initial condition of

(4.14) is P1 = P1|0 and γ1 = 1.

The process γk will experience a consecutive sequence of 1’s followed by a

consecutive sequence of 0’s. Thus, starting from a nonnegative definite real matrix
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P1, when γk = 1, Pk+1 = APkA
T +Q− APkC

T (CPk|k−1C
T + R)−1CPkA

T converges

according to the Kalman Filtering theory; when γk = 0, Pk+1 = APkA
T +Q diverges

as A is unstable. So the covariance will go through a “stable process” (when γk = 1)

and then a “unstable process” (when γk = 0). To better illustrate the stability of the

covariance, we employ the concept of the peak covariance process introduced in [7].

In the previous chapter, we have introduced this notation for the stability study of

the Bernoulli variable. Here, we present it again for this semi-Markov model based

problem.

Let βc denote the time of the cth jump of γk from 0 to 1 (see section 4.3.1 for

more details). Labeling a subsequence of the covariance process Pc by the sequence

of times βc, denote

Mc = Pβc

Mc denotes the value of the covariance Pβc = Pβc|βc−1 computed by Pk+1 = APkA
T+Q

at k = βc−1 and {Mc}c≥1 is called the peak covariance process. The peak covariance

process thus consists of a sequence of covariances which are computed at k = βc − 1

before γk jumping into the state γβc = 1.

Definition 3. [7] We say the peak covariance sequence {Mc} is stable if supc≥1 E ∥ Mc ∥ <

∞. Accordingly, we say the system satisfies peak covariance stability.

Consider a series of systems:

xk+1 = Axk + vk

ỹk = γl
kCxk + ωk (4.15)

where l = 1, ..., N . Note γk in (4.3) is replaced by γl
k (defined in section II.B) in (4.15)

and the original problem (4.2), (4.3) has been divided into N independent problems,

each of which is a packet loss problem governed by a semi-Markov process. Optimal

filters for these systems can be derived similarly through (4.10)∼(4.13). Let {P l
k}k≥1
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denote the covariance process of each optimal filter and {M l
c}c≥1 denote the peak

covariance process of the lth system. The following assumption is made:

Assumption 1. Assume there is at least one channel, h of the N channels satisfying:

sup
c≥1

E ∥ Mc ∥ ≤ sup
c≥1

E ∥ Mh
c ∥

This assumption is reasonable since the sensor is employed in the CR system

to help SUs to search for available channels to transmit. If no channel satisfies

Assumption 1, then the peak covariance Mc is ”worse” than the peak covariance

M l
c for each channel, which makes the sensor useless.

The following lemma is useful for the derivation of stability conditions of the

optimal filter.

Lemma 4.0.2. Under assumption 1, the peak covariance process {Mc}c≥1 of the

optimal filter of the original system (4.2, 4.3) is stable if {M l
c}c≥1 is stable for each

l.

Proof. From the statement of the lemma, {M l
c}c≥1 is stable for each l of N , thus we

have

sup
c≥1

E ∥ M l
c ∥ < ∞

which further leads to supc≥1 E ∥ Mc ∥ < ∞.

The argument for each l is necessary as in practice, the information about which

channel satisfies the assumption 1 is unknown.

Stability Analysis

Based on Lemma 4.0.2 and due to the independence of each system in (4.15), the

stability problem for the optimal filter over the CR system reduces to the stability

problem for each system in (4.15). In this section, we analyze the stability of (4.15).

By suppressing the superscript l in (4.15), the packet indicator γk now represents one
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semi-Markov process instead of the N semi-Markov processes in the original problem,

and {Mc}c≥1 (after suppressing the superscript l) represents the peak covariance of

the lth optimal filter.

For the given initial condition γ1 = 1, the following two stopping times are

introduced [7]:

τ1 = inf{k : k > 1, γk = 0}.

β1 = inf{k : k > τ1, γk = 1}.

For convenience, define β0 = γ1 = 1. Thus, τ1 is the first time when primary

users occur. The above procedure generates two sequences {τi, i ≥ 1} and {βi, i ≥ 1},

where for i > 1: τi = inf{k : k > βi−1, γk = 0} and βi = inf{k : k > τi, γk = 1}. Both

sequences have finite values for each of their entries [7].

Define: τ ∗i = τi − βi−1 and β∗
i = βi − τi, where β0 = 1. Here τ ∗i and β∗

i denote

sojourn times at state 1 and state 0, respectively.

Lemma 4.0.3. The following hold

(i) The random variables {τ ∗i , i ≥ 1} are i.i.d., and P(τ ∗i = ξ) = S10(ξ), ξ ≥ 1.

(ii) The random variables {β∗
i , i ≥ 1} are i.i.d., and P(β∗

i = ξ) = S01(ξ), ξ ≥ 1.

(iii) The random variables {τ ∗i , β∗
i , i ≥ 1} are independent of each other.

Proof. We only give the proof of (i), the proof of (ii) and (iii) can be obtained similarly.

By the homogeneity of the semi-Markov process, the sojourn time {τ ∗i , i ≥ 1} are i.i.d.

By definition:

P(τ ∗i = ξ) = P(γβi−1+1 = 1, ..., γβi−1+ξ−1 = 1, γτi = 0|γβi−1
= 1)

= P(kn+1 − kn = ξ, γn+1 = 0|γn = 1)

= P(kn+1 − kn = ξ|γn = 1)

= S10(ξ) (4.16)
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Definition 4 and Lemma 4.0.4 stated below from [7] are useful in deriving the main

theorem.

Let Sd denote the set of all d × d nonnegative definite real matrices. Define the

map F (·): Sd → Sd by

F (P ) = APAT +Q− APCT (CPCT +R)−1CPAT

where P ∈ Sd. It is obvious that for any P ∈ Sd, F (P ) ≥ F (0) = Q, and, therefore,

F (P ) ∈ Sd.

Definition 4. For the observable linear system [A,C], the observability index is the

smallest integer I0 such that [CT , ATCT , ..., (AI0−1)TCT ] has rank d.

Define Sd
0 := {P : 0 ≤ P ≤ AP̃AT +Q, for some P̃ ≥ 0}. Note that Sd

0 is a

convex subset of Sd.

Lemma 4.0.4. For the map F (P ) defined above, there exists a constant K > 0 such

that:

(i) For any P̄ ∈ Sd
0 , F

ξ(P̄ ) ≤ KI for all ξ ≥ I0;

(ii) For any P̄ ∈ Sd, F ξ+1(P̄ ) ≤ KI for all ξ ≥ I0;

(iii) For 1 ≤ i ≤ (I0 − 1) ∨ 1, where (I0 − 1) ∨ 1 = max{(I0 − 1), 1}, there exist

positive constants d
(0)
i and d

(1)
i satisfy the following inequality:

∥ F i(P ) ∥≤ d
(1)
i ∥ P ∥+ d

(0)
i , ∀P ∈ Sd

0 (4.17)

where I is the d × d identity matrix; ∥ · ∥ denotes the matrix induced norm for

matrices. For I0 = 1, d
(1)
1 = 0 and d

(0)
i > 0.

The following theorem gives sufficient conditions of the peak covariance.
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Theorem 4.1. The peak covariance process {Mc}c≥1 is stable if the following three

conditions hold:

(i) lim sup
ξ→∞

(1− S01(ξ + 1)

1−
∑j=ξ

j=1 S01(j)
) <

1

|λA|2

(ii) lim sup
ξ→∞

(
S01(ξ + 1)

S01(ξ)
) <

1

|λA|2

(iii) d
(1)
1 [S10(1) +

I0−1∑
i=1

d
(1)
i S10(i+ 1)]

∞∑
j=1

∥ Aj ∥2 S01(j) < 1

where λA is an eigenvalue of the largest magnitude for matrix A. Moreover, if C is

invertible, then condition (iii) above vanishes and the peak covariance stability holds

under condition (i) and (ii).

Proof. The expectation of ∥ Pβc+1+1 ∥ conditioned on Pβc+1 = P ≥ 0 is computed

first:

E[∥ Pβc+1+1 ∥| Pβc+1 = P ] =
∞∑
j=1

∞∑
i=1

E[∥ Pβc+1+1 ∥ ×1τc+1−βc=i,βc+1−τc+1=j|Pβc+1 = P ]

≤
∞∑
j=1

∞∑
i=1

d
(1)
1 ∥ AjF i−1(P )(AT )j + Aj−1Q(AT )j−1

+ · · ·+AQAT +Q ∥ ×S10(i)S01(j) + d
(0)
1

≤
∞∑
j=1

∞∑
i=1

d
(1)
1 ∥ Aj−1Q(AT )j−1 + · · ·+ AQAT

+Q ∥ ×S10(i)S01(j) +
∞∑
j=1

∞∑
i=I0+1

d
(1)
1

∥ AjF i−1(P )(AT )j ∥ ×S10(i)S01(j)

+
∞∑
j=1

I0∑
i=1

d
(1)
1 ∥ AjF i−1(P )(AT )j ∥ ×S10(i)S01(j) + d

(0)
1

= Γ1 + Γ2 + Γ3 + d
(0)
1 (4.18)

where 1(·) denotes the characteristic function.
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Then, we have:

Γ1 =
∞∑
j=1

d
(1)
1

∞∑
i=1

S10(i) ∥
j−1∑
ξ=0

AξQ(AT )ξ ∥ S01(j) ≤
∞∑
j=1

d
(1)
1

j−1∑
ξ=0

∥ Aξ ∥2∥ Q ∥ S01(j)

= d
(1)
1 ∥ Q ∥

∞∑
ξ=0

∥ Aξ ∥2
∞∑

j=ξ+1

S01(j) < ∞ (4.19)

where by positive series property, the series converges if:

lim sup
ξ→∞

∥ Aξ+1 ∥2
∑∞

j=ξ+2 S01(j)

∥ Aξ ∥2
∑∞

j=ξ+1 S01(j)
< 1 (4.20)

Thus we have condition (i) from (4.20) by the fact that
∑∞

j=1 S01(j) = 1.

Similarly,

Γ2 ≤ Kd
(1)
1

∞∑
i=I0+1

S10(i)
∞∑
j=1

∥ Aj ∥2 S01(j) < ∞ (4.21)

where the positive series converges if:

lim sup
j→∞

∥ Aj+1 ∥2 S01(j + 1)

∥ Aj ∥2 S01(j)
≤ |λ2

A| lim sup
j→∞

S01(j + 1)

S01(j)
< 1 (4.22)

Thus, condition (ii) is obtained from (4.22). Finally, we have:

Γ3 ≤
∞∑
j=1

d
(1)
1 ∥ Aj ∥2 S01(j)[S10(1) ∥ P ∥ +

I0−1∑
i=1

(d
(1)
i ∥ P ∥ +d

(0)
i )S10(i+ 1)]

= {[S10(1) +

I0−1∑
i=1

(d
(1)
i S10(i+ 1))] ∥ P ∥ +

I0−1∑
i=1

d
(0)
i × S10(i+ 1)}

×d
(1)
1

∞∑
j=1

∥ Aj ∥2 S01(j)

= C0 ∥ P ∥ +C1 (4.23)

where C1 is a positive finite constant.
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Then, by (4.19), (4.22) and (4.23), (4.18) can be written as:

E[∥ Pβc+1+1 ∥| Pβc+1 = P ] ≤ C0 ∥ P ∥ +C2 (4.24)

To guarantee stability, let

C0 = [S10(1) +

I0−1∑
i=1

(d
(1)
i S10(i+ 1))]× d

(1)
1

∞∑
j=1

∥ Aj ∥2 S01(j) < 1

(4.24) implies:

E[∥ Pβc+1+1 ∥| Pβc+1] ≤ C0 ∥ Pβc+1 ∥ +C2 (4.25)

which leads to

E[∥ Pβc+1+1 ∥] ≤ C0E[∥ Pβc+1 ∥] + C2 (4.26)

which means lim supc E[∥ Pβc+1+1 ∥] < ∞.

Similarly, we estimate E[∥ Pβc+1 ∥] starting with Pβc+1:

E[∥ Pβc+1 ∥ |Pβc+1, βc] =
∞∑
j=1

∞∑
i=1

∥ AjF i−1(Pβc+1)(A
T )j + Aj−1Q(AT )j−1

+ · · ·+AQAT +Q ∥ ×S10(i)S01(j)

≤
∞∑
j=1

∞∑
i=1

(∥ AjF i−1(Pβc+1)(A
T )j ∥ + ∥ Aj−1Q(AT )j−1

+ · · ·+AQAT +Q ∥)× S10(i)S01(j)

=
∞∑
j=1

∞∑
i=1

∥ AjF i−1(Pβc+1)(A
T )j ∥ S10(i)S01(j) +O(1)

=
∞∑
i=1

∥ F i−1(Pβc+1) ∥ S10(i) +O(1)

=

I0∑
i=1

∥ F i−1(Pβc+1) ∥ S10(i) +O(1) ≤ K1 ∥ Pβc+1 ∥ +K2
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where K1, K2 are positive constants. Above, the second equality is from condition

(i), the third comes from condition (ii), the fourth is from Lemma 4.0.4 and the last

inequality is from (4.17). Therefore, it easily follows that supc≥1 E[∥ Pβc+1 ∥] < ∞

and the stability of the peak covariance process is obtained.

Note the left hand side of condition (iii) indicate
∑∞

j=1 ∥ Aj ∥2 S01(j) < ∞, which

also leads to condition (ii).

When C is invertible, then I0 = 1, which means d
(1)
1 = 0. Condition (iii) vanishes.

Next, we provide another theorem for peak covariance stability of each channel,

which can substitute for Theorem 4.1.

Theorem 4.2. The peak covariance process {Mc}c≥1 is stable if condition (i), (ii) in

Theorem 4.1 and the following inequality

∞∑
j=1

∥ Aj ∥2 S01(j)

I0−1∑
i=1

∥ Ai ∥2 S10(i) < 1 (4.27)

hold.

Proof. The proof follows the argument in the proof of Theorem 4.1 and Theorem

3.1 in [8]. We only state some key points in the following. First, from the above

description, we have

Pβc+1 = Aβ∗
c+1Pτc+1(A

β∗
c+1)T +

β∗
c+1−1∑
c=0

AcQ(Ai)T

Then, after some calculations, we have

E[∥ Pβc+1 ∥] ≤
∞∑
j=1

∥ Aj ∥2 S01(j)E[∥ Pτc+1 ∥] +
∞∑
j=1

j−1∑
c=0

∥ Ac ∥2∥ Q ∥ S01(j) (4.28)
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where the first and the second term on the right hand side of the above inequality

leads to condition (ii) and (i), respectively, by the convergence of positive series, as

in the proof of theorem 4.1.

Following the statements given by Theorem 3.1 in [8], we obtain

E[∥ Pτc+1 ∥] ≤
I0−1∑
i=1

∥ Ai ∥2 S10(i)E[∥ Pβc ∥] + L1 (4.29)

where L1 is a positive constant. Substituting (4.29) into (4.28), we obtain

E[∥ Pβc+1 ∥] ≤
∞∑
j=1

∥ Aj ∥2 S01(j)

I0−1∑
i=1

∥ Ai ∥2 S10(i)E[∥ Pβc ∥] + L (4.30)

where L is a positive constant. Thus, we reach condition (ii) from the above inequality

with the initial condition E[∥ Pβ0 ∥] = E[∥ P1 ∥] =∥ P1 ∥.

A necessary condition of Mc is given below.

Theorem 4.3. Mc is stable only if the positive series
∑N

i=1 ρ(A)
2i
∑∞

j=i S01(j)

converges.

Proof. Since the spectral norm equals to the matrix norm induced by the Euclidian

norm, we have

∥ Pβc+1 ∥= sup
∥x∥=1

xPβc+1x
T

from which we have

∥ Pβc+1 ∥≥ xPβc+1x
T

Furthermore, since Pαc+1 ≥ Q

Pβc+1 = Aβ∗
c+1Pαc+1(A

β∗
c+1)T +

β∗
c+1−1∑
i=0

AiQ(Ai)T ≥
β∗
c+1∑
i=0

AiQ(Ai)T
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Then,

xPβc+1x
T ≥

β∗
c+1∑
i=0

xAiQ(Ai)TxT =

β∗
c+1∑
i=0

ρ(A)2ixQxT

which implies

E[∥ Pβc+1 ∥] ≥ E[
β∗
c+1∑
i=0

ρ(A)2i]xQxT ∥ x ∥−2

= xQxT ∥ x ∥−2

∞∑
j=1

j∑
i=0

ρ(A)2iS01(j)

= xQxT ∥ x ∥−2 (
∞∑
i=1

ρ(A)2i
∞∑
j=i

S01(j) +
∞∑
j=1

S01(j))

= xQxT ∥ x ∥−2 (
∞∑
i=1

ρ(A)2i
∞∑
j=i

S01(j) + 1)

Thus, E[∥ Pβc+1 ∥] ≤ ∞ indicates the the convergence of the series in the

statement.

The next theorem gives a sufficient condition of the peak covariance of the original

system which is a direct result of lemma 4.0.2.

Theorem 4.4. The peak covariance process of the original system (4.2), (4.3) is

stable if each of the channels sensed in the CR system can be represented by a semi-

Markov process that satisfies Theorem 4.1.

Remark 3. When C is invertible, condition (iii) vanishes in theorem 4.1, thus an

appropriate choice of S01(ξ) will stabilize the covariance process, and provide a way

to design CR channels to guarantee stability.

Remark 4. If γk is a Markov process, conditions (i) and (ii) coincide and Theorem

4.1 becomes theorem 6 in [7].

Remark 5. In this remark, the notation Mc represents the peak covariance of the

original problem (4.2) and (4.3). Theorem 4.4 states that if each channel in the CR
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system has the semi-Markov statistic satisfying Theorem 4.1, then the peak covariance

process of the overall system (4.2) and (4.3) is stable. However, it introduces some

conservatism as each channel has to guarantee a stable peak covariance, which may

not be necessary as a stable state estimator may occur with only a few channels with

stable peak covariances. Theorem 4.4 is actually a direct result of Assumption 1 (which

leads to Lemma 4.0.2 as discussed above), which depends on the sensing strategy

of the CR system. In the case that some channels have unstable peak covariances,

assumption 1 is useless. We claim that without this assumption, the original problem

can not be divided into N independent problems, each of which addresses only one

semi-Markov process, instead of the combination of N semi-Markov processes in the

original problem. To solve the original problem directly without that assumption is

difficult as it involves γk which is a heterogenous Markov process. It will be our future

work.

However, if we know which channels have stable peak covariances (from their

statistics), it is possible to design a sensing strategy such that the following inequality

is satisfied:

sup
c≥1

E ∥ Mc ∥ ≤ sup
c≥1

E ∥ M s
c ∥ < ∞

for some channel s with a stable peak covariance. Then, Mc is stable.

Remark 6. In general, it is hard to determine between Theorem 4.1 and Theorem

4.2 which is more conservative. However, for some cases, Theorem 4.2 is a weaker

sufficient condition than Theorem 4.1. For example, let I0 = 2 and choose d
(1)
1 =∥

AAT ∥. Then, Theorem 4.2 is less conservative then Theorem 4.1 as the left hand

side of (4.27) becomes
∑∞

j=1 ∥ Aj ∥2 S01(j) ∥ A ∥2 S10(1), while condition (iii) in

Theorem 4.1 becomes
∑∞

j=1 ∥ Aj ∥2 S01(j) ∥ A ∥2 [S10(1) + d
(1)
1 S10(2)]. It is obvious

that the latter is larger than the former which means Theorem 4.2 is less conservative.
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4.3.2 State Estimation when γk is unknown

When γk is unknown, it acts as a stochastic parameter. Here, we remove the

assumption that A is unstable, and assume that the estimator (the receiver) knows

the statistics of each channel (corresponding to each semi-Markov process), that is,

{Sl
ij(τ), l = 1, ..., N, i, j = {0, 1}, i ̸= j} are known at the estimator.

The estimation algorithm below involves conditional probabilities of γk, therefore,

we need to specify the sensing policy explicitly. The sensing policies varying according

to the communication systems. The policy used here is: The sensor in the CR system

first chooses one channel to sense randomly; if it is idle, the sensor transmits the signal

through it and at the next time step, still chooses that channel to sense; otherwise,

stops transmission (no signal transmitted at this time) to avoid the collision, and

chooses another channel randomly with equal probability at the following time step.

Note for a different policy, the probability analysis discussed below should be adjusted

correspondingly.

Probability Analysis

For each channel, there are two states (busy or idle, corresponding to γl
k = 0 or

1). Thus γk can be represented by a process with 2N states each of which can be

described as ‘choosing the lth channel to sense and γl
k = 1 or 0’. The transition matrix

of this process is thus 2N by 2N . Next, we compute conditional probabilities in the

transition matrix that will be useful in the state estimation. Assume Yk = {ỹ1, ..., ỹk}

is the information set including observations from time 1 to k which are available at

k, then, conditional probabilities we need to compute are summarized:

• P(choose l, γl
k+1 = 1|choose l, γl

k = 0, Yk),

• P(choose l, γl
k+1 = 0|choose l, γl

k = 1, Yk),

• P(choose r, γr
k+1 = 1|choose l, γl

k = 0, Yk),

• P(choose r, γr
k+1 = 0|choose l, γl

k = 1, Yk).
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Other probabilities can be obtained from the above terms. For notation

convenience, ‘choosing r’ is shortened by ‘r’ in the following statements.

These terms can be approximated following [56], however, the calculation requires

the knowledge of statistics of semi-Markov processes given the set Yk, e.g. P{kn+1 −

kn = τ | γk+1 = γn+1 = j, γk = γn = i, Yk}, which can not be observed until

measurements are received. Moreover, their computation is complicated and costly.

In this work, we use the conditional probabilities of {γk}k≥0 to approximate the above

terms, e.g. approximate P(l, γl
k+1 = 1|l, γl

k = 0, Yk) by P(l, γl
k+1 = 1|l, γl

k = 0). Also,

assume for simplicity that the channels’ states at k+1 are independent of the sensor’s

the choice at k, and note that the choice of the sensor at time k depends on the choice

at k − 1 and the chosen channel’s status according to the sensing policy. Thus, we

obtain

P(l, γl
k+1 = 1|l, γl

k = 0) = 0,

P(l, γl
k+1 = 0|l, γl

k = 1) = P(γl
k+1 = 0|l, γl

k = 1) = P(γl
k+1 = 0|γl

k = 1) = pl10(k),

P(r, γr
k+1 = 1|l, γl

k = 0) =
1

N − 1
P(γr

k+1 = 1) =
1

N − 1

1∑
j=0

P(γr
k+1 = 1, γr

k = j)

=
1

N − 1

1∑
j=0

prj1(k)P(γr
k = j)

P(r, γr
k+1 = 0|l, γl

k = 1) = 0, (4.31)

The first and the fourth equalities in (4.31) are obvious from the sensing policy, the

second is the transition probability for the lth channel and the third is based on the

sensing policy and the independence between the sensor and the channel. Without

the assumption that channels’ states are independent of the sensor’s choice, there

exists a complicated and recursive probability calculation which will be addressed in

future work.

To better illustrate the arguments above, we take N = 2 as an example:

• Choose 1, γ1
k = 0: case 1;
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• Choose 2, γ2
k = 0: case 2;

• Choose 1, γ1
k = 1: case 3;

• Choose 2, γ2
k = 1: case 4.

Then we can build the transition matrix as 0
∑1

j=0 p2j0(t)P(γ
2
k = j) 0

∑1
j=0 p2j1(k)P(γ

2
k = j)∑1

j=0 p1j0(k)P(γ
1
k = j) 0

∑1
j=0 p1j1(k)P(γ

1
k = j) 0

p110(k) 0 p111(k) 0

0 p210(k) 0 p211(k)


As a consequence, the process {γk}k≥0 is modeled as a heterogeneous Markov

process and any state estimation algorithm for MJLSs can be applied. In the sequel,

we employ an efficient algorithm – the Interacting Multiple Model (IMM) Algorithm

[57] for the state estimation.

IMM Algorithm

In this section, IMM algorithm is used to estimate the state of the system over the

CR structure. The algorithm can be found in [57] and summarized as follows:

(1) Given initial values of {P(γl
1 = i), l = 1, ..., N ; i = 0 or 1}, we start with 2N

weights p̂2l−1(k) and p̂2l(k) where p̂2l−1(k) = P(l, γl
k = 0|Yk) and p̂2l(k) = P(l, γl

k =

1|Yk); 2N means x̂2l−1(k) and x̂2l(k); 2N associated covariances V̂2l−1(k) and V̂2l(k);

then we compute the mixed initial condition for the filter matched to each state

q, q = 1, · · ·, 2N , according to the following equations:

p̄q(k + 1) =
2N∑
i=1

wiq(k)p̂i(k),

x̂q(k) =
2N∑
i=1

wiq(k)p̂i(k)x̂i(k)/p̄q(k + 1),

V̂ q(k) =
2N∑
i=1

wiq(k)
(
V̂i(k) + (x̂i(k)− x̂q(k))(x̂i(k)− x̂q(k))T

)
/p̄q(k + 1).

where wiq(k) denotes the transition probability of the process γk calculated in (4.31).
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(2) Then, after obtaining the above values of intermediate variables, use them as

inputs to 2N Kalman Filters matched to each state q. From this we get x̄q(k + 1),

V̄q(k+1) after the time update and x̂q(k+1), V̂q(k+1) after the measurement update.

(3) The weights p̄q(k+1) are updated from the innovation process of the Kalman

Filter as:

p̂q(k + 1) = cp̄q(k + 1)∥Wq(k + 1)∥−1/2 × exp{−1/2ζTq (k + 1)W−1
q (k + 1)ζq(k + 1)},

with c denotes a normalizing constant and

ζq(k + 1) : = yk+1 − γq
kCx̄q(k + 1),

Wq(k + 1) : = γq
kCV̄q(k + 1)CTγq

k
T +R.

(4) We can update the state estimate and the covariance according to

x̂(k + 1) =
2N∑
q=1

p̂q(k + 1)x̂q(k + 1),

V̂ (k + 1) =
2N∑
q=1

p̂q(k + 1)(V̂q(k + 1) + (x̂q(k + 1)− x̂(k + 1))(x̂q(k + 1)− x̂(k + 1))T ).

In the next section, examples are provided to illustrate the algorithms developed.

4.4 Numerical Simulations

4.4.1 When γk is known

We give the following example to illustrate the performance of Theorem 4.1. For

simplicity and without loss of generality, assume N = 1 since each channel is

independent. The parameters of the system are given by:
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A =

 1.1 0.1

0 1.2

, C = [1 1], V = I2×2, W = 1

The channel is characterized by a semi-Markov process with the transition

probability matrix T = [pij] and the sojourn time conditional distribution function

Sij(τ):

T =

 0 1

1 0

, S01(τ) = s0 exp(−|τ |), S10(τ) = s1 exp(−|τ − 3|),

with si satisfying that
∑∞

τ=1 Sij(τ) = 1.

It is easy to see with the above information that the left hand side of condition (i)

and (ii) are both e−1 = 0.3679 and |λA| = 1.2, thus condition (i) and (ii) are satisfied.

We also have ∥ F (P ) ∥≤∥ AA′ ∥∥ P ∥ and since AA′ has two eigenvalues λ1 =

1.1672 and λ2 = 1.4927. Thus choose d
(1)
1 = 1.4928. Numerical calculation yields∑∞

j=1 ∥ Aj ∥2 S01(j) ≤ 2.1, and S10(1) = 0.0649, S10(2) = 0.17643 gives S10(1) +

d
(1)
1 S10(2) = 0.3283. The left hand side of condition (iii) is computed as d

(1)
1 [S10(1) +

d
(1)
1 S10(2)]

∑∞
j=1 ∥ Aj ∥2 S01(j) < 0.9836 < 1. Thus, conditions in Theorem 4.1 are all

satisfied. Similarly, we can compute that
∑∞

j=1 ∥ Aj ∥2 S01(j) ∥ A ∥2 S10(1) < 0.2035,

which shows that conditions in Theorem 4.2 are satisfied and less conservative as

I0 = 2. P11(k) and P12(k) are two entries of the covariance matrix Pk, fig 4.2 and fig

4.3 show that they are bounded. Similarly, the other two entries P21(k) and P22(k)

are also bounded.

4.4.2 When γk is unknown

For simplicity, in this example, we assume a scalar system with parameters: A = 0.95,

C = 1, V = 0.0001, W = 1. Let P(γ1
1 = 1) = 0.7, P(γ1

1 = 0) = 0.3, P(γ2
1 = 1) = 0.8,

and P(γ2
1 = 0) = 0.2.

We assume that there are two channels (N = 2) in the CR system. Each channel is

characterized by a semi-Markov process with imbedded transition probability matrice

T 1 = [p1ij],T
2 = [p2ij], sojourn time conditional distribution functions S1

ij(τ) and S2
ij(τ):
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Figure 4.2: P11(k) of the error covariance.
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Figure 4.3: P12(k) of the error covariance.
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T 1 =

 0 1

1 0

 T 2 =

 0 1

1 0

,
S1
01(τ) = s10 exp(−|τ |), S1

10(τ) = s11 exp(−|τ − 4|)

S2
01(τ) = s20 exp(−|τ |), S2

10(τ) = s21 exp(−|τ − 3|)

with sji satisfying that
∑∞

τ=1 S
1
ij(τ) =

∑∞
τ=0 S

2
ij(τ) = 1.

We conducted 50 Monte-Carlo simulations for 60 samples and computed the

average of them. Fig 4.4 compares the true and estimated states using the proposed

algorithm. The RMSE is plotted in fig 4.5. These figures show excellent agreement

with the algorithm developed.
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Figure 4.4: Comparison between the true states and the estimated ones.
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Figure 4.5: RMSE of the proposed estimator.

4.5 Applications

In this section, we provide some applications where this work may apply. Further-

more, we will see that the work is not only suitable for control systems but also for

the modeling and identification of CR communication channels.

CR systems in Large-Scale Systems

CR systems have a promising prospective future in large-scale systems due to high

demand of bandwidth during the interaction and communication between each

subsystem. The accuracy of state estimation of the system over CR links becomes an

important issue due to the tradeoff of the benefit of a large amount of free bandwidth

and intermittent interruptions from PUs. More specifically, consider the problem of

the localization of mobile stations (MS) in wireless networks [49], where high wireless

communications are needed and thus is very suitable to the application of CR systems.
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The general form of a MS together with a CR link can be written as follows by

combining the argument in section 4.1 and [49]:

xk+1 = f(xk) + vk

yk = γtg(xk) + ωk (4.32)

where xk is the state vector including user’s Cartesian coordinates and velocities of

the MS in the X and Y directions; f(·) and h(·) are known vector functions. To

estimate the state accurately, the methods developed in this chapter can be applied

by substituting Kalman filter by the extended Kalman filter for the nonlinearity. In

this example, let

Ak−1 =
∂f

∂x
|x̂k−1|k−1

Ck =
∂g

∂x
|x̂k|k−1

(4.33)

Replace A and C in (4.10)∼(4.13) by Ak−1 and Ck, then the estimator is obtained

when γk is known. Similarly, substituting A and C in the Kalman Filter in step (2)

and (3) in the IMM algorithm with Ak and Ck+1, the state estimator when γk is

unknown can be obtained.

Modeling of CR Communication Links

Another application is channel state estimation. Traditionally, wireless communi-

cation channels can be represented by time varying discrete-time state-space model

comprised of the state equation and the measurement equation [50][101]:

xk+1 = Akxk + vk

yk = Ckxk + ωk (4.34)
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It directly follows that under CR systems, the measurement received from the channel

can be written as yk = γkCkxk+ωk. Channel state estimation for this example can be

performed by plugging Ak and Ck into the the technique developed in this chapter.

The estimated states are used to calculate link gains for power control algorithms

developed in [47, 48]. For example, signal attenuation coefficients between the mobile

j and the base station i can be represented in terms of the state estimate by

F ij
k = eGx̂k|k , G = − ln(10)

20

Then, power control schemes can be developed based on this channel information (see

section 3 in [48] for more details). However, the parameter estimation algorithm for

the channel [101] needs to be updated correspondingly as measurements are no longer

Gaussian. This will be addressed in future research.

Encoder and Decoder Design in Control/Communication Systems

There are extensive works on analysis and design problems involving control of

deterministic and stochastic systems over communication channels with limited

channel capacity [51], and on applications in which communication data rates are

limited and the feedback is available from the output of the channel to the input of

the channel as shown in fig 4.6 [52]. Take the CR model considered in this work as

the feedback communication channel, i.e., the encoder transmits the message through

a CR link to the decoder.

Assume γk is known to both the encoder and decoder, then, the encoder and the

decoder can be designed as the innovation process yk−Cx̂k|k−1 and the state estimator

which generates x̂k|k through (4.10)∼(4.13), respectively [52].
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Chapter 5

Control over Cognitive Radio

Links Modeled by Semi-Markov

Processes

The previous chapter discussed how to obtain the state estimator over semi-Markov

model based CR systems. In this chapter, we focus on control design of a discrete-

time system with a semi-Markov based CR link connected between the controller and

the actuator. The problem is formulated as a SMJLS problem, where the techniques

from MJLS can be applied. For convenience, we will only consider one channel in

the CR system, that is, the CR link is modeled by a semi-Markov process. In the

sequel, we first formulate the problem; we then compute the optimal control for the

discrete-time SMJLS with a cost function depend on the sojourn time. Later, we

will design a suboptimal controller tractable through LMIs. Simulation results are

provided to demonstrate the controller computed.
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5.1 Problem Formulation

The discrete-time model considered for control design over the CR link can be

represented as follows:

xk+1 = Axk + ιkBuk (5.1)

where ιk represents the packet loss indicator of the CR link. Simply consider one

channel in the CR system, thus ιk is a semi-Markov process with property discussed

in section 4.2. The aim of control design is to compute the control signal to stabilize

(5.1). Because (5.1) is a SMJLS, in the sequel, we first discuss control design for the

general SMJLS and then apply it to (5.1).

Consider the general SMJLS described by

xk+1 = A(rk)xk +B(rk)uk (5.2)

where rk is a finite state semi-Markov random process with state-space {1, ..., r}.

Denote the residence time in some mode until the current time k by ϱ(k). Note the

difference between the residence time and the sojourn time is that the former means

the time already spent on one state, while the latter means the time spent on one

state before jumping to another state.

The cost criterion is given by

J(u) = E

[
N−1∑
l=k

x
′

lQrlxl + u
′

lRrlul

]
(5.3)

whereQrl , Rrl are positive-semidefinite matrices. The optimal controller is to compute

some u∗
k, k = 0, 1, ..., N − 1 that minimizes V (k, x, i, ϱ) where

V (k, x, i, ϱ) = min
uk

E

[
N−1∑
l=k

x
′

lQrlxl + u
′

lRrlul|xk = x, rk = i, ϱ(k) = ϱ

]
V (N, x, i, ϱ) = x

′

NQ(rN)xN (5.4)
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However, as shown in the next section, the optimal solution needs to solve a batch

of coupled Riccati equations which are difficult to compute explicitly. Thus, we also

provide a tractable method by using LMIs in section 5.3.

5.2 Optimal Controller Design

Control design of the discrete-time SMJLS can employ dynamic programming similar

as that for the continuous-time SMJLS [72]. Moreover, [73] shows that the design

for both discrete-time and contnuous-time are unified through a δ-operator approach.

Although there is some similarity between them, we still derive the optimal controller

for the discrete-time SMJLS.

Start from

V (k, x, i, ϱ) = min
uk

E[x′

kQrkxk + u
′

kRrkuk + V (k + 1, xk+1, rk+1, ϱ(k + 1))

|xk = x, rk = i, ϱ(k) = ϱ] (5.5)

As a trial solution to (5.5), let

V (k, x, i, ϱ) = x
′

kK(k, i, ϱ)xk (5.6)

Substituting in (5.5) yields

x
′

kK(k, i, ϱ)xk = min
uk

[x
′

kQrkxk + u
′

kRrkuk + (A(i)xk +B(i)uk)
′

E{K(k + 1, rk+1, ϱ(k + 1))|xk = x, rk = i, ϱ(k) = ϱ}(A(i)xk +B(i)uk)] (5.7)
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where

E{K(k + 1, rk+1, ϱ(k + 1))|xk = x, rk = i, ϱ(k) = ϱ}

=
r∑

j=1

Kj(k + 1, ϱ(k + 1))p(rk+1 = j|rk = i, ϱ(k) = ϱ)

=
r∑

j=1,j ̸=i

Kj(k + 1, ϱ(k + 1) = 1)p(rk+1 = j|rk = i, ϱ(k) = ϱ)

+Ki(k + 1, ϱ(k + 1) = ϱ+ 1)p(rk+1 = i|rk = i, ϱ(k) = ϱ) (5.8)

and Kj(k + 1, ϱ(k + 1)) := K(k + 1, j, ϱ(k + 1)) .

Denote by p̄ij(ϱ) := p(rk+1 = j|rk = i, ϱ(k) = ϱ) and p̄ii(ϱ) := p(rk+1 = i|rk =

i, ϱ(k) = ϱ), we have

p̄ij(ϱ) =
pijSij(ϱ)

Ti(ϱ)

p̄ii(ϱ) = 1−
r∑

j=1,j ̸=i

pijSij(ϱ)

Ti(ϱ)

where Ti(ϱ) = p(τ(k) = ϱ|rk = i) denotes the probability of a residence time ϱ on

state i until k (assumed homogeneous to be independent with k).

Substituting (5.8) back to (5.7), we obtain

x
′

kKi(k, ϱ)xk = min
uk

[x
′

kQrkxk + u
′

kRrkuk + (A(i)xk +B(i)uk)
′ ×

(
r∑

j=1,j ̸=i

Kj(k + 1, 1)p̄ij(ϱ) +Ki(k + 1, ϱ+ 1)p̄ii(ϱ))× (A(i)xk +B(i)uk)](5.9)

Differentiating (5.9) with respect to uk yields the optimal control

u∗
k(x, i, ϱ)

= −

[
Ri +B(i)′(

r∑
j=1,j ̸=i

Kj(k + 1, 1)p̄ij(ϱ) +Ki(k + 1, ϱ+ 1)p̄ii(ϱ))B(i)

]−1

×B(i)′(
r∑

j=1,j ̸=i

Kj(k + 1, 1)p̄ij(ϱ) +Ki(k + 1, ϱ+ 1)p̄ii(ϱ))A(i)xk (5.10)
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Substituting (5.10) into (5.9) and after some manipulations, we can obtain the

expression for Ki(k, ϱ):

Ki(k, ϱ) =

[
A(i)′(

r∑
j=1,j ̸=i

Kj(k + 1, 1)p̄ij(ϱ) +Ki(k + 1, ϱ+ 1)p̄ii(ϱ))A(i) +Qi

]

−A(i)′(
r∑

j=1,j ̸=i

Kj(k + 1, 1)p̄ij +Ki(k + 1, ϱ+ 1)p̄ii(ϱ))
′B(i)

×

[
Ri +B(i)′(

r∑
j=1,j ̸=i

Kj(k + 1, 1)p̄ij(ϱ) +Ki(k + 1, ϱ+ 1)p̄ii(ϱ))B(i)

]

×B(i)′(
r∑

j=1,j ̸=i

Kj(k + 1, 1)p̄ij(ϱ) +Ki(k + 1, ϱ+ 1)p̄ii(ϱ))A(i) (5.11)

When k → ∞, we have the steady-state solution

K∞
i (ϱ) =

[
A(i)′(

r∑
j=1,j ̸=i

K∞
j (1)p̄ij(ϱ) +K∞

i (ϱ+ 1)p̄ii(ϱ))A(i) +Qi

]

−A(i)′(
r∑

j=1,j ̸=i

K∞
j (1)p̄ij(ϱ) +K∞

i (ϱ+ 1)p̄ii(ϱ))
′B(i)

×

[
Ri +B(i)′(

r∑
j=1,j ̸=i

K∞
j (1)p̄ij(ϱ) +K∞

i (ϱ+ 1)p̄ii(ϱ))B(i)

]

×B(i)′(
r∑

j=1,j ̸=i

K∞
j (1)p̄ij(ϱ) +K∞

i (ϱ+ 1)p̄ii(ϱ))A(i) (5.12)

This procedure derive the optimal controller for general SMJLSs, for the problem

of control over the CR link (5.1), applying equations above, we have the optimal

control

u∗
0,k(ϱ) = 0

u∗
1,k(ϱ) = − [R1 +B′(K0(k + 1, 1)p̄10(ϱ) +K1(k + 1, ϱ+ 1)p̄11(ϱ))B]

−1

×B′(K0(k + 1, 1)p̄10(ϱ) +K1(k + 1, ϱ+ 1)p̄11(ϱ))Axk (5.13)
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with

K0(k, ϱ) = [A′(K1(k + 1, 1)p̄01(ϱ) +K0(k + 1, ϱ+ 1)p̄00(ϱ))A+Q0]

K1(k, ϱ) = [A′(K0(k + 1, 1)p̄10(ϱ) +K1(k + 1, ϱ+ 1)p̄11(ϱ))A+Q1]

−A′(K0(k + 1, 1)p̄10(ϱ) +K1(k + 1, ϱ+ 1)p̄11(ϱ))
′B

× [R1 +B′(K0(k + 1, 1)p̄10(ϱ) +K1(k + 1, ϱ+ 1)p̄11(ϱ))B]

×B′(K0(k + 1, 1)p̄10(ϱ) +K1(k + 1, ϱ+ 1)p̄11(ϱ))A (5.14)

When k → ∞, we have the steady-state solution

K∞
0 (ϱ) = [A′(K∞

1 (1)p̄01(ϱ) +K∞
0 (ϱ+ 1)p̄00(ϱ))A+Q0]

K∞
1 (ϱ) = [A′(K∞

0 (1)p̄10(ϱ) +K∞
1 (ϱ+ 1)p̄11(ϱ))A+Q1]

−A′(K∞
0 (1)p̄10(ϱ) +K∞

1 (ϱ+ 1)p̄11(ϱ))
′B

× [R1 +B′(K∞
0 (1)p̄10(ϱ) +K∞

1 (ϱ+ 1)p̄11(ϱ))B]

×B′(K∞
0 (1)p̄10(ϱ) +K∞

1 (ϱ+ 1)p̄11(ϱ))A (5.15)

where p̄01(ϱ) =
S01(ϱ)
T0(ϱ)

and p̄10(ϱ) =
S10(ϱ)
T1(ϱ)

. When ϱ → ∞, T1(∞) = T0(∞) = 0 and

p̄01(∞) = p̄10(∞) = 1.

It is difficult to compute the optimal solution from these expressions because of

coupled Riccati equations and ϱ ∈ (0,∞). Thus, in the next section, we provide a

suboptimal but tractable solution.

5.3 A Suboptimal Controller

To obtain an explicit controller, we assume that when ϱ ≥ Ts, T1(Ts) = T0(Ts) = 0

and p̄01(Ts) = p̄10(Ts) = 1. This assumption is reasonable as the process can not

stay in the same state (0 or 1) forever, thus after a finite time Ts, the probability to

transfer from one state to the other one are 1. In this sense, we only need to deal
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with finite variables. Before deriving the suboptimal controller, we first discuss the

stochastic stability.

5.3.1 Stochastic Stability

In this section, we analyze stochastic stability in the mean square sense for the SMJLS.

The definition of the stability is given as follows [77]:

Definition 5. System (5.2) with uk ≡ 0 is said to be stochastically stable (SS) if

E

{
∞∑
k=0

∥ xk ∥2
}

< ∞

for any finite initial condition x0 and r0.

From the definition above, we have the following proposition.

Proposition 1. System (5.2) is SS if there exist matrices Gϱ
i = (Gϱ

i )
′ > 0, ϱ =

1, ..., Ts, such that

A(i)′

[
r∑

j=1,j ̸=i

G1
j p̄ij(ϱ) +Gϱ+1

i p̄ii(ϱ)

]
A(i)−Gϱ

i < 0

Proof. The proof follows dynamic programming similar as the SMS condition derived

for MJLSs in [62].

Back to our special case where there are only two states, Proposition 1 becomes:

Proposition 2. System (5.2) is SS if there exist matrices Gϱ
i = (Gϱ

i )
′ > 0, ϱ =

1, ..., Ts, i = 0, 1, such that

A′ [G1
j p̄ij(ϱ) +Gϱ+1

i p̄ii(ϱ)
]
A−Gϱ

i < 0

In the following proposition, we show an equivalent testable condition to

Proposition 2 in terms of a finite LMI feasibility problem utilizing a similar derivation

as in [78].
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Proposition 3. Proposition 2 is true if and only if there exist matrices Sϱ
i = (Sϱ

i )
′ > 0

and matrices Lϱ
i satisfying the following LMIs:

 Lϱ
i + (Lϱ

i )
′ − Sϱ

i (Lϱ
i )

′A′Πϱ
i

(Πϱ
i )

′ALϱ
i S̄

 > 0 (5.16)

∀i = 0, 1, ϱ = 1, ..., Ts

where Πϱ
i =

[√
pi0(ϱ)I

√
pi1(ϱ)I

]
and

S̄ =

 Sϱ+1
0 0

0 S1
1

 , if i = 0 or S̄ =

 S1
0 0

0 Sϱ+1
1

 , if i = 1

Proof. (⇒)

The system is SS if and only if there exist matrices {Gϱ
i } > 0, such that:

A′ [G1
j p̄ij(ϱ) +Gϱ+1

i p̄ii(ϱ)
]
A−Gϱ

i < 0 (5.17)

which can be written as

Gϱ
i − A′ [G1

j p̄ij(ϱ) +Gϱ+1
i p̄ii(ϱ)

]
A > 0

⇒

Gϱ
i − A′

[
1∑

j=0

p̄ij(ϱ)G
m
j

]
A > 0

where m = 1, if i ̸= j, and m = ϱ+ 1, if i = j.

Let Sϱ
i = (Gϱ

i )
−1, and Sm

j = (Gm
j )

−1, then

(Sϱ
i )

−1 − A′

[
1∑

j=0

p̄ij(ϱ)(S
m
j )−1

]
A > 0
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Using the Schur complement [79]

 (Sϱ
i )

−1 A′Πϱ
i

(Πϱ
i )

′A S̄

 > 0 (5.18)

which is equivalent to

S̄ − (Πϱ
i )

−1ASϱ
i A

′Πϱ
i = Υϱ

i > 0 (5.19)

Let Lϱ
i = Sϱ

i + αϱ
i I, with αϱ

i positive scalars. There exist αϱ
i > 0, such that

(αϱ
i )

−2(Sϱ
i + 2αϱ

i I) > A′Πϱ
i (Υ

ϱ
i )

−1(Πϱ
i )

′A

Then, using the Schur complement again, we have Sϱ
i + 2αϱ

i I −αϱ
iA

′Πϱ
i

−αϱ
i (Π

ϱ
i )

′A Υϱ
i

 > 0 (5.20)

This can be written as Lϱ
i + (Lϱ

i )
′ − Sϱ

i (Sϱ
i − Lϱ

i )A
′Πϱ

i

(Sϱ
i − Lϱ

i )(Π
ϱ
i )

′A Υϱ
i

 > 0 (5.21)

which can be further converted to Lϱ
i + (Lϱ

i )
′ − Sϱ

i (Lϱ
i )

′A′Πϱ
i

(Πϱ
i )

′ALϱ
i S̄

 > 0 (5.22)

(⇐)

We have

Lϱ
i + (Lϱ

i )
−1 − Sϱ

i > 0

We also have

(Sϱ
i − Lϱ

i )
′(Sϱ

i )
−1(Sϱ

i − Lϱ
i ) ≥ 0
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or equivalently

(Lϱ
i )

′(Sϱ
i )

−1(Lϱ
i ) ≥ Lϱ

i + (Lϱ
i )

−1 − Sϱ
i

Then, the inequality becomes (Lϱ
i )

′(Sϱ
i )

−1(Lϱ
i ) (Lϱ

i )
′A′Πϱ

i

(Πϱ
i )

′ALϱ
i S̄

 > 0 (5.23)

also implying (Lϱ
i )

′ 0

0 (S̄)

 (Sϱ
i )

−1 A′Πϱ
i (S̄)

−1

(S̄)−1(Πϱ
i )

′A (S̄)−1

 Lϱ
i 0

0 (S̄)

 > 0 (5.24)

Let Gϱ
i = (Sϱ

i )
−1, then  Gϱ

i A′Πϱ
i Ḡ

Ḡ(Πϱ
i )

′A Ḡ

 > 0 (5.25)

where Ḡ = (S̄)−1. By the Schur complement, we obtain

A′ [G1
j p̄ij(ϱ) +Gϱ+1

i p̄ii(ϱ)
]
A−Gϱ

i < 0

This concludes the proof.

5.3.2 Control Design

We are looking for a state feedback controller in the form

uk = Kϱ
i xk (5.26)

where the control law Kϱ
i depends on both the mode i = 0, 1 and ϱ = 1, ..., Ts. The

following proposition comes out directly from the previous result.

Proposition 4. The system is stochastically stabilized by (5.26) if there exist matrices

Sϱ
i = (Sϱ

i )
′ > 0, Lϱ

i and Hϱ
i , ∀i = 0, 1, ϱ = 1, ..., Ts − 1, such that the following LMIs
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are feasible:  Lϱ
i + (Lϱ

i )
′ − Sϱ

i ((Lϱ
i )

′A′ + (Hϱ
i )

′B(i)′))Πϱ
i

(Πϱ
i )

′(ALϱ
i +B(i)Hϱ

i ) S̄

 > 0 (5.27)

where B(i) = 0, if i = 0, and B(i) = B, if i = 1. The control law can then be

calculated through [78]

Kϱ
i = Hϱ

i (L
ϱ
i )

−1 (5.28)

5.4 Simulation Results

In this section, we provide a numerical example to demonstrate the proposed control

design method. Consider the given system parameters:

A =

 1.1 0.1

0 1.2

, B =

 1

0.7


For the semi-Markov CR link, assume transition probabilities: p̄01(1) = 0.4, p̄01(2) =

0.6, p̄01(3) = 0.75, p̄01(4) = 0.95, p̄01(ϱ0) = 1,∀ϱ0 ≥ 5, and p̄10(1) = 0.3, p̄10(2) =

0.25, p̄10(3) = 0.45, p̄10(4) = 0.6, p̄10(5) = 0.9, p̄10(ϱ1) = 1,∀ϱ1 ≥ 6.

The initial state x0 =

 3.8

6.4

, and applying the technique in the previous section,

we obtained the following control law:

K1
1 = [4.70 − 8.61]

K2
1 = [4.73 − 8.66]

K3
1 = [4.15 − 7.81]

K4
1 = [3.95 − 7.51]

K5
1 = [4.19 − 7.86]

The states of the closed-loop system with designed control input are plotted in fig 5.1

and fig 5.2. We can observe that they converge to 0 as time evolves.
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Figure 5.1: Trajectory of x1.
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Figure 5.2: Trajectory of x2.
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Chapter 6

LIPS: Link Prediction as a Service

for Adaptive Data Aggregation in

Wireless Sensor Networks

In previous chapters, we designed control and estimation algorithms for discrete-time

linear systems over packet loss and CR links. They are modeled as noise-corrupted

communication channels, e.g., the received signal is the summation of the transmitted

signal and the Gaussian noise. In this chapter, we shift our attention from control

techniques development to the performance of channels, e.g., determining a better

channel for the transmission. Many studies have focused on modeling, identification,

and estimation of wireless communication channels using a state-space model [46,

47, 48, 45]. We propose a novel idea: the state-space model can be used to predict

the link quality, and provide these estimates as a system level service to application

developers. This idea is based on the premise that to achieve the best performance,

the application-layer behavior should be aware of networking-layer conditions, e.g.,

in the collection protocol, and adjust its behavior to achieve balanced performance

with the link quality. The resulting integrated framework is what we have designated

LIPS, or Link Predictions as a Service, that represents an integrated solution.
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First, LIPS presents a state-space based link prediction for selecting the best path.

Most approaches for estimating the link quality are currently based on metrics such as

packet reception rate (PRR), link quality indicator (LQI), and received signal strength

indicator (RSSI) [81, 80]. However, existing approaches have been shown to be limited

in their ability to predict the future. This is because using historical data implicitly

makes the assumption that future measurements may stay similar, an assumption

that is often invalidated by frequent variations of wireless links. Therefore, in this

chapter, we tackle this problem by trying to predict the expected link quality using

the state-space model. We further integrate such predictions as the foundation for

upper-layer protocol adaptations.

Second, in response to link quality changes, LIPS presents a queue management

architecture based on modifying the OS kernel to support elastic applications.

Specifically, we observe the following trade-off: If the link quality becomes worse,

the queues of intermediate nodes will increase due to an increased number of

retransmissions. Therefore, we argue that the length of the queues, and especially

their changing trends, reflects the link quality and provides additional information

to applications. To this end, we provide a suite of APIs for user applications for

managing queue operations.

Finally, we demonstrate one case study where the application layer reduces its data

rate and performs more aggressive data aggregation. This case study demonstrates

that applications can indeed use our APIs to adjust themselves to the link layer

realities and validate the feasibility of our approach.

To the best of our knowledge, this is the first integrated framework that aims

to improve application-layer data collection services through a co-design of link layer

prediction, queue management, and API support. Furthermore, our use of state-space

models to predict the link quality is the first as far as we know. Finally, the overall

design is effective, based on our preliminary experimental results. Parts of this work

have been published in [126].
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6.1 The State-Space Model and Parameters Esti-

mation

6.1.1 State Space Model

In this section, we describe the state-space model for predicting RSSI and PRR

readings. The state equation can be written as a stochastic difference equation (SDE):

x(k + 1) = A(k)x(k) +B(k)w(k) (6.1)

where x(k + 1) ∈ Rn×1 is the state vector of the time series {x(k)}k determined

by the previous state x(k) and the noise term w(k) ∈ Rm×1 introduced at each k;

A(k) ∈ Rn×n and B(k) ∈ Rn×m are coefficients that affect amplitudes of x(k) and

w(k) at each k.

The measurement equation can be written as:

y(k) = C(k)x(k) +D(k)v(k) (6.2)

where y(k) ∈ Rl×1 is the measurement generated by x(k) and the noise term

v(k) ∈ Rm×1; C(k) ∈ Rl×n and D(k) ∈ Rl×m are the corresponding coefficients.

Note x(k) characterizes the variety and the evolution of the series {x(k)}k. With

time increasing, x(k) is involving through (6.1) and then affects y(k) through (6.2).

This property makes it very suitable to model random measurements as the time

variety of measurements is transplanted to that of states. Also note w(k) and v(k)

can represent small perturbations or uncertainties which increase the flexibility of the

model.

Due to theses special characteristics, we propose to use the state-space model to

track, model and predict stochastic behaviors of RSSI/PRR. Specifically, y(k) in (6.2)

is used to denote the value of RSSI/PRR at time k. For a better illustration, we state

the procedure on how to predict future measurements of RSSI/PRR as follows as well
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as in fig 6.1:

Prediction: Given a batch of RSSI/PRR measurements {y(k)}Kk=0, then the

prediction of future measurements can be divided into three steps:

• First, measurements are characterized and governed by the state-space model

(6.3);

• Second, a parameter estimation algorithm (section 6.1.2) is employed to compute

the parameters (e.g. A(k), B(k), C(k), D(k), and x(0)) in the model;

• Last, future measurements can be predicted explicitly by Lemma 6.1.2.

Metrics data y(k) x(k+1)=Ax(k)+Be(k)

y(k)=Cx(k)+e(k)

using PEM algorithm

Data memory

N past  Data

Model Parameter Estimation

^ ^ ^

^

0=

vec(x(0, 0 ))

vec(A(0))

vec(C(0))

vec(B(0))
One-step predictor Post Processing

y(k+1Ik,0)

Figure 6.1: The one-step-ahead prediction process of RSSI/PRR measurements. Once
new measurements are provided, this process is repeated.

First we introduce the following definition about the multi-step-ahead prediction.

Definition 6. The Np multi-step-ahead prediction of y(k) is a prediction at the time

instant k +Np making use of measurements y(l), l ≤ k. It is denoted by

ŷ(k +Np|k, θ)

where θ denotes the parameters of the model and will be described in details in

section 6.1.2.
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The state-space predictor used to model RSSI/PRR measurements can be written

as

x̂(k + 1) = Ax̂(k) + Be(k), x̂(0) = x0

y(k) = Cx̂(k) + e(k) (6.3)

where y(k) is the RSSI/PRR measurement; x̂(k) is the state variable characterizing

the link property; A,B, and C are coefficients of the model; x(0) denotes the initial

state condition; e(k) = y(k) − Cx̂(k) is the error between the measured value

and the predicted value Cx̂(k) at k. A, B, C and initial state condition x̂(0) in

(6.3) are unknown and need to be estimated through RSSI/PRR measurements

y(1), y(2), ..., y(k) and then used to predict future measurements ŷ(k + Np|k, θ).

Because RSSI/PRR measurements are scalars, thus in (6.3), y(k) ∈ R1×1, e(k) ∈ R1×1

and B ∈ Rn×1.

In the next section, we are going to introduce the algorithm on how to estimate

the parameters of the model and predict future link quality metrics.

6.1.2 Prediction Error Minimization (PEM) Algorithm

There are several parameter estimation algorithms, e.g. expectation and maximiza-

tion [106], which yields the maximum likelihood parameter estimate. In this section,

we introduce a parameter estimation algorithm – Prediction Error Minimization

Algorithm [114]. In the sequel, we will use x to denote x̂ in (6.3) for the sake of

convenience.

We first need to parameterize the model (6.3). The aim of parametrization is to

unify the parameters of the model into a vector variable to facilitate the parameter

estimation. Assume entries of parameters A, B, C, and x(0) depend on a parameter
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vector θ, then (6.3) can be written as:

x(k + 1|k, θ) = A(θ)x(k|k − 1, θ) +B(θ)e(k)

y(k) = C(θ)x(k|k − 1, θ) + e(k) (6.4)

and x(0) is parameterized by x(0, θ).

It is obvious that the dimensions of A, B, C, x(k), y(k) and e(k) are n×n, n× 1,

1 × n, n × 1, 1 × 1 and 1 × 1, respectively. Then, the parameter vector θ including

all entries of matrices A, B and C as well as the initial state conditions x(0) can be

written as

θ =


vec(x(0, θ))

vec(A(θ))

vec(C(θ))

vec(B(θ))


where vec(M) is the operator vectorizing matrix M by stacking its columns. Thus,

the dimension of θ is q × 1, where q = n+ n× n+ 1× n+ n× 1 = 3n+ n2. We also

provide an example to explain the parametrization below.

Example 1. Consider the model:

x(k + 1) = Ax(k) +Be(k), x(0) = x0

y(k) = Cx(k) + e(k) (6.5)

where

A =

 0.5 1.2

1.1 0.6

 , B =

 0.7

0.9

 , C = [1 0], x0 = [12]T
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If the model is parameterized with all entries of the parameter matrices, then the

following parametric model is obtained:

x(k + 1|k, θ) =

 θ(3) θ(4)

θ(5) θ(6)

x(k|k − 1, θ) +

 θ(9)

θ(10)

 e(k),

x(0, θ) = [θ(1) θ(2)]T

y(k) = [θ(7) θ(8)]x(k|k − 1, θ) + e(k) (6.6)

where the parameter vector θ = [θ(1), ..., θ(10)]T .

After parametrization, we must estimate θ.

As it stands, PEM estimates parameters by minimizing the prediction error. Here,

we will concentrate on the case Np = 1 where only the one-step-ahead prediction is

involved. Thus, given a finite number of measurements N , PEM estimates θ by

minimizing a least square cost function with respect to θ:

JN(θ) =
1

N

N−1∑
k=0

∥ y(k)− ŷ(k|k − 1, θ) ∥22 (6.7)

where ŷ(k|k − 1, θ) is the one-step-ahead prediction. A more specific form of JN(θ)

is given in the following theorem.

Theorem 6.1. The functional JN(θ) can be written as

JN(θ) =
1

N

N−1∑
k=0

∥ y(k)− ϕ(k, θ)[x(0, θ), B(θ)]T ∥22

where the matrix ϕ(k, θ) with dimension 1× 2n is explicitly given as

ϕ(k, θ) = [C(θ)(A(θ)−B(θ)C(θ))k
k−1∑
τ=0

yT (τ)⊗ C(θ)(A(θ)−B(θ)C(θ))k−1−τ ]
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where ⊗ is Kronecker product. That means

ŷ(k|k − 1, θ) = C(θ)(A(θ)−B(θ)C(θ))kx(0, θ)

+
k−1∑
τ=0

C(θ)(A(θ)−B(θ)C(θ))k−1−τB(θ)y(τ) (6.8)

Proof. Follow the proof of Theorem 8.1 on page 262∼263 in [115] and set input u(k)

equal to 0.

In order to compute θ, we employ the Gauss-Newton method [115] to numerically

minimize the cost function. Define the error vector EN(θ) = [ϵ(0, θ), ϵ(1, θ), ..., ϵ(N −

1, θ)]T where ϵ(k, θ) = y(k) − ŷ(k|k − 1, θ). Note the difference between ϵ(k, θ) and

e(k) is that the former is a function of θ. Then the cost function JN(θ) can be written

as

JN(θ) =
1

N

N−1∑
k=0

∥ y(k)− ŷ(k|k − 1, θ) ∥22=
1

N
ET

N(θ)EN(θ) (6.9)

Also, define the derivative of EN(θ) with the notation

ΨN(θ) =
∂EN(θ)

∂θT

Then the Jacobian and Hessian of JN(θ) (first derivative and second derivative of

JN(θ)) can be expressed as [115]

J ′
N(θ) =

∂JN(θ)

∂θ
=

2

N
ΨT

N(θ)EN(θ) (6.10)

J”N(θ) =
∂2JN(θ)

∂θ∂θT
=

2

N

∂2ET
N(θ)

∂θT θ
(Ip ⊗ EN(θ)) +

2

N
ΨT

N(θ)ΨN(θ) (6.11)

where Ip is p× p identity matrix.

The Gauss-Newton method approximates the Hessian by the matrix HN(θ) =

2
N
ΨT

N(θ)ΨN(θ), where the first term is neglected and thus saves high computation
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cost. When HN(θ) is invertible, the method updates θ by

θi+1 = θi −HN(θi)
−1J ′

N(θi) (6.12)

where the index i denotes the ith iteration. The derivation of the update equation

can be found in any optimization book, e.g. [115]. Once the cost function JN(θi)

reaches a tolerable threshold, the iteration can be stopped at θ = θi.

Remark: The matrix HN(θ) may be singular. One possible way to solve this is

through regularization, where a penalty term is added to the cost function to address

the singularity. Instead of minimizing JN(θ), the problem becomes minθJN(θ) + λ ∥

θ ∥22 and the update equation (6.12) is rewritten as

θi+1 = θi − (HN(θi) + λIp)
−1J ′

N(θi) (6.13)

where λ > 0 and HN(θi) + λIp is made non-singularity.

Note that the Gauss-Newton method is one of the optimization algorithms to

minimize a function, other algorithms such as steepest descent method, and gradient

projection are also applicable to our problem.

For convenience, we use n = 1 dimension state-space model to model PRR/RSSI.

Next, we are going to derive explicit equations of ΨN(θ) in this case. For the case

when n > 1, the equations can be derived similarly.

Lemma 6.1.1. If n = 1, then we have

ΨN(0, θ) = [C(θ), 0, x(0, θ), 0]

ΨN(1, θ) = [C(θ)(A(θ)−B(θ)C(θ)), C(θ)x(0, θ),

(A(θ)− 2B(θ)C(θ))x(0, θ) +B(θ)y(0), −C(θ)2x(0, θ) + C(θ)y(0)]

And for 1 < k < N − 1, ΨN(k, θ) is computed in (6.14),
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Proof. From the definition of EN(θ) and ΨN(k, θ), we have

ΨN(k, θ) =
∂EN(k, θ)

∂θT

= [
∂EN(k, θ)

∂x(0, θ)
,
∂EN(k, θ)

∂A(θ)
,
∂EN(k, θ)

∂C(θ)
,
∂EN(k, θ)

∂B(θ)
]

By computing each derivative term above, ΨN(k, θ) in the lemma can be obtained.

ΨN(k, θ) =



C(θ)(A(θ)−B(θ)C(θ))k

kC(θ)(A(θ)−B(θ)C(θ))k−1x(0, θ) +
∑k−1

τ=0(k − τ − 1)
×C(θ)(A(θ)−B(θ)C(θ))k−τ−2B(θ)y(τ),

(A(θ)−B(θ)C(θ))kx(0, θ)− kC(θ)B(θ)(A(θ)−B(θ)C(θ))k−1x(0, θ)

+
∑k−1

τ=0((A(θ)−B(θ)C(θ))k−τ−1B(θ)y(τ)− (k − τ − 1)C(θ)B(θ)
×(A(θ)−B(θ)C(θ))k−τ−2B(θ)y(τ)),

−kC(θ)2(A(θ)−B(θ)C(θ))k−1x(0, θ) +
∑k−1

τ=0(C(θ)
×(A(θ)−B(θ)C(θ))k−τ−1y(τ)− (k − τ − 1)C(θ)2

×(A(θ)−B(θ)C(θ))k−τ−2B(θ)y(τ))


(6.14)

The next lemma provides a procedure to compute the multi-step-ahead prediction

after the parameters have been estimated.

Lemma 6.1.2. Given the model structure (6.4) and quantities x(0, θ), A(θ), B(θ),

C(θ) and {y(l)}k0, then the one-step-ahead prediction is computed as:

x(k + 1|k, θ) = (A(θ)−B(θ)C(θ))k+1x(0, θ) +
k∑

τ=0

(A(θ)−B(θ)C(θ))k−τB(θ)y(τ)

ŷ(k + 1|k, θ) = C(θ)x(k + 1|k, θ) (6.15)
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and based on the one-step-ahead prediction, the multi-step-ahead prediction where

Np > 1 can be computed by:

x(k +Np|k, θ) = A(θ)kx(k + 1|k, θ)

ŷ(k +Np|k, θ) = C(θ)x(k +Np|k, θ) (6.16)

Proof. Follow Lemma 8.2 on page 260 in [115] and set input u(k) equal to 0.

6.2 Elastic Queue Management

Having described the mathematical foundation of LIPS, in this section, we describe

the elastic queue management by modifying how the operating system handles

incoming packets. We chose the LiteOS operating system [116], an in-house

experimental operating system for our purpose. Given that the LiteOS system

does not have integrated support for queueing, we modified its communication stack

to incorporate dynamic memory management, and implement queueing through a

doubly linked list data structure.

Fig 6.2 shows the communication stack that serves as the foundation for our queue

management model. In this figure, both the receiving (on the left) and the sending

(on the right) operations are illustrated. When the sender intends to deliver packets,

it puts the destination address and the port number for the destination node into the

packet header. The packet is then delivered to the MAC component, and broadcasted

over the radio. When the packet is received by a neighbor, its CRC field is first checked

for integrity. If this packet is sent to the current node, its port number is matched

against each process that is listening to incoming packets. The thread that has a

match in the port number is considered as the right thread for the incoming packet.

The contents of the packet are then copied into the internal buffer that is provided by

the thread, which is in turn “wakened up” to handle the incoming packet. Note that

this communication stack is similar to the port-based socket model in Unix, and the
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Figure 6.2: The Architecture of Communication Stack

listening thread implement a multi-hop spanning-tree based routing protocol (e.g.,

the surge example that originally distributed by TinyOS 1.x, and reimplemented in

the LiteOS environment) that will continue to forward packets along the path.

Now we describe how we introduced the queueing model into this socket-like

communication stack. Its implementation is closely integrated with the dynamic

memory management module of the LiteOS operating system. Specifically, we

exploited the free space between the end of global variables, or the .bss section, and

the end of the growing stack, to implement a heap for memory allocation functions

such asmalloc. Whenever an incoming packet arrives, we allocate a chunk of memory

whose size is the same as the size of a packet from the heap, and copy the contents

of the packet to this chunk of memory. We assume that for each packet, it has been

assigned a priority by the application layer. For example, a packet that contains

aggregated results should have a higher priority compared to a packet that contains

the initial raw data, since the former contains more condensed information. As

another example, a packet that has an urgent deadline will have the highest priority
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Figure 6.3: The Design of the Queueing Component

Link Prediction APIs
setParameters Set the link condition prediction parameters
getPRRPrediction Get the link condition prediction for the next PRR reading
getRSSIPrediction Get the link condition prediction for the next RSSI reading

Queue Management APIs
getQueueLength Get the current length of the queue
getQueueMax Get the maximum length of the queue

Data Aggregation APIs
getPacketFromQueue Return a pointer to a packet in the queue
getFreePacketChunk Return a pointer to a free slot for a new packet
releasePacketFromQueue Release the packet as pointed by the pointer

Table 6.1: User Level APIs for Queue Management

to ensure that it gets transmitted first. Based on this priority, we order all packets in

the doubly linked list into a queue, where those highest priority packets are always

stored at the head of the queue. The design of the queue is shown in fig 6.3.

Observe that there are several advantages of the queue management model being

implemented as a doubly linked list instead of an array. First, it allows in-place

aggregation of packets. When two packets are aggregated together, we can allocate

a free memory chunk to store the aggregation result, and release the earlier two

packets. Then, the linked list is modified to insert the newly created packet in the
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Thread AdaptiveSampling: 
while (application is running) 
{   
   get predicted channel condition; 
   get current queue length;  
   get new sample reading;  
   if (channel condition gets worse) 
        sampling interval increases; 
   else if (channel condition gets better) 
        sampling interval decreases; 
   if (queue length is more than a threshold) 
       perform more aggressive packet aggregation;  
   wait for sampling period;    
} 
 
Thread DataTransmission: 
while (there is packet in the queue) 
{ 
   send the highest priority packet to the next node;  
} 
 

Figure 6.4: The Design of the Adaptive Surge Case Study

right position. This eliminates the need to perform many copy operations to maintain

the consistency of the doubly linked list. Second, by counting the total length of the

queue, we can have an accurate estimate on the current congestion level. When the

length of the queue grows beyond a certain threshold, the application layer can either

decrease the rate of data generation, or perform aggressive data aggregation.

6.3 Application Adaptation

In this section, we describe the application layer adaptation. In particular, our

design is based on the following premise: to achieve the best performance, the

application layer behavior should be aware of networking layer conditions in the

collection protocol of wireless sensor networks, and adjust its behavior accordingly.

To achieve this goal, we develop a suite of APIs as services that include not only the

link prediction, but also the queue management. In this section, we first describe our

proposed API, followed by an case study to show how this API works in practice to

regulate application behavior.
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6.3.1 Summary of API

The APIs allow users to carry out a list of tasks such as getting the updated prediction

of the link quality, reading the current size of the queue, among others. Table 6.1

shows a list of our proposed APIs for the management of the link quality and the

queue as implemented on the LiteOS operating system in the form of a series of C

functions.

These APIs are organized into three groups: link prediction, queue management

detection, and data aggregation. The first group of APIs allows the user to set the

prediction algorithm parameters, and reads the next PRR or RSSI prediction. Note

that the interval between the current time and the next prediction is adjustable,

depending on the user’s needs. The second group of APIs allows the user to set the

queue congestion level, where a maximum value is assumed to be the largest available

queue size. The third group of APIs allows the user to manipulate packets in the

queue, such as reading them, aggregating them, and releasing them, as needed.

6.3.2 Application Case Study

In this section, we design a modified version of the Surge example for the multi-

hop transmission of packets, by taking into account current link layer realities. The

skeleton of this application is shown in fig 6.4.

As shown in this figure, the modified design has two threads: the application

thread that performs adaptive sampling of the sensors, and the packet processing

thread that continuously transmits radio packets over to the next hop via the spanning

tree. In the first thread, after each sample, the application checks if the radio condition

is getting worse, or if the queue length is getting longer. In either case, the application

adjusts its own behavior by performing aggressive packet aggregation, or modifying its

own sampling periods. For our example, the application that transmits raw packets

adopts aggregation functions, including MAX, MIN, AVERAGE, and SUM to
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Figure 6.5: PRR Evaluations of Prediction for High-Frequency Transmission.
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Figure 6.6: RSSI Evaluations of Prediction for High-Frequency Transmission.

profile the sensor readings and condense multiple packets into fewer, yet denser,

representations.

6.4 Evaluation

In this section, we present our evaluated results of LIPS, and the results obtained by

implementing the state-space model in Matlab.

108



Type Parameter
MCU Ateml ATmega128
Radio 2.4 GHz IEEE 802.15.4 [88]
Date Rate 250 kbps
Program Flash Memory 128 KB
Configuration EEPROM 4 KB

Table 6.2: Summary table of hardware.

6.4.1 Evaluation of the State Space Algorithm

To demonstrate that the state space algorithm can predict the link quality with high

accuracy, we carry out the following experiments. We use two nodes, one sender and

one receiver. The sender repeatedly sends out packets with sequential numbers. The

receiver receives the data, and logs RSSI and sequence numbers (used to calculate

PRR). The runtime hardware is MicaZ [87] mote. In Table 6.2, we summarize the

primary hardware and communication parameters of our hardware.

We compare the measured metrics with the predicted results. The results are

shown in fig 6.5 and fig 6.6, for high frequency communication (once per 100ms),

and fig 6.7 and fig 6.8, for low frequency communication (once per 500ms). Both

prediction curves and error ratios are shown in these figures. We observe that the

predicted results match the real measurements very well. Indeed, the error ratio is

mostly within a bound of 5%. These results demonstrate the effectiveness and the

accuracy of our proposed state-space algorithm.
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Figure 6.7: PRR Evaluations of Prediction for Low-Frequency Transmission.
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Figure 6.8: RSSI Evaluations of Prediction for Low-Frequency Transmission.
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Chapter 7

Navigation in GPS-Denied

Environments

The TPS can be employed as a backup to the GPS and can be quite stable in a

“bad” environment. However, as mentioned previously, the fix accuracy is reduced

when TPS works alone. Transmission errors (ηik in section 7.1.2) in the position

estimation for TPS transmissions are caused by environmental factors, such as the

earth’s surface underlying the propagation path (e.g., water or land), as well as local

variations in surface types (e.g., terrain, soil types, vegetation). Unlike errors in

the GPS, such as ionospheric and tropospheric delays which have known models

[90, 91], the errors in TPS are more difficult to capture and approximate by an exact

model. The localization accuracy thus degrades when the TPS is used without special

calibration factors (similar to those historically used in LORAN). There is a detailed

description of the TPS in [89].

In this chapter, we build a dynamic model to capture the errors’ stochastic

characteristics, which are predictable, and thereby improving the accuracy of the

TPS.

We also present an algorithm to solve pseudorange equations in both GPS and

TPS. Most techniques presented in the literature have applied Newton-Raphson [90,
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91], Kalman filter [92, 93, 94] or particle filter [95] methods to estimate the fixes.

However, these algorithms require either the knowledge of noise statistics (Kalman

filter and particle filter) or do not take noise components into consideration (Newton-

Raphson). An algorithm based on the stochastic approximation is proposed here. The

algorithm does not need any specific information of the noise variance but can still

calculate the user’s position efficiently. Moreover, the algorithm uses less computation

than other methods. Parts of this work have been published in [125, 124].

7.1 Navigation Equations

In this chapter, we consider the navigation of the users on the earth’s surface that

is subject to environmental conditions such as urban areas, very tough terrain, or

in tropical or heavily forested regions. The calculation of the distance between the

user and TPS transmitters should accommodate the ground-wave propagation and

great-circle path distances; this is done by adjusting the equivalent speed of the wave

for the slower propagation along the earth surface; the curved-path distances may

then be converted to equivalent chord distances to utilize normal rectilinear distance

equations.

In the following subsections, we discuss the basic GPS pseudorange equation, the

corrected great-circle distance equation, and an SA method is proposed to solve those

pseudorange equations.

7.1.1 GPS Pseudorange Equation

The principle of the GPS navigation can be represented as follows [90, 91]: Each

satellite is sending out signals with the following content: I am satellite X, my

position is Y and this information was sent at time Z. These orbital data (ephemeris

and almanac data) are stored by the GPS receiver for later calculations. For the

determination of its position, the GPS receiver compares the time when the signal
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was sent by the satellite with the time the signal was received. From this time

difference, the distance between receiver and satellite can be calculated. If data from

other satellites are taken into account, the present position can be calculated by

trilateration (the determination of a distance from three points). This means that at

least three satellites are required to determine the position of the GPS receiver on

the earth’s surface. The calculation of a position from 3 satellite signals is called a

2D-position fix (two-dimensional position determination); it is only two-dimensional

because the receiver has to assume that it is located on the earth’s surface. By

using four or more satellites, an absolute position in a three-dimensional space can

be determined. A 3D-position fix also gives the height above the earth surface as a

result. The pseudorange of the ith transmitter at time k is given by the equation:

ρik = ρTi
k + c(ζ ik − ζRk ) (7.1)

where ρik is the pseudorange computed by the time difference between the receiver and

the ith satellite and ρTi
k is the real range from the user to the ith GPS satellite at time

k. The pseudorange contains two primary sources of errors. One error is introduced

by the receiver’s clock, which is denoted as ζRk and called the receiver clock offset.

This error remains the same in each pseudorange equation of each transmitter at time

k. The other error is introduced in the transmission of GPS signals and denoted as

ζ ik. This error can be modeled and approximated accurately [91], and thus is assumed

known to the users. If we denote the ith satellite position by (X i, Y i, Zi) relative to

the center of the earth in Earth-Centered, Earth-Fixed (ECEF) coordinates, and the

user’s position by (Xk, Yk, Zk) in the same coordinates, then the distance between the

ith satellite and the user can be written as the nonlinear expression:

ρTi
k =

√
(Xk −X i)2 + (Yk − Y i)2 + (Zk − Zi)2 (7.2)
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To solve user positions and the receiver clock offset, 4 satellites are needed to solve

for (Xk, Yk, Zk, ζ
R
k ) sufficiently.

7.1.2 TPS Great-Circle Distance

As mentioned above, the multilateration radiolocation algorithms for the TPS are

generally similar to those used in the GPS except for the addition of great-circle

corrections to accurately represent the lengths of the ground-wave propagation paths

on the nearly spherical earth and (obviously) the deletion of the satellite almanac and

ephemeris data. In most operational scenarios, TPS transmitters will be locked to

the GPS time with very high-quality clocks. In addition, their locations will be pre-

surveyed and known to fractions of a meter. TPS data streams will thus provide all

the information needed by the receiver (except for onboard-stored local propagation-

correction tables) to accurately compute its position. Due to the finite conductivity of

the earth’s surface, and local variations due to surface types (i.e., land or water), soil,

moisture content, temperature, and (to a lesser extent) seasons, the average signal

velocity must be reduced by very roughly 0.15%. In addition, the curved path on

the earth’s surface requires generic great-circle distance computations. As shown in

fig 7.1, the true range transmitted is along the spherical earth instead of the chord

between A (the user) and T (the transmitter) and should be estimated by the great-

circle distance.

The TPS ground wave follows the great-circle distance between two points on

the earth’s surface (assumed spherical), which can be computed by the following

formula, where δi and φi are latitude and longitude, respectively and r is the radius

of the earth (approximately 6371 km on average), then the great-circle distance d is

approximately:

d(δ1, φ1, δ2, φ2) = r cos−1[sin δ1 sin δ2

+cos δ1 cos δ2 cos (φ1 − φ2)] (7.3)
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Figure 7.1: The users near the earth surface.

The great-circle distance equation is employed to calculate the distance of a near-

spherical earth path between the user and land-based TPS transmitters. In this

chapter, we consider only the navigation of the users near the surface, which means

the height between the user and the earth surface is zero. For users at varying

heights, the distances between the users and TPS transmitters do not quite follow

the great-circle equations and should be calculated by taking the heights of the users

into account.

Now assume there are M TPS transmitters. Then, the pseudorange equation at

time k for the TPS can be written similarly as that of the GPS as follows:

dik = dTi
k + cT (η

i
k − ηRk ) (7.4)

where dik is the pseudorange between the user and the ith TPS transmitter, and dTi
k

is the true range between the user and the ith (1 ≤ i ≤ M) TPS transmitter, which

is approximated by the great-circle equation given above. ηik is the transmission error

generated in the transmission of the TPS signal by the environment around the surface
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and is what we need to model. ηkR is the receiver clock offset, equivalent to ζRk in the

GPS pseudorange equation. ηik is unfortunately difficult to model accurately due to

its characteristic irregularity. When GPS signals are available, we can calculate ηik,

but when GPS signals are absent, we do not have enough information to do so. This

motivates the model proposed here.

7.2 Stochastic Approximation Method

To solve pseudorange equations explicitly, numerous algorithms have already been

proposed in the literature such as the Kalman Filter, Newton-Raphson method,

particle filter, and the likes [90, 91, 92, 93, 94, 95]. However, most of them require

either the variance of the noise (Kalman Filter and particle filter) is known, or do not

consider the effect of the noise (e.g. Newton-Raphson). In this section, a stochastic

approximation algorithm in [96] is employed to compute the fixes explicitly. This

method trains the Kalman gain matrix to its correct, steady-state form, when plant

noise and observation noise covariance matrices are unknown. Following [96] the SA

algorithm is discussed next. Consider the discrete-time system [97]:

xk+1 = Axk + wk (7.5)

yk = d(xk) + vk (7.6)

where xk is the state vector containing the longitude, latitude (or X, Y, Z fixes

in ECEF coordinates) of the user at time k, velocities, and clock offsets; A is

the corresponding system matrix; d(xk) is the pseudorange vector containing all

pseudoranges (as in (7.1) and (7.4)) sampled for each TPS transmitter and is a

function of xk; and wk and vk are noise terms representing uncertainties of the system

with variance W and V .
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It is well known from Kalman filtering theory that the a posterior estimate of xk

is given by:

x̂k+1 = Ax̂k +Kk+1(yk+1 − d(Ax̂k)) (7.7)

whereKk+1 = Pk+1|kD
T
k+1(Dk+1Pk+1|kD

T
k+1+V )−1 is the Kalman gain, where Pk+1|k =

Ak+1(I −KkDk)Pk|k−1A
T
k+1 +W and Dk+1 =

∂d
∂x
|Ax̂k+1|k

Instead of the traditional Kalman gain, the stochastic approximation procedure

provides a recursive gain adaptation algorithm in the following form:

Kk+1 = Kk + µkθ(Kk) (7.8)

where µk is a decreasing sequence of real numbers and θ(Kk) is an unspecified

stochastic vector that depends on Kk. One choice for θ(Kk) is θ(Kk) = Ax̂k+1vk+1
T ,

and under certain conditions on µk in [96], Kk+1 converges to the optimal Kalman

gain.

The advantages of this SA algorithm over other algorithms are summarized as

follows:

• It does not assume knowledge of noise covariance matrices;

• The computation of its Kalman gain does not require the calculation of the

estimation covariance, which can reduce the computation cost significantly over

that of the Kalman filter.

• Unlike Newton-Raphson, which needs N equations to solve for N unknowns, SA

can estimate xk accurately with a number of measurements smaller than the

number of variables contained in the state xk (partially observed).

7.3 State Space Model

In this section, we model the errors produced during the transmission of the TPS via

a dynamic state-space model which is based on SDEs. SDEs have been widely used to
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model control systems and communication channels. For example, a mobile-to-mobile

communication channels can be modeled as [101]:

xk+1 = Fkxk +Gkwk

yk = Hkxk +Nkvk (7.9)

where xk is the state; yk is the measurement sampled at the output of the channel;

wk and vk are noises; and Fk, Gk, Hk and Nk are parameters of the channel.

Other related examples can be found in [102, 103, 104, 105], where great flexibility

and utility offered by state-space models are employed extensively in a number of

different areas of statistics. For example, the Bureau of Labor Statistics (BLS) in

the U.S. used state-space models for the estimation of all the monthly employment

and unemployment estimates for the 50 states and the District of Columbia. There,

state-space models were fitted independently between the internal states and used

to build a model of the true population values with an accompanying model for the

sampling errors [102]. The authors in [103] used the state-space approach to model,

estimate, and predict short-term electric power consumption, which can provide

an insight into the future power demand and thus make decisions on the power

generation, e.g., whether to activate reserve power generators or decrease generator

outputs. [104] generalized the linear discrete-time state-space model from a single-

dimensional time to two-dimensional space and then used it as a model for the linear

image processing. Further, [105] developed a non-Gaussian state-space model for

the censored data. These applications suggest its successful use in modeling and

predicting TPS transmission errors.

The time-varying property of parameters in (7.9) adapts dynamically to the variety

of states. The noises wk and vk can also capture the range uncertainties introduced

during the transmission. Due to these special characteristics, we propose to use the

state-space model to track, estimate and predict transmission errors (ηik) in TPS
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transmissions. Consider the following time-invariant state-space predictor:

xk+1 = Fxk +Gek

ηk = Hxk + ek (7.10)

where ηk is the transmission error computed for each transmitter, and ek = ηk −Hxk

is the error between the measured error and the error predicted by the model. To

estimate F , G, H, and xk, the PEM method [107] is employed. PEM estimates the

parameters by minimizing a least-square cost function:

VN =
N∑
k=1

eTk ek (7.11)

The details of the algorithm can be found in [107].

At each discrete-time instant k, the PEM algorithm estimates the parameters

F,G and H recursively from measurements at k. With the estimated parameters and

states of the model, the one step-ahead prediction of the transmission error can be

computed by:

η̂k+1 = Ĥk(F̂kx̂k + Ĝk(ηk − Ĥkx̂k)) (7.12)

where η̂k+1 denotes the predicted transmission error at k + 1; F̂k, Ĝk, Ĥk and x̂k are

the parameters and state estimated by PEM at time k; ηk − Ĥkx̂k is the prediction

error at k; F̂kx̂k + Ĝk(ηk − Ĥkx̂k) is from the state evolution equation in (7.10). The

p-steps-ahead (p > 1) prediction of the transmission error can be computed by:

η̂k+p = Ĥk × F̂ p−1
k (F̂kx̂k + Ĝk(ηk − Ĥkx̂k)) (7.13)

where F̂ p−1
k (F̂kx̂k + Ĝk(ηk − Ĥkx̂k)) computes the predicted state after p steps from

k.

The state-space model introduced in this section employs the PEM algorithm

which numerically estimates model parameters, however, such procedure may have a
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high computational cost. In the next section, the AR model which is a special case

of the state-space model is proposed. Parameters in the AR model can be estimated

explicitly without involving numerical calculations.

7.4 Autoregressive (AR) Model

An AR model is a type of random process which is often used to model and predict

various types of natural phenomena [108]. For instance, [110] used an infinite AR

process to model stationary multi-dimensional multivariate time series. In [111], an

AR model is used to represent shapes of boundaries detected in digitize binary images

of objects. In [112], the authors employed a 2-D piecewise AR model in the image

interpolation. [113] proposed a heterogenous AR model to describe the behavior of

the volatility inherent in financial time series. These works motivate the application

of the AR model in estimating TPS transmission errors. A typical AR process can

be written as:

Xk =

p∑
i=1

αiXk−i + εk (7.14)

where Xk is a time series, α1, ..., αp are parameters of the model, and εk represents

white noise at time k. p is the order of the AR model. If we use Xk to represent the

transmission error ηik, then future errors can be predicted through (7.14). Before the

prediction, parameters in (7.14) need to be estimated based on past errors computed

from the available GPS data by minimizing the following quadratic cost function:

VN =
1

N

N∑
k=1

[Xk −
p∑

i=1

αiXk−i]
2 (7.15)

where N denotes the number of data available to estimate the parameters. For

convenience, let θ = (α1, .., αp)
T and ϕk = (Xk−1, ..., Xk−p)

T . By minimizing the cost

function VN with respect to θ, the least square estimate of θ̂k can be calculated as
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follows [114]:

θ̂k = θ̂k−1 + Lk[Xk − θ̂Tk−1Φk]

Lk =
Mk−1Φk

1 + ΦT
kMk−1Φk

Mk = Mk−1 −
Mk−1ΦkΦ

T
kMk−1

1 + ΦT
kMk−1Φk

(7.16)

Remark 7. The AR model can be viewed as a special case of the state-space model

(actually, the state-space model can be transform to an autoregressive moving average

(ARMA) process). The difference between them resides in the fact that the noise

term in the state-space model is more complex, and thus requires a more complicated

parameter estimation algorithm. Parameters in the AR model can be computed

explicitly through (7.16) which is much simpler. However, the state-space model can

provide more accurate results at the expense of more computational cost.

7.5 Generalized Linear Model (GLM)

The proposed methods such as AR and state-space are actually linear models, in this

section, we introduce an nonlinear model approach called generalized linear model for

modeling purposes in the TPS transmission. As its name stands, it generalizes linear

regression by allowing the linear model to be related to the response variable via a

link function and by allowing the magnitude of the variance of each measurement to

be a function of its predicted value [118].

In a GLM, the responses Y are assumed to be generated from a particular

distribution in the exponential family, including normal, binomial and poisson

distributions, etc.. The mean, µ, of the distribution, depends on a function of the

linear combination of independent variables X through the following expression [118]:

EY = µ = g−1(Xβ) (7.17)
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Figure 7.2: The users with varying heights.

where Xβ is called the linear predictor, a linear combination of unknown parameters

β; g is the link function. The unknown parameters, β, are typically estimated by

maximum likelihood, maximum quasi-likelihood, or Bayesian techniques.

The GLM consists of three elements, including a probability distribution to

describe the responses Y , a linear combination of X, z = Xβ, and a link function

g such that z = g(µ). In this work, we consider the transmission errors ηik in the

TPS transmission as responses Y , and stipulate X to be independent variables,

i.e., transmission errors from 1 to k are denoted by Y , while X can be chosen

as the standard Brownian motion {Bk}k≥0, which is one of the most popular and

fundamental stochastic processes. The relationship can then be set up based on

X,Y , and β can be estimated. The estimated β are further used for the prediction

of transmission errors when the TPS works alone. More details of the GLM can be

retrieved from [118].

7.6 TPS Navigation Scheme Algorithm (NSA)

In this section, a navigation scheme for improving accuracy is introduced.
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Assume both GPS and TPS data are available from time 1 to time n; also, from

time n on, only the TPS data is accessable. The procedure to navigate only with the

TPS at time n+ 1 is as follows:

1) Compute the user’s position (Xk, Yk, Zk) and ζRk for each k = 1, ..., n using

(7.1) and (7.2) through the SA algorithm. Then convert (Xk, Yk, Zk) to latitude and

longitude. As the user is assumed to be near the earth’s surface, the height of the

user H is estimated as 0.

2) Plug the latitude and the longitude back into (7.3) to obtain dTi
k for each

k = 1, ..., n and each transmitter.

3) As the receiver clock offset is constant in one single time slot, we can assume

that ηRk = ζRk . Then ηik can be computed in (7.4) for each k and each i (note dik is

measured by the TPS).

4) Build a statistical model for each {ηik}k=n
k=1 and predict ηin+1 for each transmitter

using the models introduced in section 7.3, 7.4 and 7.5.

5) Plug ηin+1 back into (7.4) and obtain the measurement equation. Together with

the system equation (7.5), the state xn+1 can now be estimated accurately by the SA

algorithm.

After the time n + 1, continue to compute the user positions with the previous

algorithm when the GPS signal is lost. Once the GPS becomes available again, update

the model with new ηik values computed from the latest GPS measurement.

Remark 8. The groundwave signal passes through a variety of different environ-

ments, which indicates that a fixed model can not capture the characteristics of

the stochastic randomness during the transmission. In different environments, e.g.

canyon, forest, etc., transmission errors introduced into the system are distinct greatly,

while these models are well suited to such situation as it can be updated with new

measurements. For example, once the signal transmission surrounding is changed,

these models can be improved with new incoming GPS measurements for the new

surrounding.
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Remark 9. For the users with varying heights (H ̸= 0), the distance equation to

compute the true range should be updated. However, it is difficult to determine a

unique equation in this case, as the user may be below the average earth altitude (e.g.,

a canyon) or on a hill, where the equations are different (see fig 7.2). In a practical

situation, this range may be approximated by the great-circle equation. However, we

maintain that once the distance equation is altered for varying heights, the navigation

scheme proposed in this chapter is still applicable to the new distance equation.

7.7 Numerical Example

In this section, we present an example to illustrate the performance of the navigation

algorithm proposed in this chapter.

Assume N=3 TPS transmitters are located with latitude and longitude pairs:

(38.3127491◦, 115.6442846◦), (39.2763475◦, 116.0855268◦), (37.6413982◦, 114.3172851◦).

The initial position of the user in ECEF coordinates is (−2.172 × 106, 4.390 × 106,

4.074× 106).

The user is assumed to move along the earth’s surface randomly. Thus, for

convenience but without loss of generality, the distance equation can be written as

(7.5) and (7.6), where A = I4×4, where I4×4 denotes the 4 × 4 identity matrix, the

state vector xT
k = [δk, φk, η

R
k ]

T for the TPS and xT
k = [Xk, Yk, Zk, ζ

R
k ]

T for the GPS.

From time 1 to 50, when both GPS and TPS data are available, {xG
k }50k=1 are

computed by the SA algorithm and then {ηik}50k=1 can be obtained by following the

NSA described in section 7.6. From times 51 to 150, the GPS signal is lost and only

the TPS is available. A scalar state-space model is employed to model {ηik}k=50
k=1 , and

then {ηik}k=150
k=51 are predicted by this model using the algorithm proposed in section

7.3. Next, user positions are estimated by the SA algorithm from time 51 to 150. The

differences between real fixes and estimated fixes of all coordinates are presented in

fig 7.3 (shown in ECEF coordinates for the sake of comparison). It is obvious that the

positions estimated by the proposed navigation scheme are close to the real ones since
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Figure 7.3: Position estimation errors in ECEF coordinates using state-space model.
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Figure 7.4: Error percentage of {ηki , i = 1, 2, 3} predicted by the state-space model.

the differences between the estimated and the true fixes are small. Deviations from

true positions are bounded by 6m, 3.5m and 3.5m on each axis, respectively. The

percentage of the error between actual {ηik} and predicted ones {η̂ik} (|ηik− η̂ik|/ηik) by

the state-space model are also plotted in fig 7.4. These plots demonstrate that the

proposed state-space model can predict transmission errors with small differences.

Similarly, an AR model with order 6 and a GLM are used in the navigation scheme

to run the same simulation. In GLM, the independent variables X corresponding to

the measurement yk are generated by the normal distribution N(0, k). The simulation

results are shown in fig 7.5, fig 7.6, fig 7.7 and fig 7.8. Although the navigation schemes

based on the AR model and GLM both generate close estimation fixes, the scheme

based on the state-space model clearly offers a better localization performance for this

data set. Usually the state-space method performs better than the AR model because

the AR is a special case of the state-space model. However, it is difficult to determine

which one is better between the state-space model and the GLM theoretically.
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Figure 7.5: Position estimation errors in ECEF coordinates by the AR process.
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Figure 7.6: Error percentage of {ηki , i = 1, 2, 3} predicted by the AR process.
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Figure 7.7: Position estimation errors in ECEF coordinates by the GLM.
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Figure 7.8: Error percentage of {ηki , i = 1, 2, 3} predicted by the GLM.
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Chapter 8

Conclusions and Future Work

This study discussed control and estimation algorithms design over two communica-

tion systems: Bernoulli packet loss links and CR systems. The problems considered

can be formulated in general as follows:

xk+1 = Axk + νkBuk + υk

yk = γkCxk + ωk (8.1)

where γk and νk represent packet loss indicators.

We first designed the optimal filter over the Bernoulli packet loss link. The arrival

information was assumed to be unknown. The nonlinear filter, which is the optimal

one, was derived here using the exact hybrid filter by taking Bernoulli i.i.d process

as a Markov process and compared with the linear optimal estimator, which assumed

the state estimate was a linear combination of the measurement. The simulation

results compared the nonlinear optimal filter and the linear optimal estimator and

also showed that the performance of the optimal filter was better than the linear

optimal estimator, especially for unstable systems.

Second, estimation and control via CR systems modeled by the two-switch model

were considered. This new communication link introduces packet losses during the

transmission due to activities of primary users. Estimator and controller design of
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a closed-loop system over CR links were addressed. The separation principle was

shown not to hold and the controller was a nonlinear function of the state estimate.

Several stability conditions were discussed and numerical examples were presented to

illustrate the method developed.

Third, we studied the state estimation over the CR system governed by semi-

Markov processes. Two cases were considered in this work. The first assumed

packet acknowledgement at the estimator, while the other did not. Sufficient stability

conditions were derived for the peak covariance process of the optimal filter of the

first case, and a suboptimal estimator was proposed for the second case. Illustrative

examples were provided to demonstrate the method’s viability. The optimal controller

was also derived for the case with only one semi-Markov channel in the CR system, but

it was untractable due to coupled Riccati equations. We then designed a suboptimal

but tractable controller based on LMIs.

Future work will focus on the suboptimal solution other than the optimal filter for

the Bernoulli packet loss problem, e.g. using an exponentially weighted loss function.

Moreover, the distributed estimator and controller design over CR systems and the

application of them in specified systems will be examined. Also, other alternative

suboptimal control algorithms may be developed from the optimal solution, and the

performance of the suboptimal solutions will be compared. Additionally, since semi-

Markov processes do not satisfy the semi-group property, it is a good point to discuss

the uniqueness of the solution.

Another topic addressed is the link quality prediction of WSNs. This study

presented the design and evaluation of an integrated system architecture for providing

the link-layer quality estimation as a service to upper-layer applications. The

contribution of this work is three-fold. First, we present a novel, state-space driven

prediction method for the link quality. Our evaluation results in Matlab showed

that this method can predict the future link quality with high accuracy. Second,

we presented a queue management model that integrates the dynamic memory with

a doubly-linked list for implementing packet queues. Our evaluation results on the
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LiteOS platform showed that this was feasible even in extremely resource constrained

environments. Finally, we presented an application case study where we modified

the well-known surge example with consideration for changes in link conditions. The

processes we used and presented here can be beneficial for future designs of similar

sensor network applications. Future work will implement the proposed model in the

real platform and compare the results of the state-space model with previous AR

models.

The last topic in this dissertation is navigation with TPS, which is largely intended

to be used as a backup in GPS-denied environments. We considered the user moving

along the earth’s surface and employed three models–a state-space model, an AR

process, and a GLM–to predict the error generated by environmental delays in its

transmission, thus improving the estimation accuracy of TPS fixes. We have also

proposed a stochastic approximation algorithm to solve the pseudorange equations.

A navigation scheme is then provided and illustrated by an example. Future work

will focus on more complex nonlinear models to further improve the accuracy.
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Appendix A

Summary of Equations

A.1 Proofs

A.1.1 Proof of Lemma 3.3.1

Proof. Since the separation principle holds in this case, estimation and control can

be performed separately. Consider the error covariance

Pk+1 = E{ek+1e
T
k+1|Ik} = APkA

T +BpjV BT − skrAPkC
T (CPkC

T +W )−1CPkA
T

(A.1)

where Pk+1 = Pk+1|k and pj = E{ski |skr}.

Define I = max{I0, I1} and F (P ) = APAT + pjBV BT − APCT (CPCT +

W )−1CPAT . When 1 ≤ i ≤ max(I0, 1), there always exist c
(1)
i ≥ 0 and c

(0)
i that

satisfy the following inequality [7]:

∥ F i(P ) ∥ ≤ c
(1)
i ∥ P ∥ +c

(0)
i

where ∥ X ∥ refers to the matrix induced norm ∥ X ∥= max|X|=1 |MX| where |X|

and |MX| denote the usual Euclidean norm for vectors.
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By [7], where only estimation is considered, the peak covariance process {P p
n}n≥1

of {Pk}k≥1 is stable if condition (i) above holds and

(1− q)qc
(1)
1 [1 +

I0−1∑
i=1

c
(1)
i qi]

∞∑
j=1

∥ Aj ∥ 2(1− q)j−1 < 1 (A.2)

is satisfied.

Consider the control part, from the close-loop equation above, we have

x̂k+1 = skrAKkCek + (A− skrBF )x̂k + skrAKkwk (A.3)

Let Mk+1 = E{x̂k+1x̂
T
k+1|Ik}, then we have

Mk+1 = AMkA
T + Tk − skr(BFMkA

T + AMkF
TBT −BFMkF

TBT ) (A.4)

where Tk = skrAPkC
T (CPkC

T +W )−1CPkA
T . ∥ Tk ∥ is bounded if condition (i) and

(A.2) hold. To see this, note {P p
n}n≥1 is stable, then from each βn to αn+1, s

k
r = 1

for a successive period, it follows that Pk is bounded in this period based on Kalman

filtering theory. This leads that ∥ Tk ∥ is also bounded in that period. While, once

skr becomes 0, Tk = 0 in that period.

Define G(M) = AMAT + Ts − (BFMAT + AMF TBT − BFMF TBT ), where

Ts := {Tk : ∥ Tk ∥= supg≥1 ∥ Tg ∥}. Similarly, when 1 ≤ i ≤ max(I1, 1), there always

exist e
(1)
i ≥ 0 and e

(0)
i that satisfy the following inequality [7]:

∥ Gi(M) ∥ ≤ e
(1)
i ∥ M ∥ +e

(0)
i

Following the same arguments in [7], besides condition (i) and (A.2),

(1− q)qe
(1)
1 [1 +

I1−1∑
i=1

e
(1)
i qi]

∞∑
j=1

∥ Aj ∥ 2(1− q)j−1 < 1 (A.5)
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is also satisfied (note in (A.5) I1 is used instead of I0 in (A.2)), then the peak

covariance process {Mp
n}n≥1 of {Mk}k≥1 is stable. We have now

Lk+1 = E


 ek+1

x̂k+1

 ek+1

x̂k+1

T

|Ik

 =

 Pk+1 0

0 Mk+1



Thus, Lp
n =

 P p
n 0

0 Mp
n

 is stable. Define for 1 ≤ i ≤ min{(I0 − 1), (I1 − 1)},

d
(1)
i = max{c(1)i , e

(1)
i }; For i > min{(I0 − 1), (I1 − 1)}, if I0 ≥ I1, d

(1)
i = c

(1)
i , otherwise

d
(1)
i = e

(1)
i . Then, we can combine (A.2) and (A.5) together and get condition (ii) in

the lemma.

A.2 Equations

A.2.1 Expressions of Theorem 3.3

Let K̂k = E{KkCAKk}, then

Φ1
k =

 Φ11
k Φ12

k

Φ13
k Φ14

k

, Φ2
k =

 Φ21
k Φ22

k

Φ23
k Φ24

k

, Φ3
k =

 Φ31
k Φ32

k

Φ33
k Φ34

k

, Φ4
k =

 Φ41
k Φ42

k

Φ43
k Φ44

k

,
where

Φ11
k = A2 − pqA2K̃kCA+ pqAK̂kC

Φ12
k = (1− p)pq(AK̂kC + AK̃kCBF )

Φ13
k = pqA2K̃kC − pqAK̂kC

Φ14
k = A2 − pqABF − (1− p)pqAK̂kC − pqAK̃kCA+ p2qAK̃kCBF

Φ21
k = (1− p)pq(AK̂kC +BFAK̃kC)

Φ22
k = −(1− p)PQ(AK̂kC +BFAK̃kC)− (1− p)pq(AK̃kCBF +BFBF )

Φ23
k = −(1− p)pq(AK̂kC +BFAK̃kC)

Φ24
k = (1− p)pq(AK̃kC +BF )BF − (1− p)pq(AK̂kC +BFAK̃kC)
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Φ31
k = pqAK̃kCA− pqAK̂kC

Φ32
k = −(1− p)PQ(AK̂kC + AK̃kCBF )

Φ33
k = pqAK̂kC

Φ34
k = pqAK̂kCA− p2qAK̂kCBF + (1− p)pqAK̂kC

Φ41
k = A2 − pqBFA− pqA2K̃kC + p2qBFAK̃kC − (1− p)pqAK̂kC

Φ42
k = (1− p)pqBF (AK̃kC +BF )− (1− p)pq(AK̂kC + AK̃kCBF )

Φ43
k = pqA2K̃kC − p2qBFAK̃kC + (1− p)pqAK̂kC

Φ44
k = A2 − pqABF − pqBFA+ p2qBFBF + (1− p)pqAK̂kC
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