24 research outputs found

    Squaring the Circle and Cubing the Sphere: Circular and Spherical Copulas

    Full text link
    Do there exist circular and spherical copulas in RdR^d? That is, do there exist circularly symmetric distributions on the unit disk in R2R^2 and spherically symmetric distributions on the unit ball in RdR^d, d3d\ge3, whose one-dimensional marginal distributions are uniform? The answer is yes for d=2d=2 and 3, where the circular and spherical copulas are unique and can be determined explicitly, but no for d4d\ge4. A one-parameter family of elliptical bivariate copulas is obtained from the unique circular copula in R2R^2 by oblique coordinate transformations. Copulas obtained by a non-linear transformation of a uniform distribution on the unit ball in RdR^d are also described, and determined explicitly for d=2d=2.Comment: 32 pages; 15 figures submitted to: Symmetr

    Outdoor Augmented Reality: State of the Art and Issues

    Get PDF
    International audienceThe goal of an outdoor augmented reality system is to allow the human operator to move freely without restraint in its environment, to view and interact in real time with geo-referenced data via mobile wireless devices. This requires proposing new techniques for 3D localization, visualization and 3D interaction, adapted to working conditions in outdoor environment (brightness variation, features of displays used, etc.). This paper surveys recent advances in outdoor augmented reality. It resumes a large retrospective of the work carried out in this field, especially on methodological aspects (localization methods, generation of 3D models, visualization and interaction approaches), technological aspects (sensors, visualization devices and architecture software) and industrial aspects

    An Information-Theoretic Framework for Consistency Maintenance in Distributed Interactive Applications

    Get PDF
    Distributed Interactive Applications (DIAs) enable geographically dispersed users to interact with each other in a virtual environment. A key factor to the success of a DIA is the maintenance of a consistent view of the shared virtual world for all the participants. However, maintaining consistent states in DIAs is difficult under real networks. State changes communicated by messages over such networks suffer latency leading to inconsistency across the application. Predictive Contract Mechanisms (PCMs) combat this problem through reducing the number of messages transmitted in return for perceptually tolerable inconsistency. This thesis examines the operation of PCMs using concepts and methods derived from information theory. This information theory perspective results in a novel information model of PCMs that quantifies and analyzes the efficiency of such methods in communicating the reduced state information, and a new adaptive multiple-model-based framework for improving consistency in DIAs. The first part of this thesis introduces information measurements of user behavior in DIAs and formalizes the information model for PCM operation. In presenting the information model, the statistical dependence in the entity state, which makes using extrapolation models to predict future user behavior possible, is evaluated. The efficiency of a PCM to exploit such predictability to reduce the amount of network resources required to maintain consistency is also investigated. It is demonstrated that from the information theory perspective, PCMs can be interpreted as a form of information reduction and compression. The second part of this thesis proposes an Information-Based Dynamic Extrapolation Model for dynamically selecting between extrapolation algorithms based on information evaluation and inferred network conditions. This model adapts PCM configurations to both user behavior and network conditions, and makes the most information-efficient use of the available network resources. In doing so, it improves PCM performance and consistency in DIAs

    Reducing the effect of network delay on tightly-coupled interaction

    Get PDF
    Tightly-coupled interaction is shared work in which each person’s actions immediately and continuously influence the actions of others. Tightly-coupled interaction is a hallmark of expert behaviour in face-to-face activity, but becomes extremely difficult to accomplish in distributed groupware. The main cause of this difficulty is network delay – even amounts as small as 100ms – that disrupts people’s ability to synchronize their actions with another person. To reduce the effects of delay on tightly-coupled interaction, I introduce a new technique called Feedback-Feedthrough Synchronization (FFS). FFS causes visual feedback from an action to occur at approximately the same time for both the local and the remote person, preventing one person from getting ahead of the other in the coordinated interaction. I tested the effects of FFS on group performance in several delay conditions, and my study showed that FFS substantially improved users’ performance: accuracy was significantly improved at all levels of delay, and without noticeable increase in perceived effort or frustration. Techniques like FFS that support the requirements of tightly-coupled interaction provide new means for improving the usability of groupware that operates on real-world networks

    Proposta de uma visita virtual 3D ao claustro do Museu de Aveiro

    Get PDF
    Mestrado em Comunicação MultimédiaO presente estudo pretende preencher uma lacuna existente nos museus atuais, que não apresentam evolução tecnológica e desenvolvimento na web que lhes permitam cativar novos públicos através de aplicações museológicas online. O projecto é de forma objectiva a recriação e o restauro digital dos claustros do Museu de Aveiro entre o século XVII e XIX. através do levantamento de imagens e documentação da época, disponibilizadas pelo Museu de Aveiro. As tecnologias 3D são uma mais-valia neste âmbito, no sentido de que se mantêm inalteráveis, podem ser acedidas em qualquer altura e lugar, e podem complementar o espaço com informações adicionais. Analisando o panorama actual de espaços museológicos virtuais e as suas vantagens, elaboramos através de várias ferramentas multimédia e suporte digital, a construção e restauro de uma visita virtual do Claustro do Museu de Aveiro.This study aims to fill a gap in existing museums, which do not present technological and web development to enable them capture new audiences through online museum applications. The project aims to recreate and restore a digital application of the Cloisters of Aveiro Museum between the XVII and XIX century, surveyed the pictures and documentation of the time, provided by the Museum of Aveiro. 3D technologies are an asset in this context, in the sense that remain unchanged, can be accessed at any time and place, and can complement the space with additional information. Analysing the current situation of virtual museums and their advantages, we elaborated through various multimedia tools and digital media, the construction and restoration of a virtual tour to the Cloisters of Aveiro Museum

    Dynamic Volume Rendering of Functional Medical Data on Dissimilar Hardware Platforms

    Get PDF
    In the last 30 years, medical imaging has become one of the most used diagnostic tools in the medical profession. Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) technologies have become widely adopted because of their ability to capture the human body in a non-invasive manner. A volumetric dataset is a series of orthogonal 2D slices captured at a regular interval, typically along the axis of the body from the head to the feet. Volume rendering is a computer graphics technique that allows volumetric data to be visualized and manipulated as a single 3D object. Iso-surface rendering, image splatting, shear warp, texture slicing, and raycasting are volume rendering methods, each with associated advantages and disadvantages. Raycasting is widely regarded as the highest quality renderer of these methods. Originally, CT and MRI hardware was limited to providing a single 3D scan of the human body. The technology has improved to allow a set of scans capable of capturing anatomical movements like a beating heart. The capturing of anatomical data over time is referred to as functional imaging. Functional MRI (fMRI) is used to capture changes in the human body over time. While fMRI’s can be used to capture any anatomical data over time, one of the more common uses of fMRI is to capture brain activity. The fMRI scanning process is typically broken up into a time consuming high resolution anatomical scan and a series of quick low resolution scans capturing activity. The low resolution activity data is mapped onto the high resolution anatomical data to show changes over time. Academic research has advanced volume rendering and specifically fMRI volume rendering. Unfortunately, academic research is typically a one-off solution to a singular medical case or set of data, causing any advances to be problem specific as opposed to a general capability. Additionally, academic volume renderers are often designed to work on a specific device and operating system under controlled conditions. This prevents volume rendering from being used across the ever expanding number of different computing devices, such as desktops, laptops, immersive virtual reality systems, and mobile computers like phones or tablets. This research will investigate the feasibility of creating a generic software capability to perform real-time 4D volume rendering, via raycasting, on desktop, mobile, and immersive virtual reality platforms. Implementing a GPU-based 4D volume raycasting method for mobile devices will harness the power of the increasing number of mobile computational devices being used by medical professionals. Developing support for immersive virtual reality can enhance medical professionals’ interpretation of 3D physiology with the additional depth information provided by stereoscopic 3D. The results of this research will help expand the use of 4D volume rendering beyond the traditional desktop computer in the medical field. Developing the same 4D volume rendering capabilities across dissimilar platforms has many challenges. Each platform relies on their own coding languages, libraries, and hardware support. There are tradeoffs between using languages and libraries native to each platform and using a generic cross-platform system, such as a game engine. Native libraries will generally be more efficient during application run-time, but they require different coding implementations for each platform. The decision was made to use platform native languages and libraries in this research, whenever practical, in an attempt to achieve the best possible frame rates. 4D volume raycasting provides unique challenges independent of the platform. Specifically, fMRI data loading, volume animation, and multiple volume rendering. Additionally, real-time raycasting has never been successfully performed on a mobile device. Previous research relied on less computationally expensive methods, such as orthogonal texture slicing, to achieve real-time frame rates. These challenges will be addressed as the contributions of this research. The first contribution was exploring the feasibility of generic functional data input across desktop, mobile, and immersive virtual reality. To visualize 4D fMRI data it was necessary to build in the capability to read Neuroimaging Informatics Technology Initiative (NIfTI) files. The NIfTI format was designed to overcome limitations of 3D file formats like DICOM and store functional imagery with a single high-resolution anatomical scan and a set of low-resolution anatomical scans. Allowing input of the NIfTI binary data required creating custom C++ routines, as no object oriented APIs freely available for use existed. The NIfTI input code was built using C++ and the C++ Standard Library to be both light weight and cross-platform. Multi-volume rendering is another challenge of fMRI data visualization and a contribution of this work. fMRI data is typically broken into a single high-resolution anatomical volume and a series of low-resolution volumes that capture anatomical changes. Visualizing two volumes at the same time is known as multi-volume visualization. Therefore, the ability to correctly align and scale the volumes relative to each other was necessary. It was also necessary to develop a compositing method to combine data from both volumes into a single cohesive representation. Three prototype applications were built for the different platforms to test the feasibility of 4D volume raycasting. One each for desktop, mobile, and virtual reality. Although the backend implementations were required to be different between the three platforms, the raycasting functionality and features were identical. Therefore, the same fMRI dataset resulted in the same 3D visualization independent of the platform itself. Each platform uses the same NIfTI data loader and provides support for dataset coloring and windowing (tissue density manipulation). The fMRI data can be viewed changing over time by either animation through the time steps, like a movie, or using an interface slider to “scrub” through the different time steps of the data. The prototype applications data load times and frame rates were tested to determine if they achieved the real-time interaction goal. Real-time interaction was defined by achieving 10 frames per second (fps) or better, based on the work of Miller [1]. The desktop version was evaluated on a 2013 MacBook Pro running OS X 10.12 with a 2.6 GHz Intel Core i7 processor, 16 GB of RAM, and a NVIDIA GeForce GT 750M graphics card. The immersive application was tested in the C6 CAVE™, a 96 graphics node computer cluster comprised of NVIDIA Quadro 6000 graphics cards running Red Hat Enterprise Linux. The mobile application was evaluated on a 2016 9.7” iPad Pro running iOS 9.3.4. The iPad had a 64-bit Apple A9X dual core processor with 2 GB of built in memory. Two different fMRI brain activity datasets with different voxel resolutions were used as test datasets. Datasets were tested using both the 3D structural data, the 4D functional data, and a combination of the two. Frame rates for the desktop implementation were consistently above 10 fps, indicating that real-time 4D volume raycasting is possible on desktop hardware. The mobile and virtual reality platforms were able to perform real-time 3D volume raycasting consistently. This is a marked improvement for 3D mobile volume raycasting that was previously only able to achieve under one frame per second [2]. Both VR and mobile platforms were able to raycast the 4D only data at real-time frame rates, but did not consistently meet 10 fps when rendering both the 3D structural and 4D functional data simultaneously. However, 7 frames per second was the lowest frame rate recorded, indicating that hardware advances will allow consistent real-time raycasting of 4D fMRI data in the near future

    Lean to Fly: Leaning-Based Embodied Flying can Improve Performance and User Experience in 3D Navigation

    Get PDF
    When users in virtual reality cannot physically walk and self-motions are instead only visually simulated, spatial updating is often impaired. In this paper, we report on a study that investigated if HeadJoystick, an embodied leaning-based flying interface, could improve performance in a 3D navigational search task that relies on maintaining situational awareness and spatial updating in VR. We compared it to Gamepad, a standard flying interface. For both interfaces, participants were seated on a swivel chair and controlled simulated rotations by physically rotating. They either leaned (forward/backward, right/left, up/down) or used the Gamepad thumbsticks for simulated translation. In a gamified 3D navigational search task, participants had to find eight balls within 5 min. Those balls were hidden amongst 16 randomly positioned boxes in a dark environment devoid of any landmarks. Compared to the Gamepad, participants collected more balls using the HeadJoystick. It also minimized the distance travelled, motion sickness, and mental task demand. Moreover, the HeadJoystick was rated better in terms of ease of use, controllability, learnability, overall usability, and self-motion perception. However, participants rated HeadJoystick could be more physically fatiguing after a long use. Overall, participants felt more engaged with HeadJoystick, enjoyed it more, and preferred it. Together, this provides evidence that leaning-based interfaces like HeadJoystick can provide an affordable and effective alternative for flying in VR and potentially telepresence drones

    Proceedings of the 10th Australasian Heat and Mass Transfer Conference (AHMT2016)

    Get PDF
    Proceedings of The 10th Australasian Heat and Mass Transfer Conference (AHMT2016). The proceedings contain the selected full-length papers from the 10th Australasian Conference of Heat and Mass Transfer held in Brisbane, Australia on 14-15 July 2016. The conference was organised by Queensland University of Technology under the auspices of the Australasian Fluid and Thermal Engineering Society (AFTES) of Engineers Australia. Scientifically, these collected articles reflect recent progress made in heat and mass transfer in the Australasian community, including both fundamental and applied topics in the broad areas of convection, conduction, radiation, turbulence, multi-phase flow, combustion, drying, heat exchangers, phase change, computational methods, experimental methods, and other significant thermal processes in environmental, industrial, and process engineering. All the papers published in this volume were reviewed under a rigorous review process, where at least two reviews were received for each paper, according to the HERDC standard. The Organizing Committee is grateful to all of the contributors who made this volume possible. We would like to express our sincere appreciation to all authors and reviewers for their excellent contributions as well as the AHMT2016 scientific committee and financial support provided by Queensland University of Technology and Engineers Australi

    Predicción del desempeño de las técnicas de visualización a partir de métricas sobre los datos

    Get PDF
    El objetivo de una visualización es obtener una representación del conjunto de datos que ayude al usuario en la correcta interpretación de los mismos y así lograr un acertado análisis de éstos. Dado el constante crecimiento de los conjuntos de datos en diferentes y variados campos de la información, la tarea de elegir la técnica más adecuada para visualizar convenientemente los datos no es sencilla. Además, el resultado del proceso de visualización depende de todas las decisiones que se hayan tomando a lo largo de dicho proceso: un usuario inexperto es propenso a tomar decisiones equivocadas afectando negativamente la visualización obtenida y, a la larga, frustrando su experiencia con la visualización. Si bien a la hora de visualizar conjuntos de datos pequeños no hay grandes desafíos, la situación cambia al intentar visualizar grandes conjuntos de datos: una mala decisión en cualquier punto del proceso de visualización y el resultado obtenido puede no ser satisfactorio. Una alternativa para solucionar este problema es guiar al usuario en la toma de decisiones a lo largo del proceso. Sin embargo, esta tarea no es sencilla: implica la existencia de herramientas que permitan predecir qué decisión es “más conveniente” tomar. Una forma de elegir la decisión más conveniente es basarse en métricas sobre los datos que describan aspectos claves de la técnica y permitan predecir el resultado final sin necesidad de aplicar la técnica sobre los datos.The goal of visualization is to achieve a representation of a dataset that helps the user to interpret them correctly and achieve a proper analysis. Given the constant growing of datasets in deferent application areas, the task of choosing the more suitable technique to visualize a dataset is not easy. Besides, the result of the visualization process depends on every decision made along it: an unskilled user is prone to make incorrect decisions which affect negatively the final visualization and, eventually, frustrate the user’s experience with the visualization. Visualizing small datasets is not a big challenge, but this changes when trying to visualize big datasets: a wrong decision at any point in the visualization process and the result might not be satisfactory. A solution to this problem is to guide the user while making decisions along the process. Nevertheless, this task is not easy: it implies the existence of tools which allow the prediction of what decision if “more advisable” to make. A way to choose the more advisable decision is using metrics over the data which describe key aspects of the techniques and allow the prediction of the final result without applying the technique to the dataset.Doctor en Ciencias de la Computació
    corecore