5,133 research outputs found

    Width of Sunspot Generating Zone and Reconstruction of Butterfly Diagram

    Full text link
    Based on the extended Greenwich-NOAA/USAF catalogue of sunspot groups it is demonstrated that the parameters describing the latitudinal width of the sunspot generating zone (SGZ) are closely related to the current level of solar activity, and the growth of the activity leads to the expansion of SGZ. The ratio of the sunspot number to the width of SGZ shows saturation at a certain level of the sunspot number, and above this level the increase of the activity takes place mostly due to the expansion of SGZ. It is shown that the mean latitudes of sunspots can be reconstructed from the amplitudes of solar activity. Using the obtained relations and the group sunspot numbers by Hoyt and Schatten (1998), the latitude distribution of sunspot groups ("the Maunder butterfly diagram") for the 18th and the first half of the 19th centuries is reconstructed and compared with historical sunspot observations.Comment: 16 pages, 11 figures; accepted by Solar Physics; the final publication will be available at www.springerlink.co

    Turbulent viscosity in clumpy accretion disks II supernova driven turbulence in the Galaxy

    Full text link
    An analytical model for a turbulent clumpy gas disk is presented where turbulence is maintained by the energy input due to supernovae. Expressions for the disk parameters, global filling factors, molecular fractions, and star formation rates are given as functions of the Toomre parameter QQ, the ratio between the cloud size and the turbulent driving length scale δ\delta, the mass accretion rate within the disk M˙\dot{M}, the constant of molecule formation α\alpha, the disk radius, the angular velocity, and its radial derivative. Two different cases are investigated: a dominating stellar disk and a self-gravitating gas disk in zz direction. The turbulent driving wavelength is determined in a first approach by energy flux conservation, i.e. the supernovae energy input is transported by turbulence to smaller scales where it is dissipated. The results are compared to those of a fully gravitational model. For Q=1 and δ=1\delta=1 both models are consistent with each other. In a second approach the driving length scale is directly determined by the size of supernovae remnants. Both models are applied to the Galaxy and can reproduce its integrated and local gas properties. The influence of thermal and magnetic pressure on the disk structure is investigated. We infer Q∼1Q \sim 1 and M˙∼0.05−0.1M⊙yr−1\dot{M} \sim 0.05 - 0.1 M_{\odot} yr ^{-1} for the Galaxy.Comment: 15 pages with 10 figures. Accepted for publication in A&

    A renormalization group invariant scalar glueball operator in the (Refined) Gribov-Zwanziger framework

    Get PDF
    This paper presents a complete algebraic analysis of the renormalizability of the d=4d=4 operator Fμν2F^2_{\mu\nu} in the Gribov-Zwanziger (GZ) formalism as well as in the Refined Gribov-Zwanziger (RGZ) version. The GZ formalism offers a way to deal with gauge copies in the Landau gauge. We explicitly show that Fμν2F^2_{\mu\nu} mixes with other d=4d=4 gauge variant operators, and we determine the mixing matrix ZZ to all orders, thereby only using algebraic arguments. The mixing matrix allows us to uncover a renormalization group invariant including the operator Fμν2F^2_{\mu\nu}. With this renormalization group invariant, we have paved the way for the study of the lightest scalar glueball in the GZ formalism. We discuss how the soft breaking of the BRST symmetry of the GZ action can influence the glueball correlation function. We expect non-trivial mass scales, inherent to the GZ approach, to enter the pole structure of this correlation function.Comment: 27 page

    Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults.

    Get PDF
    New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus. This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease. In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day, whereas other studies find many fewer putative new neurons. Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal development. We also find that the number of proliferating progenitors and young neurons in the dentate gyrus declines sharply during the first year of life and only a few isolated young neurons are observed by 7 and 13 years of age. In adult patients with epilepsy and healthy adults (18-77 years; n = 17 post-mortem samples from controls; n = 12 surgical resection samples from patients with epilepsy), young neurons were not detected in the dentate gyrus. In the monkey (Macaca mulatta) hippocampus, proliferation of neurons in the subgranular zone was found in early postnatal life, but this diminished during juvenile development as neurogenesis decreased. We conclude that recruitment of young neurons to the primate hippocampus decreases rapidly during the first years of life, and that neurogenesis in the dentate gyrus does not continue, or is extremely rare, in adult humans. The early decline in hippocampal neurogenesis raises questions about how the function of the dentate gyrus differs between humans and other species in which adult hippocampal neurogenesis is preserved
    • …
    corecore