5,504 research outputs found

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    A data mining approach to ontology learning for automatic content-related question-answering in MOOCs.

    Get PDF
    The advent of Massive Open Online Courses (MOOCs) allows massive volume of registrants to enrol in these MOOCs. This research aims to offer MOOCs registrants with automatic content related feedback to fulfil their cognitive needs. A framework is proposed which consists of three modules which are the subject ontology learning module, the short text classification module, and the question answering module. Unlike previous research, to identify relevant concepts for ontology learning a regular expression parser approach is used. Also, the relevant concepts are extracted from unstructured documents. To build the concept hierarchy, a frequent pattern mining approach is used which is guided by a heuristic function to ensure that sibling concepts are at the same level in the hierarchy. As this process does not require specific lexical or syntactic information, it can be applied to any subject. To validate the approach, the resulting ontology is used in a question-answering system which analyses students' content-related questions and generates answers for them. Textbook end of chapter questions/answers are used to validate the question-answering system. The resulting ontology is compared vs. the use of Text2Onto for the question-answering system, and it achieved favourable results. Finally, different indexing approaches based on a subject's ontology are investigated when classifying short text in MOOCs forum discussion data; the investigated indexing approaches are: unigram-based, concept-based and hierarchical concept indexing. The experimental results show that the ontology-based feature indexing approaches outperform the unigram-based indexing approach. Experiments are done in binary classification and multiple labels classification settings . The results are consistent and show that hierarchical concept indexing outperforms both concept-based and unigram-based indexing. The BAGGING and random forests classifiers achieved the best result among the tested classifiers

    A Semantic Web Based Search Engine with X3D Visualisation of Queries and Results

    Get PDF
    Parts of this PhD have been published: Gkoutzis, Konstantinos, and Vladimir Geroimenko. "Moving from Folksonomies to Taxonomies: Using the Social Web and 3D to Build an Unlimited Semantic Ontology." Proceedings of the 2011 15th International Conference on Information Visualisation. IEEE Computer Society, 2011.The Semantic Web project has introduced new techniques for managing information. Data can now be organised more efficiently and in such a way that computers can take advantage of the relationships that characterise the given input to present more relevant output. Semantic Web based search engines can quickly educe exactly what is needed to be found and retrieve it while avoiding information overload. Up until now, search engines have interacted with their users by asking them to look for words and phrases. We propose the creation of a new generation Semantic Web search engine that will offer a visual interface for queries and results. To create such an engine, information input must be viewed not merely as keywords, but as specific concepts and objects which are all part of the same universal system. To make the manipulation of the interconnected visual objects simpler and more natural, 3D graphics are utilised, based on the X3D Web standard, allowing users to semantically synthesise their queries faster and in a more logical way, both for them and the computer

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc

    Discovering a Domain Knowledge Representation for Image Grouping: Multimodal Data Modeling, Fusion, and Interactive Learning

    Get PDF
    In visually-oriented specialized medical domains such as dermatology and radiology, physicians explore interesting image cases from medical image repositories for comparative case studies to aid clinical diagnoses, educate medical trainees, and support medical research. However, general image classification and retrieval approaches fail in grouping medical images from the physicians\u27 viewpoint. This is because fully-automated learning techniques cannot yet bridge the gap between image features and domain-specific content for the absence of expert knowledge. Understanding how experts get information from medical images is therefore an important research topic. As a prior study, we conducted data elicitation experiments, where physicians were instructed to inspect each medical image towards a diagnosis while describing image content to a student seated nearby. Experts\u27 eye movements and their verbal descriptions of the image content were recorded to capture various aspects of expert image understanding. This dissertation aims at an intuitive approach to extracting expert knowledge, which is to find patterns in expert data elicited from image-based diagnoses. These patterns are useful to understand both the characteristics of the medical images and the experts\u27 cognitive reasoning processes. The transformation from the viewed raw image features to interpretation as domain-specific concepts requires experts\u27 domain knowledge and cognitive reasoning. This dissertation also approximates this transformation using a matrix factorization-based framework, which helps project multiple expert-derived data modalities to high-level abstractions. To combine additional expert interventions with computational processing capabilities, an interactive machine learning paradigm is developed to treat experts as an integral part of the learning process. Specifically, experts refine medical image groups presented by the learned model locally, to incrementally re-learn the model globally. This paradigm avoids the onerous expert annotations for model training, while aligning the learned model with experts\u27 sense-making

    Feature based dynamic intra-video indexing

    Get PDF
    A thesis submitted in partial fulfillment for the degree of Doctor of PhilosophyWith the advent of digital imagery and its wide spread application in all vistas of life, it has become an important component in the world of communication. Video content ranging from broadcast news, sports, personal videos, surveillance, movies and entertainment and similar domains is increasing exponentially in quantity and it is becoming a challenge to retrieve content of interest from the corpora. This has led to an increased interest amongst the researchers to investigate concepts of video structure analysis, feature extraction, content annotation, tagging, video indexing, querying and retrieval to fulfil the requirements. However, most of the previous work is confined within specific domain and constrained by the quality, processing and storage capabilities. This thesis presents a novel framework agglomerating the established approaches from feature extraction to browsing in one system of content based video retrieval. The proposed framework significantly fills the gap identified while satisfying the imposed constraints of processing, storage, quality and retrieval times. The output entails a framework, methodology and prototype application to allow the user to efficiently and effectively retrieved content of interest such as age, gender and activity by specifying the relevant query. Experiments have shown plausible results with an average precision and recall of 0.91 and 0.92 respectively for face detection using Haar wavelets based approach. Precision of age ranges from 0.82 to 0.91 and recall from 0.78 to 0.84. The recognition of gender gives better precision with males (0.89) compared to females while recall gives a higher value with females (0.92). Activity of the subject has been detected using Hough transform and classified using Hiddell Markov Model. A comprehensive dataset to support similar studies has also been developed as part of the research process. A Graphical User Interface (GUI) providing a friendly and intuitive interface has been integrated into the developed system to facilitate the retrieval process. The comparison results of the intraclass correlation coefficient (ICC) shows that the performance of the system closely resembles with that of the human annotator. The performance has been optimised for time and error rate
    corecore