146 research outputs found

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Multi-layer virtual transport network management

    Full text link
    Nowadays there is an increasing need for a general paradigm which can simplify network management and further enable network innovations. Software Defined Networking (SDN) is an efficient way to make the network programmable and reduce management complexity, however it is plagued with limitations inherited from the legacy Internet (TCP/IP) architecture. In this paper, in response to limitations of current Software Defined Networking (SDN) management solutions, we propose a recursive approach to enterprise network management, where network management is done through managing various Virtual Transport Networks (VTNs) over different scopes (i.e., regions of operation). Different from the traditional virtual network model which mainly focuses on routing/tunneling, our VTN provides communication service with explicit Quality-of-Service (QoS) support for applications via transport flows, and it involves all mechanisms (e.g., addressing, routing, error and flow control, resource allocation) needed to support such transport flows. Based on this approach, we design and implement a management architecture, which recurses the same VTN-based management mechanism for enterprise network management. Our experimental results show that our management architecture achieves better performance.National Science Foundation awards: CNS-0963974 and CNS-1346688

    Data plane assisted state replication with Network Function Virtualization

    Get PDF
    Modern 5G networks are capable of providing ultra-low latency and highly scalable network services by employing modern networking paradigms such as Software Defined Networking (SDN) and Network Function Virtualization (NFV). The latter enables performance-critical network applications to be run in a distributed fashion directly inside the infrastructure. Being distributed, those applications rely on sophisticated state replication algorithms to synchronize states among each other. Nevertheless, current implementations of such algorithms do not fully exploit the potential of the modern infrastructures, thus leading to sub-optimal performance. In this paper, we propose STARE, a novel state replication system tailored for 5G networks. At its core, STARE exploits stateful SDN to offload replication-related processes to the data plane, ultimately leading to reduced communication delays and processing overhead for VNFs. We provide a detailed description of the STARE architecture alongside a publicly-available P4- based implementation. Furthermore, our evaluation shows that STARE is capable of scaling to big networks while introducing low overhead in the network

    Quality of Service improvements for real time multimedia applications using next generation network architectures and blockchain in Internet Service Provider cooperative scenario

    Get PDF
    Real time communications are becoming part of our daily life, requiring constrained requisites with the purpose of being enjoyed in harmony by end users. The factors ruling these requisites are Quality of Service parameters of the users' Internet connections. Achieving a satisfactory QoS level for real time communications depends on parameters that are strongly influenced by the quality of the network connections among the Internet Service Providers, which are located in the path between final users and Over The Top service providers that are supplying them with real time services. Final users can be: business people having real time videoconferences, or adopting crytpocurrencies in their exchanges, videogamers playing online games together with others residing in other countries, migrants talking with their relatives or watching their children growing up in their home countries, people with disabilities adopting tecnologies to help them, doctors performing remote surgeries, manufacturers adopting augmented reality devices to perform dangerous tasks. Each of them performing their daily activities are requiring specific QoS parameters to their ISPs, that nowadays seem to be unable to provide them with a satisfactory QoS level for these kinds of real time services. Through the adoption of next generation networks, such as the Information Centric Networking, it would be possible to overcome the QoS problems that nowadays are experienced. By adopting Blockchain technologies, in several use cases, it would be possible to improve those security aspects related to the non-temperability of information and privacy. I started this thesis analyzing next generation architectures enabling real time multimedia communications. In Software Defined Networking, Named Data Networking and Community Information Centric Networking, I highlighted potential approaches to solve QoS problems that are affecting real time multimedia applications. During my experiments I found that applications able to transmit high quality videos, such as 4k or 8k videos, or to directly interact with devices AR/VR enabled are missing for both ICN approaches. Then I proposed a REST interface for the enforcing of a specific QoS parameter, the round trip time (RTT) taking into consideration the specific use case of a game company that connects with the same telecommunication company of the final user. Supposing that the proposed REST APIs have been deployed in the game company and in the ISP, when one or more users are experiencing lag, the game company will try to ask the ISP to reduce the RTT for that specific user or that group of users. This request can be done by performing a call to a method where IP address(es) and the maximum RTT desired are passed. I also proposed other methods, through which it would be possible to retrieve information about the QoS parameters, and exchange, if necessary, an exceeding parameter in change of another one. The proposed REST APIs can also be used in more complex scenarios, where ISPs along the path are chained together, in order to improve the end to end QoS among Over The Top service provider and final users. To store the information exchanged by using the proposed REST APIs, I proposed to adopt a permissioned blockchain, analizying the ISPs cooperative use case with Hyperledger Fabric, where I proposed the adoption of the Proof of Authority consensus algorithm, to increase the throughput in terms of transactions per second. In a specific case that I examined, I am proposing a combination of Information Centric Networking and Blockchain, in an architecture where ISPs are exchanging valuable information regarding final Users, to improve their QoS parameters. I also proposed my smart contract for the gaming delay use case, that can be used to rule the communication among those ISPs that are along the path among OTT and final users. An extension of this work can be done, by defining billing costs for the QoS improvements

    Interoperabilidade e mobilidade na internet do futuro

    Get PDF
    Research on Future Internet has been gaining traction in recent years, with both evolutionary (e.g., Software Defined Networking (SDN)- based architectures) and clean-slate network architectures (e.g., Information Centric Networking (ICN) architectures) being proposed. With each network architectural proposal aiming to provide better solutions for specific Internet utilization requirements, an heterogeneous Future Internet composed by several architectures can be expected, each targeting and optimizing different use case scenarios. Moreover, the increasing number of mobile devices, with increasing capabilities and supporting different connectivity technologies, are changing the patterns of traffic exchanged in the Internet. As such, this thesis focuses on the study of interoperability and mobility in Future Internet architectures, two key requirements that need to be addressed for the widely adoption of these network architectures. The first contribution of this thesis is an interoperability framework that, by enabling resources to be shared among different network architectures, avoids resources to be restricted to a given network architecture and, at the same time, promotes the initial roll out of new network architectures. The second contribution of this thesis consists on the development of enhancements for SDN-based and ICN network architectures through IEEE 802.21 mechanisms to facilitate and optimize the handover procedures on those architectures. The last contribution of this thesis is the definition of an inter-network architecture mobility framework that enables MNs to move across access network supporting different network architectures without losing the reachability to resources being accessed. All the proposed solutions were evaluated with results highlighting the feasibility of such solutions and the impact on the overall communication.A Internet do Futuro tem sido alvo de vários estudos nos últimos anos, com a proposta de arquitecturas de rede seguindo quer abordagens evolutionárias (por exemplo, Redes Definidas por Software (SDN)) quer abordagens disruptivas (por exemplo, Redes Centradas na Informação (ICN)). Cada uma destas arquitecturas de rede visa providenciar melhores soluções relativamente a determinados requisitos de utilização da Internet e, portanto, uma Internet do Futuro heterogénea composta por diversas arquitecturas de rede torna-se uma possibilidade, onde cada uma delas é usada para optimizar diferentes casos de utilização. Para além disso, o aumento do número de dispositivos móveis, com especificações acrescidas e com suporte para diferentes tecnologias de conectividade, está a mudar os padrões do tráfego na Internet. Assim, esta tese foca-se no estudo de aspectos de interoperabilidade e mobilidade em arquitecturas de rede da Internet do Futuro, dois importantes requisitos que necessitam de ser satisfeitos para que a adopção destas arquitecturas de rede seja considerada. A primeira contribuição desta tese é uma solução de interoperabilidade que, uma vez que permite que recursos possam ser partilhados por diferentes arquitecturas de rede, evita que os recursos estejam restringidos a uma determinada arquitectura de rede e, ao mesmo tempo, promove a adopção de novas arquitecturas de rede. A segunda contribuição desta tese consiste no desenvolvimento de extensões para arquitecturas de rede baseadas em SDN ou ICN através dos mecanismos propostos na norma IEEE 802.21 com o objectivo de facilitar e optimizar os processos de mobilidade nessas arquitecturas de rede. Finalmente, a terceira contribuição desta tese é a definição de uma solução de mobilidade envolvendo diferentes arquitecturas de rede que permite a mobilidade de dispositivos móveis entre redes de acesso que suportam diferentes arquitecturas de rede sem que estes percam o acesso aos recursos que estão a ser acedidos. Todas as soluções propostas foram avaliadas com os resultados a demonstrar a viabilidade de cada uma das soluções e o impacto que têm na comunicação.Programa Doutoral em Informátic

    Evaluation and analysis of realizing broker-based content routing protocols in SDN

    Get PDF
    Publish/subscribe provides a valuable communication model to the future Internet due to the decoupling of end-users from each other. One of the stubborn challenges that face recent content-based publish/subscribe systems is the trade-off between the usage of the network bandwidth and the end-to-end delay of published events. This trade-off is imposed by the fact that most implementations depend on software brokers to filter incoming messages towards received requests from subscribers. Although this approach for filtering may present the most bandwidth efficient solutions, the use of brokers adds to the network end-to-end delay. The installed brokers are implemented at the application layer and hence the original path between publishers and subscribers is extended which adds to the delay in which messages are forwarded from publishers to subscribers. Along with the delay imposed by the extended path, another processing delay is added to the system based on the time needed for filtering incoming messages at the brokers. As the time factor is crucial to the real-world applications that depend on the content-based publish/subscribe paradigm, recent implementations try to tackle this problem by exploiting the deployed hardware in the underlying infrastructure for filtering operations. In-network filtering is enabled with the help of Software Defined Networking (SDN) technology as it allows the installment of content filters directly to the network switches/routers. Even though this approach significantly reduces the end-to-end delay, it suffers when the bandwidth efficiency is evaluated. Caused by the inherited hardware limitations, installing content filters on hardware network elements limits their expressiveness. This increases the number of published messages from publishers to subscribers on different network links which requires more bandwidth. As an intermediate solution between the two filtering approaches, the work of this thesis is the realization of a hybrid content-based publish/subscribe middleware that allows filtering operations in both network and application layers
    • …
    corecore