
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis Nr. 3739

Evaluation and Analysis of
Realizing Broker-based Content

Routing Protocols in SDN

Lobna Hegazy

Course of Study: Computer Science

Examiner: Prof. Dr. Kurt Rothermel

Supervisors: Dr. M. Adnan Tariq

Dr. Amr El-Mougy

Sukanya Bhowik

Commenced: 2015-08-01

Completed: 2016-08-29

CR-Classification: C.2.1,C.2.4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147556802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dedicated to my mother.
Everything I did, I do, or I will is just to make you proud.
My life is just my way to you in heaven in shaa’ ALLAH.

i

Acknowledgments
Before giving any acknowledgements, I have to thank ALLAH for giving me such an opportunity,
for providing me with the strength to complete this work, for guiding me when I feel lost, for the
limitless blessings, for anything and everything. I want to express my gratitude for my family
for always being by my side as a concrete supportive system. Full respect and appreciation
to my supervisors Dr. M. Adnan Tariq, Dr. Amr ElMougy, and Sukanya Bhowmik, M.S. I
would never be able to do it without your continuous guidance and kindly supporting me both
technically and personally. Special thanks goes to my friends for always being there for me
when it is needed and when it is not. I would like to take this as an opportunity to particularly
acknowledge Yomna AbdElRahman, M.S. great role in making my experience such a beneficial
one, not only technically, but personally as well. The affirmative influence that the German
University in Cairo reflects on shaping me as a person before as a student cannot be denied, I will
always be that loyal ambassador. Finally, I want to ask ALLAH for giving me the needed ability,
willingness and support to successfully get my masters degree based on the work presented here,
hoping that it serves the wellness of the mankind.

iii

Abstract
Publish/subscribe provides a valuable communication model to the future Internet due to the
decoupling of end-users from each other. One of the stubborn challenges that face recent content-
based publish/subscribe systems is the trade-off between the usage of the network bandwidth
and the end-to-end delay of published events. This trade-off is imposed by the fact that most
implementations depend on software brokers to filter incoming messages towards received re-
quests from subscribers. Although this approach for filtering may present the most bandwidth
efficient solutions, the use of brokers adds to the network end-to-end delay. The installed bro-
kers are implemented at the application layer and hence the original path between publishers
and subscribers is extended which adds to the delay in which messages are forwarded from pub-
lishers to subscribers. Along with the delay imposed by the extended path, another processing
delay is added to the system based on the time needed for filtering incoming messages at the
brokers.

As the time factor is crucial to the real-world applications that depend on the content-based
publish/subscribe paradigm, recent implementations try to tackle this problem by exploiting
the deployed hardware in the underlying infrastructure for filtering operations. In-network fil-
tering is enabled with the help of Software Defined Networking (SDN) technology as it allows
the installment of content filters directly to the network switches/routers. Even though this
approach significantly reduces the end-to-end delay, it suffers when the bandwidth efficiency is
evaluated. Caused by the inherited hardware limitations, installing content filters on hardware
network elements limits their expressiveness. This increases the number of published messages
from publishers to subscribers on different network links which requires more bandwidth. As an
intermediate solution between the two filtering approaches, the work of this thesis is the real-
ization of a hybrid content-based publish/subscribe middleware that allows filtering operations
in both network and application layers.

v

Contents
Acknowledgments iii

1 Introduction 1
1.1 Thesis Organization . 3

2 Background 5
2.1 Concepts and Technologies . 5

2.1.1 Software Defined Networking . 5
2.1.2 Publish/Subscribe Systems . 8

2.2 Related Work . 11
2.2.1 SIENA . 11
2.2.2 Hermes . 12
2.2.3 REBECA . 13
2.2.4 JEDI . 14
2.2.5 BlueDove . 15

2.3 Conclusion . 16

3 PLEROMA: SDN-based Publish/Subscribe Middleware 17
3.1 Publish/Subscribe Paradigm . 17
3.2 Content Space Representation . 19

3.2.1 Containment Relationship and Events Matching 20
3.2.2 IPv4 Adress Formulation . 21

3.3 Content-Based Routing . 22
3.3.1 Publishers/Subscribers Spanning Trees . 22
3.3.2 Publishers/Subscribers Paths Creation . 23
3.3.3 Flows Installment . 23

3.4 Problem Statement . 25

4 Hybrid Content-based Publish/Subscribe Middleware 27
4.1 System Model and Architecture . 28

4.1.1 Data and Control Planes . 28
4.1.2 Application Plane . 28

4.2 Filter(s) Selection Problem Formulation . 29
4.2.1 Filter Benefit Calculation . 31
4.2.2 Filter Penalty Calculation . 31

4.3 Selection Algorithms . 32
4.3.1 Switch Selection . 32
4.3.2 Cluster-based Selection . 34

4.4 Algorithms Complexity . 37

vii

Contents

4.5 Conclusion . 38

5 Testing and Performance Evaluations 39
5.1 Experimental Setup . 39

5.1.1 Hardware SDN-Testbed . 39
5.1.2 Mininet Emulated Network . 40
5.1.3 Data Sets . 40

5.2 Experimental Results . 41
5.2.1 Total Network False Positives . 41
5.2.2 End-to-End Delay . 42
5.2.3 Hybrid-Middleware Performance Adjustment 43
5.2.4 Hybrid-Middleware Vs. PLEROMA-v Model 44
5.2.5 Switch Selection Algorithm (SSA) Vs. Cluster-based Selection Algorithm

(CSA) . 46

6 Conclusion & Future Work 49

Appendix 51

A Lists 52
List of Abbreviations . 52
List of Figures . 53

Bibliography 54

viii

Chapter 1

Introduction
The Internet of the future is expected to host tens of billions of devices generating huge amounts
of data according to Cisco recent statistics [8]. Thus, even though current advancements of tech-
nology in the field of networking now enables a high degree of connectivity across a large number
of computers, applications, and users, it will not be enough to support future demands of users.
This is because the traditional end-to-end networking paradigm, which is primarily based on
directly connected hosts, will be severely inadequate to support the enormous scale of the fu-
ture Internet. In a traditional scenario, Content Providers (CPs) store (cache) their data at
a number of geographically distributed servers called Content Distribution Networks (CDNs).
Based on this content distribution architecture, whenever a user requests a content object, the
location of the resource hosting server must be identified first by querying a search engine. In
order to serve requested content to consumers from the nearest server, CDNs work by creating
an overlay network over the Internet. After getting feedback from the search engine about
the resource address, the content is delivered to the user. By considering billions of connected
devices, such location-dependent distribution fails when network scalability is to be taken into
account. Moreover, there are other concerns, e.g., about the increased network traffic on servers
across different locations, variable delivery cost on network different paths, and high storage
requirements due to the existence of the same content replicas across different servers [3].

Information-Centric Networking (ICN) paradigm [25] has been proposed as an alternative model
to address a set of issues related to the present Internet and content distribution architectures.
Instead of storing data on distributed hosting servers, ICN exploits installed in-network ele-
ments, i.e., servers, routers, nodes, and data centers for caching data. This allows content
providers to be more loosely coupled of users, meanwhile, content delivery is independent of the
resource physical location as now it is considered to be centric. The main abstraction of ICN is
the replacement of host addresses with content names. A key advantage of this paradigm is that
it has led to the development of content distribution models where consumers are able to access
named content, without actually requiring a specific host location. One of these paradigms is
the known content-based Publish/Subscribe (Pub/Sub) communication model.

In content-based Pub/Sub systems, an information-centric communication paradigm is used,
where subscribers declare their interests by means of selection predicates while publishers sim-
ply publish their content. The service consists of delivering to any and all subscribers each
message that matches the selection predicates declared by those subscribers. The flow of the

1

1 Introduction

messages from publishers to subscribers is routed by the content of the message, rather than
explicit addresses assigned by publishers and attached to the messages. As the concept seems
to be a promising replacement solution for the location-based delivery model, applying the
content-based Pub/Sub paradigm to access named content can be really challenging. In the
most common scenario, publishers and subscribers have no reciprocal knowledge about each
other. In addition, traditional switches and routers have no processing capabilities to examine
the content of transmitted packets of data for matching published messages against subscrip-
tions requests. As a solution, the idea of implementing content brokers was proposed. Here,
publishers connect to the broker, which is a content-based router, to publish events they want
to make the world aware of, and subscribers connect to the broker to establish subscriptions, in
which they specify the set of messages content they are interested in receiving. By using content
filters, which are content-based forwarding rules installed on brokers, the main function of the
broker is to match published messages with subscriptions and deliver to the subscribers the mes-
sages of interest. The broker on behalf of the subscribers works on evaluating the subscriber’s
selection criteria against the incoming messages. Brokers here can be seen as the combination
of efficient and reliable multicast delivery with advanced filtering capabilities. This described
scenario represents the major advantage of content-based routing using brokers, which is im-
proving system overall bandwidth efficiency by only forwarding content to subset of subscribers
who are actually interested in the published content.

Although many Pub/Sub systems implementations supported content-based routing at over-
lay networks of software brokers to offer a bandwidth-efficient solution, these implementations
failed to take advantage of performance benefits of communication protocols implemented on
the network layer when it comes to system responsiveness. This is because the installed brokers
between publishers and subscribers are implemented at the application layer, introducing by
that an additional significant delay caused by extending the path length between publishers and
subscribers, in addition to the processing delay for matching published messages. To make use
of the benefits of the implemented communication protocols on the network layer, content-based
Pub/Sub systems relied on the technology of Sotware Defined Networking (SDN) [15]. SDN is
an evolving and emerging technology in the world of networking that is usually defined as the
decoupling of control and the forwarding/data planes. The difficulty of manipulating network
control functions, which often hard-coded in the firmware of switches and routers, represents
one of the main limitations of today’s networks. As an attempt to solve this crucial problem,
SDN proposes the transfer of the control functions to a piece of software running on an in-
network server called the controller. The controller is mainly responsible for all the network
control functions that include routing, security, load balancing, and traffic isolation. By making
the controller responsible for all the control functions, SDN successfully achieves the decoupling
of data and control planes. This decoupling introduces significant manageability and flexibility
in the network and enables the deep programmability of SDN that allows it to be dynamically
reconfigured.

Based on the fact that the controller has a global view of the network underlying structure, one
of its main tasks is to create the paths between publishers and subscribers when integrated with
content-based Pub/Sub systems. Using one of the many protocols standards that implement

2

1.1 Thesis Organization

SDN like OpenFlow [15], the controller has the capability of installing forwarding rules that act
as content filters directly on the Ternary Content Addressable Memory (TCAM) of the SDN-
enabled switches informing them how to deal with the different incoming packets. Thus, when
events arrive from different publishers, it gets matched against these installed rules on switches
TCAM, and then forwarded to interested subscribers. PLEROMA [21] discusses a middle-ware
that exploits SDN technology by following in-network filtering approach to improve the perfor-
mance of content-based Pub/Sub systems. Though this scheme offers in line-rate forwarding
and high throughput rates, it suffers from challenging inherited limitations caused by in-network
switches restricted capabilities in terms of processing and memory. Due to the limitation in
processing capabilities, the only way to match incoming events against installed forwarding rules
(flows) is to represent a new field in the packet header as a representation of the content of the
message. This new field is to be matched against switches installed flows. The concept is simple
but the question here is how to effectively represent the message contents in a packet header field.

The proposed model by PLEROMA builds on the principle of spatial indexing to provide such
a representation where a series of bits, called dz-expression, is embedded in the packet header
as a content presenter. As already another fields in packets headers occupy a large number of
bits, e.g., source and destination IP addresses, there is a restriction on the number of available
bits that can be used for representing the message content. Another challenge that comes as a
consequence for the limited TCAM memory resources is the number of flow table entries that
can be installed on one switch. In this scenario, it should be noted that the number of bits
used for the match field inversely affects the number of flow entries that can be installed. And
here we face a trade-off between filters expressiveness that affects overall system bandwidth
efficiency and system scalability capabilities. To combine the bandwidth-efficient performance
of application-layer filtering, and the line-rate forwarding of filtering in the network layer, this
thesis builds on top of PLEROMAmiddleware to propose and implement a hybrid content-based
Pub/Sub solution between the investigated two filtering approaches.

1.1 Thesis Organization

The contents of the thesis can be outlined as follows:

Chapter 2 gives a high-level specification of used concepts and technologies for the work of this
thesis. Followed by another section surveying the state of the art in this research area where
some famously implemented solutions are presented and the design issues are discussed.

The specifications of PLEROMA, a SDN-based Pub/Sub middleware, is discussed in chapter
3. It shows how PLEROMA takes advantage of the decoupling of control and data planes in
SDN to offer a system with line-rate performance. This chapter gives a formal description of
the semantics of the content-based Pub/Sub system used for the work of this thesis. After
discussing some design issues the proposed middleware, the problem statement is formulated.

3

1 Introduction

Chapter 4 presents the concepts behind the design of the proposed solution that serves as a so-
lution to the previously stated problem. It starts by modeling the system architecture, followed
by the logic design of implemented algorithms.

Chapter 5 is dedicated to analyzing and evaluating the performance of the proposed imple-
mented solution in comparison with other solutions. To serve the purpose of this chapter, a
number of experiments were run on the system using different data set. The specifications and
the results of each experiment are included.

4

Chapter 2

Background
This chapter considers the basic concepts behind exploited technologies for the ground work of
this thesis. It starts with the specifications of SDN technology, followed by the known Pub/Sub
communication paradigm. For building more robust background, some real implementations
are investigated for the purpose of stating the technology art.

2.1 Concepts and Technologies

Before going through the technical concepts of this thesis work, it is necessary to understand the
concepts that relate to the integration of SDN with the Pub/Sub systems. This section gives
a closer look to SDN technology and the general specifications of Pub/Sub systems separately.
Along with introducing SDN, OpenFlow is introduced as one of the most widely used protocols
that enable SDN.

2.1.1 Software Defined Networking

Network Control and Management

The technology evolution that mankind witness today, along with the Internet advancement,
makes network management and monitoring in continuous evolution. Functionalities of today’s
network are managed with three main planes. Firstly, the data plane (forwarding plane) that
is responsible for delivering data packets between endpoints. Secondly comes the control plane
that is responsible for providing network elements with needed routing information. Lastly, the
management plane that is responsible for monitoring the network and the configuration of data
plane mechanisms and control plane protocols. A novel approach to network management and
control can be found in [13].

SDN Overview

Traditional networks design has become ill-suited to the dynamic computing processes required
for today’s demanding applications. In the traditional static design, routing decisions that are
carried by the control plane, and forwarding tasks that are carried by the data plane, occur
on the same hardware device which makes it hardware-centric. This design poorly limits any

5

2 Background

network reconfiguration abilities as these tasks are programmed on dedicated hardware devices
such as Application Specific Integrated Circuits (ASICs) in a firmware manner [15]. SDN is
emerging as one of the most promising networking technologies of recent years to tackle this
problem. As the name implies, it is an approach to networking in which control is decoupled
from hardware and given to a software application called the controller, which is the heart of any
SDN-based system. The main advantage of SDN comes from this separation, as decoupling the
control from the hardware significantly improves the inflexibility of managing and controlling
traditional networks. This is very useful for many real-time applications as the network can be
dynamically reconfigured and the administration is much more flexible [12].

SDN Controller

As mentioned earlier, the main component of any SDN-based system is the controller. The
controller substitutes the control functions, traditionally performed by network hardware de-
vices. This is achieved by taking the control off the network hardware and running it as a
piece of software instead, the device that runs this software is the controller. Controller func-
tions include, but not limited to, system configuration, management and flow control. Now,
the control plane and data plane are said to be decoupled, and any communication between
different applications and physical network devices is done through the controller. This solves
the inflexibility problem of reconfiguring traditional networks as it is not needed anymore to
replace hardware elements for system reconfiguration, it just requires updating the controller
software.

As one of the controller functions is to create paths between network end-points, it has a global
view of the underlying network architecture. Those paths are represented as the installed for-
warding rules (flows) on routers/switches forwarding tables (flow tables). Using one of SDN
standard protocols, the controller communicates with network elements in the data plane to
provide it with needed information to establish its flow tables. For the aim of this thesis, Open-
Flow is the used protocol for the communication between the controller and SDN-compliant
switches, discussed in the next section.

In order to implement SDN-based applications, you have the opportunity to choose from a wide
spectrum of available controllers. The work presented in [17] provided a comparison between
most common SDN controllers implementations. The one adopted for the work presented in
this thesis is the floodlight controller. Floodlight project is an open source java based controller
that is easy to use thanks to the easily-found documentation. More details can be found at the
project official resource [1].

OpenFlow Protocol

Many protocol standards exist on the use of SDN for different applications. One of the most
popular standards-based SDN is OpenFlow. OpenFlow emerged as a protocol to standardize
the communication between the separated control plane and data plane [17]. It enables the

6

2.1 Concepts and Technologies

implementation of SDN concept in both hardware and software. A distinguishable feature of
OpenFlow protocol is that it can utilize the existing hardware to design new protocols without
the need for installing new specialized devices as a wide spectrum of commercially available
routers and switches support OpenFlow [15]. OpenFlow implements SDN concepts by allowing
the centralized controller to remotely instruct the underlying data plane devices through pro-
viding it with forwarding tables. So is such a scenario, the control plane firset generates the
forwarding rules and forward is to the data plane while the data plane uses these rules to send
incoming packets [4].

SDN Architecture

The basic architecture for SDN-based networks is shown in Figure 2.1. It consists of three lay-
ers: forwarding plane, control plane, and application plane. The forwarding plane preliminary
consists of interconnected SDN-compliant switches. Those switches can be pure SDN switches,
or hybrid ones. Pure SDN switches supports only SDN required functions, while hybrid switches
are traditional switches support SDN functions. One or more SDN controllers can de found in
the control plane. The application plane has end-points running different applications.

The communication between the control plane and the data plane happens through the south-
bound Application Programmable Interface (API). The southbound API represents the used
SDN standard protocol for control functions between controller(s) and switches. For the com-
munication between the control plane and the application plane another separate API is used,
the northbound API, which is controller vendor-specific. The work of this thesis uses FloodLight
controller which exploits the Java API for communicating through the northbound API.

7

2 Background

Figure 2.1: SDN Architecture

2.1.2 Publish/Subscribe Systems

Overview

Pub/Sub systems [23] are a special type of the well-known event notification services, they are
a key technology for data sharing applications nowadays. Commonly, it is defined as asyn-
chronous communication paradigm between application components, i.e., data senders and re-
ceivers. Asynchronous communication means that senders and receivers are decoupled with no
direct contact, the interaction takes place through the intermediate Pub/Sub system. What dif-
ferentiates Pub/Sub systems from the intuitive event notification services is that data receivers
are not getting notified of all happening events, only a subset based on a selection mechanism
provided by the receivers themselves. Compared with a model that does not use selection mech-
anism and notifies receivers about all events, the Pub/Sub paradigm offers significant savings
in terms of bandwidth, especially if the selection mechanism provided by receivers is highly
expressive.

System Model Elements

A typical Pub/Sub scenario involves two clients: data producers and data consumers. Data
producers, referred as publishers, publish data in the form of events to the Pub/Sub system,

8

2.1 Concepts and Technologies

while data consumers, referred to as subscribers, receive these events based on a special type
of request called a subscription request. Subscribers express their interests about receiving
events by sending subscription requests that define a specific type of events these subscribers are
interested in. Upon receiving an event from publishers, the Pub/Sub system performs matching
operations towards subscription requests. If one event is found to match any subscription, the
corresponding subscriber gets notified about this event. A high-level model of this scenario is
shown in figure 3.1.

Figure 2.2: Pub/Sub Systems High-Level Interaction Model

One of the metrics that evaluates the power of a Pub/Sub system is the level of filters expres-
siveness it offers to subscribers. The word expressiveness here is used to measure how the used
format for defining subscribers requests is capable of delivering an accurate description about
subscribers interests. The following subsections discuss three Pub/Sub models that offer a dif-
ferent level of expressiveness for filters. For better understanding, this section uses a running
example.

Topic-based Model

The earliest model of Pub/Sub systems is the topic-based one. In the topic-based model, the
event space is subdivided into topics, relying only on strings as key. In other words, events are
grouped based on a specific topic they represent, so when an event is received by the Pub/Sub
system, it is added to a group based on its topic. Subscribers express their interests by sending
a formatted string that specifies a topic or a group of topics. In such a representation, each
topic corresponds to a logical event channel, ideally, connecting each possible publisher to all

9

2 Background

interested subscribers. So when a subscriber sends a request for a topic, it is get linked to
the channel corresponding to this topic. That is, there exists a static communication channel
between an event topic and all its interested subscribers. Hence, when an event is published, it
is not needed to calculate all paths from the publisher to the interested subscribers.

The static nature of topics enables efficient implementations by exploiting known multicast
primitives for topic-channels creation, however, filtering events based on the topic may lead to
the subscribers need to further filter received events. This is because some subscribers may be
only interested in a sub-category of events of a specific topic, however, they are enforced to
receive all events related to this topic. For more precise understanding, consider a topic-based
application offers stock market as one of the topics it disseminates events about. This topic has
two sub-definitions: stock quotes and stock requests. Quotes are characterized with company
name and price. One of the subscribers, assume S, is interested in receiving stock quotes notifi-
cation if the name of the company is “JEBRA” when the price ≤ 120. As filters can be defined
only using the topic name as a key, this subscriber will subscribe to the group stock market,
and hence enforced to receive all events that belong to this group.

Based on the previous example, the topic-based model is found to be poor if evaluated with
respect to filters expressiveness. This results in wasted bandwidth usage as many events are
being routed to subscribers, yet, they may not be interested in receiving those events. This
forms the main limitation of topic-based Pub/Sub systems.

Type-based Model

As an enhancement model for the topic -based one, type-based Pub/Sub systems [11] may be
thought of as topic-based with additional sub-topics offered for subscribers. So instead of sub-
scribing to a topic, subscribers are allowed to outline a sub-topic which is the event type. In
such models, the event space is divided based on the event type. Events are usually referred as
objects, and any published object must be an instance of application-defined types.

Following the same stock market example, now the event space can be more subdivided into
stock quotes and stock requests, and subscriber S, has the ability to show its interest in receiving
events about stock quotes as defined type, instead of receiving all events related to stock market.
Although this model offers more expressive filters when compared with the topic-based model,
still, subscriber S cannot express the interest in a certain price value, and may still receive
events out of interest.

Content-based Model

An increased level of expressiveness is obtained with the content-based Pub/Sub model [5], in
which subscribers use custom filters about the content of the events they wish to receive instead
of a topic or type. Removing the limitations of statically defined distinct topics/types gives the

10

2.2 Related Work

flexibility to subscribers to express their interests accurately. This is achieved by representing
publishers events with a set of attributes known to subscribers. Subscribers express their inter-
ests by specifying values for these attributes. In such a model, filters are seen as a conjunction
of events attributes values. Based on the fact that the Pub/Sub system has no prior knowledge
about publishers future events, paths from publishers to subscribers are being calculated during
runtime upon receiving an event. A network link is established for forwarding an event to a
subscriber if this event matches one of the subscribers requests.

Getting back to the stock market example, for stock quotes type, the event space is further
subdivided based on the company name and price. And finally subscriber S can subscribe to
company “JEBRA” when the price ≤ 120. Although this model provides the highest level of
filters expressiveness, and hence, yields best bandwidth usage results, it comes with a trade-off
between the end-to-end delay. Expressiveness has an impact on the overall system performance
such that the more filters are expressive, more required resources for matching events, and
hence more increase in the end-to-end delay. This challenge is investigated as part of this thesis
work.

2.2 Related Work

This section specifically deals with real implementations for Pub/Sub systems. As there is
a large number of implemented Pub/Sub systems that can be found in literature, it was not
possible to fully cover all of them. Five popular systems are presented here that relates to the
general proposed framework.

2.2.1 SIENA

One of the earliest implementations of distributed content-based Pub/Sub system is Scalable
Internet Event Notification Architecture (SIENA). SIENA [7] is known to be a generic content-
based Pub/Sub system that was primarily implemented to maximize expressiveness and enhance
scalability as wide area event notification service.

SIENA discusses three different distributed server architectures for the event notification ser-
vice. It assumes that these architectures are implemented on top of a lower level network
infrastructure:

1. Hierarchical Client/Server Topology: As the name implies, each pair of servers interacts
with each other in an asymmetric client/server fashion. In such a topology, any server
can have an unlimited number of incoming connections from other client servers, but the
outgoing connection is only limited to one, which its master. This topology is known to be
a centralized one because it has only one root server, which is the one that has no master.
This topology suffers from critical failure problems because each server in this topology
acts as a single point of failure; failure in one server will cause the failure of all connected
servers is the lower network level. Moreover, due to its hierarchical organization, another

11

2 Background

drawback is the increased load on servers high in the hierarchy which limits scalability
capabilities of this topology.

2. Acyclic Peer-to-Peer Topology: It interconnects event brokers in a way that they shape
an acyclic undirected graph with no redundant routes. As it is built on the peer-to-peer
concept, all servers have the ability to communicate with each other symmetrically. This
topology has the same single-point-of-failure drawback of the hierarchical topology.

3. Generic Peer-to-Peer Topology: In this topology, the creation of cycles is allowed giving
more than one path to the destination. These redundant connections give this topology an
advantage when compared with the previous two topologies as it overcomes the problem
of having single points of failure. But it should be taken into consideration that these
redundant paths require the implementation of special algorithms to avoid the creation of
cycles. So in order to tackle this, SIENA’s content-based routing algorithm first executes
a distance-vector protocol to create a spanning tree before routing events.

4. Hybrid Architecture: The hybrid architecture is offered for networks falls between local
and wide area networks categories. It tries to compromise the benefits of the three basic
architecture in a trade-off with the architecture complexity.

For the routing tasks, in the hierarchical client/server architecture, each server keeps a partially
ordered set of all the subscriptions received by this server. When a server receives a new no-
tification, it goes through all stored subscriptions and performs the matching operation. After
that, it sends a copy of this event to all interested subscribers. Interested subscribers informa-
tion is stored with each subscription. In a peer-to-peer architecture, received events are treated
in the same manner as in the hierarchical architecture. However, each server has to maintain
additional information about the peers its connected to in order to be able to create the routing
paths successfully. Sending a new notification towards servers that have interested subscribers
attached to it is the main routing strategy adopted by SIENA.

In the context of content-based Pub/Sub systems, no one can deny that SIENA contributed
to an evolution by providing a comprehensive solution. On the other hand, it did not pay
much attention to system response time towards different received subscription requests. This
comes as a consequence of the fact that it builds an overlay broker network over the existing
underlying physical network infrastructure which results in extending the path between the
end-points, and adds more time delay for the matching operations that occur at the application
layer. This makes SIENA model not adequate for most today’s demanding applications.

2.2.2 Hermes

Hermes [20] can be presented as a distributed, event-based middleware that utilizes peer-to-peer
techniques to implement a scalable overlay network of event brokers for event distribution. It is
built on the theory that building this network of event brokers on top of a peer-to-peer routing
substrate enhances the properties of Pub/Sub systems.

12

2.2 Related Work

A system that is built using Hermes middleware has two main components:

1. Event Brokers: Event brokers are those found at the overlay broker network and used to
implement all the functionality of the middleware. Local event broker is that one respon-
sible for maintaining connections between network end-points. Event brokers exchange
four main messages types: (1) Type messages that are described below. (2) Publish-
ers’ advertisements. (3) Interested clients subscriptions. Finally, (4) events published by
publishers.

2. Event Clients: Event clients are system publishers and subscribers. They first have to be
linked to an event broker through a connection to be able to use the middleware services.

Hermes adopts a feature called event typing. This means that any published event must be
an instance of a predefined event type that is characterized by a name and a list of attributes.
So when a new event arrives, first it must be checked against available events types. For the
routing logic, it supports two forms of routing: type-based routing and type/attribute-based
routing. In type-based routing, all events classified under a certain type are forwarded to all
interested clients that are subscribed to this event type. While in type/attribute-based routing,
subscribers are allowed to filter on the list of attributes associated with each event.

When compared with SIENA presented in 2.2.1, experiments showed that Hermes has better
performance in terms of routing efficiency. But again it has the inherited drawbacks of any
broker-based Pub/Sub system with filtering operations happen at the application layer.

2.2.3 REBECA

Rebeca Event-Based Electronic Commerce Architecture (REBECA) [19] is a distributed object-
oriented event notification system that adopts the content-based routing model. It discusses the
potential of utilizing the Pub/Sub paradigm for large-scale event-based business applications.
Its focus is directed towards the scalability of the routing algorithms as it was shown that the
use of advanced routing algorithms has a significant advantage when compared with common
approaches. Rebeca implements the Pub/Sub paradigm by a set of connected event brokers that
form an acyclic graph. Each broker is responsible for managing a set of locally connected com-
ponents that represent data producers and consumers. For the purpose of exchanging published
events between connected brokers, each broker has to maintain the subscriptions of neighbor
brokers and their directly-connected subscribers by storing them in a content-based routing
table. Based on that, a published event can be forwarded stepwise originating at the broker
that host the publisher over intermediary brokers to all brokers hosting interested subscribers.

One of the interesting characteristics of REBECA its feature-based modular design. The origi-
nal design was built on top of a base system architecture that can be extended by adding more
modules to the systems, each module representing a new feature. This offers the flexibility of
customizing the system and enable a large degree of configuration freedom. However, it imposes
new challenges on how to make the correct interaction between different modules. The newly

13

2 Background

imposed challenges led to the evolution of plugins. As presented by REBECA, each feature is
implemented using a pluggable component that is called a plugin, this component can be in-
serted to a REBECA system. A plugin consists of two parts: a broker engine and a connection
sink. Plugins are supported by event brokers to extend their features.

This new design allowed REBECA’s developers to introduce new features for the basic Pub/Sub
systems. The mandatory plugins offer the generic routing mechanism with different filtering
based algorithms besides the traditional event flooding approach. One of the matching and
routing features is simple routing which allows events to be filtered at the producers. Another
routing feature is the identity routing that avoids the dissemination of an already forwarded
subscription. It also supported covering routing that avoids forwarding subscription covered by
another disseminated subscription. A way of reducing the size of filters tables kept by the brokers
is the merging routing. It gives brokers the ability to merge existing subscriptions and forward
only matched events to the generally merged subscriptions. A feature for structuring large-scale
applications is event scopes. It is restricting the visibility of published events to only a subset
of subscribers in the system. So when crossing scope boundaries, an event may be transformed
according to an event mapping, in a similar manner to gateways in event federations. Although
the use of plugins succeeded in extending the basic Pub/Sub systems features, reducing the
end-to-end delay imposed by the use of brokers for filtering operations was out of focus in this
model.

2.2.4 JEDI

The Java Event-Based Distributed Infrastructure (JEDI) [10] is a Java-based implementation of
a distributed content-based Pub/Sub system. A JEDI system consists of two main components:
active points that acts as publishers or subscribers, and dispatching servers that are responsible
for routing the events from publishers to subscribers. Following the common approach, publish-
ers publish events that are characterized with a name and an ordered set of event parameters
values, and subscribers subscribe using an event pattern which is simple pattern matching lan-
guage represents event parameters values.

The main feature of this system is the organization of event dispatchers in a tree structure
where the routing is performed according to a hierarchical subscription strategy. Starting from
an active point, subscriptions propagate upwards is the tree and its state is maintained by the
dispatchers. Events also propagate in the same manner, but whenever a dispatcher received a
matched event against a subscription, it forwards it through downward branches to be deliv-
ered to interested subscribers. The hierarchical tree structure of event dispatchers results in an
increased processing overhead on dispatchers higher in the hierarchy, as the overhead increases
by getting closer to the root node. This makes the system prone to the breakage of the tree
into isolated regions caused by the overhead bottlenecks.

Based on the information presented in [9], the system has been extended to support clients
mobility. This is supported by providing event dispatchers by the new moveIn and moveOut

14

2.2 Related Work

operations. A client uses moveIn operation if he wants to reconnect from a different location
inside the network. Similarly, moveOut is used for the disconnection. When a client connects to
a new server it contacts the old server for obtaining this subscriber past subscriptions. This gives
clients the flexibility to connect to new dispatching server while all notification are being kept.
Although this feature may be useful for many real-life applications, it imposes new challenges
to the system. The back-and-forth migration of clients from one server to another cause load
changes inside dispatchers tree and this requires the deployment of advanced dynamic load
balancing algorithms.

2.2.5 BlueDove

BlueDove [18] is an attribute-based Pub/Sub system. The main aim of this project is to tackle
the problem of scalability when Pub/Sub systems are used as cloud services. Attribute-based
Pub/Sub systems are considered to be one kind of the content-based systems. Messages in
topic-based systems are associated with strings that express the topic of the message. While
in attribute-based systems messages are provided with various attributes that serve the aim of
describing the message content, which makes it more expressive when compared to topic-based.
Content-based systems are considered to be more general as they allow subscriptions to be in
the form of arbitrary boolean functions not limited only to attributes. Attribute-based systems
try to achieve the balance between the expressiveness level of content-based systems and the
simplicity of the topic-based ones.

BlueDove supports the Pub/Sub paradigm by depending on a two-tier architecture built on
servers:

• Dispatchers: Front-end servers that are open to the internet. Publishers and subscribers
can connect directly to the dispatchers using their publicized IPs. Those servers are used
to send different received messages to the servers at the back-end.

• Matchers: Matching servers found at the back-end that is used to match incoming events
against received events. After matching operations are performed, messages are routed to
subscribers using those matchers.

This architecture is said to be suitable for cloud services as the events are matched and delivered
to the subscribers using only one matcher. Even though this significantly increases system
responsiveness when compared with those systems that use an overlay network of brokers, in
practice the matcher is similar to the concept of implementing brokers, and hence, the model
suffers from the same inherited limitations.

15

2 Background

2.3 Conclusion

This chapter highlighted SDN technology and Pub/Sub systems by providing their general spec-
ifications. In order to provide a solid background, a number of real implementations that relates
by a way or another to this thesis work were discussed. Even though many solutions exploited
SDN to provide more efficient Pub/Sub systems implementations, no promising solution can be
found in the literature that covers the real-world applications requirements represented in the
reduced end-to-end delay while keeping the efficient use of the available network bandwidth.

16

Chapter 3

PLEROMA: SDN-based Publish/Sub-
scribe Middleware
The building block of this thesis work is the middleware presented in this chapter. PLEROMA
integrates SDN technology with the traditional Pub/Sub communication model offering content-
based routing. It exploits network layer elements capabilities for performing the content filtering
operations. Model specifications start with the implemented Pub/Sub paradigm and the system
structure. Other topics of concern are discussed in subsequent sections including how the content
space is represented, matching and forwarding incoming events from publishers. The problem
that the thesis tries to tackle is stated by the end of this chapter after discussing some design
issues related to the presented model.

3.1 Publish/Subscribe Paradigm

Like most Pub/Sub systems implementations, the system primarily consists of a number of hosts
that may act as publishers or subscribers. Hosts are directly connected to OpenFlow-compliant
switches. Publishers and subscribers are decoupled and they have no information about each
other existence. The link between them exists through the controller based on the following
scenario:

1. Before publishing events, publishers first send advertisements to the controller about the
content they intend to publish.

2. Subscribers send subscriptions requests to the controller showing their interest in receiving
event notifications about specific published content.

3. Based on received advertisements from publishers and subscribers requests, the controller
creates network paths between them as it has an end-to-end logical view of the whole
underlying network. This is achieved by the communication of the controller with the
switches using the standard protocol OpenFlow to install content filters in their match
tables as shown in figure 3.1.

17

3 PLEROMA: SDN-based Publish/Subscribe Middleware

Figure 3.1: SDN-Compliant Switch Structure

The previous scenario incorporates the pre-mentioned two planes: control plane and data plane.
The control plane consists of one or more SDN controllers that are responsible for the routing
operations by creating paths between publishers and subscribers. The controller can receive two
types of requests from subscribers namely subscribe and un-subscribe, and it receives advertise,
un-advertise requests, and the events from publishers. The data plane consists of the intermedi-
ate connected OpenFlow switches where filtering operations take place. The difference between
traditional switches and SDN-compliant switches is visible in figure 3.1. It shows an OpenFlow
switch where the control functions were transferred from the hardware to a software running
on an SDN controller while the flow tables are still part of the hardware. The communication
between an OpenFlow Switch and an SDN controller happens by exchanging OpenFlow mes-
sages through a secure channel between them. The basic structure of PLEROMA is shown in
figure 3.2.

18

3.2 Content Space Representation

Figure 3.2: PLEROMA Basic Structure

3.2 Content Space Representation

The technology of SDN was primarily integrated with content-based Pub/Sub systems to switch
filtering operations from the application layer to the network layer switches for better perfor-
mance in terms of system responsiveness. Network switches are designed to forward incoming
packets based on matching values from the packet header fields, possibly IP-address, MAC ad-
dress, port number etc., with the installed forwarding rules. And as previously mentioned about
the content-based model in section 2.1.2, events must be filtered based on the content of the
message for accurate forwarding. So this imposes the question of how to make the network
switches able to filter incoming packets based on the content instead of header fields values. To
resolve this issue, message content must be embedded in the packet header in a format similar to
this one used to represent the header fields, the binary string format, to make it understandable
by the switches. PLEROMA uses the following described mechanism from [22] to reach such a
representation.

First, the entire content space is represented as a multidimensional space where each dimension
corresponds to attribute values. Following the concept of spatial indexing, the event space for
each dimension gets partitioned recursively yielding regular subspaces, each assigned a binary

19

3 PLEROMA: SDN-based Publish/Subscribe Middleware

number using recursive binary decomposition. Figure 3.3 assumes an example of a simplified
event content space with only two attributes. As the content space includes two attributes, it
can be represented as a 2-dimensional plane, each dimension represents an attribute, i.e., Height
on the x-axis, and Width on the y-axis. As shown, the content space got partitioned three times
resulting in eight subspaces, each represented by a binary number. The decomposed binary
number now, known as dz-expression, can be used as an approximation for events, subscriptions,
and advertisements. For example, a subscription request s1 for events with attributes values{
Height=

[
50, 70

]
, Width=

[
0, 100

]}
will be represented as s1 =

{
100, 110

}
, which is the binary

representation of this area of the subspace. As described here, a subscription/advertisement may
require more than one dz-expression for representation as it traverses multiple areas, however, it
should be noted that an event always has one dz-expression representation as it is a well-defined
point in the content space.

Figure 3.3: Spatial Indexing Example

3.2.1 Containment Relationship and Events Matching

In practice, there are many possible algorithms that can convert different data into binary strings
like using a kind of hash functions or bloom filters [24], but the ease of identifying containment

20

3.2 Content Space Representation

relationships between subscriptions is the main motive of using the previously discussed repre-
sentation. A subscription s0 is said to be contained by another subscription s1 if and only if
the dz-expression of s1 is a prefix for the dz-expression of s0. For example, a subscription with
dz-expression ‘0’ covers the two dz-expressions ‘00’ and ‘01’. This feature is very useful when
installing flows to switches forwarding tables as it enables the installment of the most general
filters. This significantly reduces the memory requirements for storing flow tables on switches
knowing that it has limited storing capabilities.

By preserving containment relationships using such a representation, matching events has be-
come an easy task. The matching is performed on a prefix basis, such that, an event matches
a subscription if the dz-expression of the subscription is a prefix for the dz-expression of the
event. If this condition is true, the subscription is said to cover the event and it is forwarded to
the corresponding subscriber(s). In a typical scenario, the dz-expression is mapped to a packet
header field, and this field gets mapped against installed flows on switches. If no match is
found to an incoming packet, it is sent directly to the controller. PLEROMA embeds an event
dz-expression as part of an IPv4-Multicast address and uses it as the match field, the scheme
is detailed more in the next section.

3.2.2 IPv4 Adress Formulation

The middleware reserved a fixed range of IPv4-Multicast, 225.128.0.0 - 225.255.255.255 specifi-
cally for pub/sub traffic. Total of 32 bits are divided as follows: the first 9 fixed as the multicast
address, leaving the remaining 23 bits for representing the content in the form of a dz-expression.
So in order to form the IP destination address for a packet using its content, simply, the content
is converted to a maximum of 23 bits in length dz-expression, and gets concatenated to the
fixed multicast 9 bits address, and the length of the dz-expression is attached to the address as
a subnet mask. By taking the example from figure 3.4, it is shown that the first 9-bits represent
the fixed 225.128 part of the address, the next 23-bits are used for the dz-expression. In this
example, it is assumed that this is the address of a message its content represented by the
3-bits dz-expression

{
010

}
. By padding the rest of available bits to ‘0’ and convert it to the

decimal IP representation, it corresponds to 225.160.0.0. Using the same methodology, another
dz-expression of

{
0101

}
would be converted to 225.168.0.0. If noted, the dz

{
0101

}
is covered

by
{
010

}
, and hence, any matched event to the address 225.160.0.0, is considered to be a match

for 225.168.0.0 as well.

Figure 3.4: IPv4-Multicast Address Formulation

21

3 PLEROMA: SDN-based Publish/Subscribe Middleware

3.3 Content-Based Routing

As discussed in previous sections of this chapter, in order to perform matching operations by
network OpenFlow switches, the content is mapped to an IPv4-Multicast address and used as
the matching field. This section discusses how flows are being installed to switches, and the
routing of events to interested subscribers after being matched against installed flows.

3.3.1 Publishers/Subscribers Spanning Trees

Forwarding events from publishers to subscribers is done via spanning trees. The controller,
that is aware of the underlying network switches structure, organize those switches in a form
of a loop-free spanning tree. Loop-free means that there is only one path from one switch to
any of the switches, thus, it is ensured that no event is forwarded twice to the same subscriber.
Figure 3.5 shows the spanning tree representation for an example switches structure, where R2
was chosen as root by the controller randomly. By considering real-world large-scale Pub/Sub
systems, maintaining a single tree limits its scalability. To tackle this issue and provide a scalable
solution, the controller maintains a set of spanning trees, such that each tree is responsible for
the dissemination of events covered by a subset area of the event space. The number of spanning
trees in a system depends on the number of subspaces created out from partitioning the content
space. Recall the event space representation after the 2nd iteration from figure 3.3, 4 spanning
trees shall be maintained by the controller, each covers a subspace represented by its binary
dz-expression. More precisely, all covered events by

{
00
}

will be disseminated through its
corresponding spanning tree.

Figure 3.5: Loop-free Spanning Tree Representation

The creation of spanning trees is driven by received advertisements requests from publishers.
An advertisement may trigger the creation of a new tree, or it may join an already existing

22

3.3 Content-Based Routing

tree. Assume that the tree from figure 3.5 was initially created after receiving an advertisement
request from one of the publishers intending to publish events with dz

{
00
}
. Another publisher

that advertises
{
000

}
will join the same spanning tree. In a case of another advertisement that

is not covered by any of the existing trees, a new spanning tree is created. Subscribers are
added to the tree based on the same logic, however, a subscription request cannot trigger the
creation of a new tree.

3.3.2 Publishers/Subscribers Paths Creation

Upon receiving a subscription (advertisement) request, the controller searches for all advertise-
ments (subscriptions) requests that cover this subscription (advertisement). For every adver-
tisement that covers a subscription, the controller creates a path as follows:

1. It starts by calculating the route from the publisher to the subscriber.

2. The route is defined as a set of physically interconnected switches from the publisher to
the subscriber based on the corresponding spanning tree structure.

3. Once the route is defined, the path is created by installing, or possibly modifying flows
of switches found on the defined route. Installing flows is explained in detail in the next
section.

3.3.3 Flows Installment

As mentioned earlier, each switch maintains a flow table of forwarding rules that are used for
matching operations. These flow tables are manipulated by the control plane controller. For
example, when a subscription request is received, it installs new flow or modify a pre-installed
flow. A flow on a switch consists of main three fields:

• Match Field: The match field defines the value of the header field that is used to match in-
coming packets. As previously described, PLEROMA middleware uses an IPv4-Multicast
address for matching.

• Instruction Set: It represents the action that should be taken by a switch towards a
matched incoming packet. For forwarding matched events, this set will be in the form of a
list of outports on this switch that the event has to be forwarded to, in case it is a middle
switch. Setting more than one outport enables forwarding events to multiple destinations.
If it is a terminal switch, it changes the destination IP of the packet to the IP of the
linked subscriber(s). If no match is found for an incoming event, it is sent directly to the
controller for information about how to deal with this packet.

• Priority Order : A value that is used if a packet has more that one match. In such a
scenario, the instruction set of the matched flow that has higher priority order will be
followed.

23

3 PLEROMA: SDN-based Publish/Subscribe Middleware

Figure 3.6: Flows Installment Scenario.1

Before the installment of a new flow, the controller first ensures that there is no containment
relationship between this flow and the pre-installed flows. If a relation is found between the two
flows, the controller only modifies the installed flow based on the type of relationship between
the two flows. For clarifying, figure 3.6 shows a scenario where switch R2 is connected to a
subscriber who sends a subscription request with dz

{
0100

}
. Another host acts as a publisher

connected to switch R1 sent an advertisement request to the controller for content with dz{
010

}
. The controller found that this advertisement covers the subscription request so a path

should be created from the publisher to the subscriber for this content. As the controller is
aware of the underlying switches topology, the route is defined as

{
R1 − R2

}
. Based on the

defined path, the controller modifies flows tables of switches on that path. Assuming that the
two switches initially have empty flow tables, the controller will install flows on each switch as
shown.

24

3.4 Problem Statement

Figure 3.7: Flows Installment Scenario.2

Figure 3.7 shows the same example with another subscriber connected to switch R2 with dz{
010

}
. As the installed flow on R2 covers this subscription, there is no need for the installment

of a new flow. The controller just updates the installed flow to forward matched packets to this
subscribers by including its connected port to the instruction set.

3.4 Problem Statement

The content-based model presented by PLEROMA takes advantage of SDN data and control
planes separation to implement network layer filtering solution. The logically centralized con-
troller installs the content filters directly to switches TCAM with the help of OpenFlow protocol.
Incoming events get matched instantly against those filters. This described scenario guarantees
line-rate performance and achieves high levels of system responsiveness, however, it has a down-
side. Network switches are limited-memory elements, this design issue affects the expressiveness
of installed content filters. Content filters expressiveness is a crucial factor that affects available
bandwidth usage. Reduced filters expressiveness results in more matched and forwarded events
to subscribers through network physical paths, which requires more bandwidth.

In the context of content-based publish/subscribe systems, application layer filtering using bro-
kers is characterized with advanced filtering capabilities that can highly utilize available band-
width, but it fails when it comes to overall system responsiveness due to additional delay caused

25

3 PLEROMA: SDN-based Publish/Subscribe Middleware

by the extended end-to-end path between publishers and subscribers with the existence of bro-
kers, and the time needed for the matching operations at the application layer. On the contrary,
network layer filtering in middlewares that make use of SDN, e.g. PLEROMA, achieve signifi-
cant system responsiveness improvement as it offers line-rate performance due to the separation
of data and control planes, but it suffers when compared with application layer filtering band-
width efficiency. This thesis objective is to develop a middleware that combines the benefits
of the two different filtering approaches. So the contributions of this thesis can be concluded
in the design and implementation of a content-based publish/subscribe system exploiting the
capabilities of SDN for providing hybrid filtering operations, and the analysis of the effect of
such approach on system overall performance in terms of latency and bandwidth efficiency.

26

Chapter 4

Hybrid Content-based Publish/Sub-
scribe Middleware
As briefly described in the introduction chapter 1, modern publish/subscribe systems pay a close
attention to exploiting the SDN technology. In one implementation, like PLEROMA [21][6][16],
matching (filtering) operations are performed using the processing capabilities of the TCAM
on the network SDN-compliant switches. An event is said to be matched if a flow entry inside
switch’s flow tables is found to match this event. Although this scheme takes advantage of
the pre-installed underlying hardware infrastructure without the need for installing specialized
hardware components, it has its own downside. Before investigating this approach limitations
three terms must be defined: system responsiveness, filter expressiveness and false positive.

System responsiveness is usually defined with the system capabilities of serving subscribers
requests in terms of speed. So it can be evaluated based on the time between a subscription
request is received and the successful delivery of matched events to subscribers. System respon-
siveness is a crucial metric while evaluating a publish/subscribe system performance, especially
those employed for real-time applications. If it takes too long to deliver notifications to the
subscribers, the data may become obsolete and hence the information is not reliable.

Filter expressiveness is the complexity level of used language by subscribers to express their
interests. Expressiveness highly affects the bandwidth efficiency of a publish/subscribe system.
The lower degree of expressiveness, the more matched events and forwarded, and hence in-
creased network unnecessary traffic. In the context of publish/subscribe systems, unnecessary
traffic is a notation of the events that being forwarded through network paths that do not
match any of the received subscribers requests. Another performance evaluation metric that
is affected by the used language is the number of false positives the system produces. A false
positive is detected when a subscriber receives an event notification that does not match any
of the subscriptions requests. Getting back to filtering operations on switches TCAM, filters
expressiveness is restricted by the limited number of bits available for filter representation at
the match fields of tables flows.

As a conclusion, it is investigated that network layer filtering adopted by SDN-based middle-
wares provides line-rate performance but they have poor bandwidth efficiency caused by the
unnecessary traffic. On the other hand, application layer filtering introduces bandwidth efficient

27

4 Hybrid Content-based Publish/Subscribe Middleware

systems but suffers in the area of system responsiveness. As an attempt to provide as optimum
solution, this thesis presents a hybrid solution between network and application layer filtering
that combine the two approaches. Theory is simple but for implementation a question arise,
what is the scheme of selecting events that will be filtered at the application layer. For the
purpose of addressing this question, this chapter focuses on introducing the implemented two
different selection algorithms.

4.1 System Model and Architecture

4.1.1 Data and Control Planes

System data and control planes are identical to the same planes in PLEROMA middleware
presented in chapter 3. The data plane consists of interconnected SDN-compliant switches
that are responsible for forwarding matched incoming events to interested subscribers. The
control plane includes one or more SDN controllers that maintain network topology to create
paths between publishers and subscribers. This is done by means of installing forwarding rules
(content filters) on data plane switches TCAM. Once an event is received by one of those
switches, it searches all installed filters to find a match. If a match is found, the actions in
the instruction set field is performed. Packets that do not have a match are forwarded to the
control plane controller.

4.1.2 Application Plane

The hybrid model involves an additional plane which is the application plane. It is used for
exploiting application layer capabilities of performing events matching operations more accu-
rately. Filtering events at the application layer significantly decreases the total number of false
positives. This is because the difference between matching operations in the network layer and
in the application layer is that matching incoming events in the application layer happen on the
exact values of subscription requests and events instead of using their dz-expressions. Events
being filtered by the application layer are selected using different selection algorithms that are
investigated later in this chapter. The system structure is shown in figure 4.1.

28

4.2 Filter(s) Selection Problem Formulation

Figure 4.1: Hybrid Filtering Pub/Sub System Structure

4.2 Filter(s) Selection Problem Formulation

The main challenge of implementing the hybrid solution is selecting a subset of filters from all
filters installed on all network switches, that forward matched events to the newly added ap-
plication plane for more accurate filtering, and hence reduced false positives. The implemented
mechanism tries to compromise between the responsiveness of systems that use network layer
filtering while preserving the bandwidth efficiency of application layer filtering. This is achieved
by giving the application the flexibility to inform the system its tolerance level for the end-to-
end delay. As a constraint on the system, the delay must be less than or equal to this value
specified by the application. This can be formed as an optimization problem by letting the
following variables be:

F
All installed filters on all network switches, where filter fi ∈ F

∆
Average end-to-end delay threshold tolerated by the application

29

4 Hybrid Content-based Publish/Subscribe Middleware

rfpi

Number of reduced false positive if filter fi is chosen to forward matched events to the
application layer

S
All subscribers set where sk ∈ S

δk

Average end-to-end delay at subscriber sk

So the objective now is to provide the system with a combination of selected filters SF ∈ F
that forward matched events to the application layer for achieving maximum false positives
reduction, while maintaining the end-to-end latency by the given threshold ∆. This can be
mathematically formulated as follows:

Maximize
∑

i∈SF

rfpi

subject to
(|S|∑

k=1
δk

)
/|S| ≤ ∆

By considering an application with m total number of filters installed on n network switches,
the number of all possible filters combinations is given by 2m. In order to find the optimal
solution, each filter inside each combination must be considered and evaluated separately. This
is because selecting one filter has a significant impact on calculations for other filters in the
same combination subset. Given that the value of m is usually in the order of hundreds of
thousands, it makes achieving the optimal solution impractical and stands as an obstacle to
implementing realistically scalable systems. After demonstrating the downside of achieving the
optimal solution, the rest of this chapter discusses the proposed two selection algorithms for
tackling filter(s) selection problem.

Based on the implementation experience, solving the selection problem was not found to be
really straightforward as it introduces other three sub-problems. In order to come up with a
solution, the following questions must first be investigated:

1. How many false positives will be saved upon selecting a specific filter?

2. How the selection of one filter affects the average end-to-end delay?

3. How to design efficient selection algorithm in terms of responsiveness and bandwidth
efficiency?

Sections 4.2.1 and 4.2.2 discusses how the first two questions were addressed respectively, while
4.3 introduces the logic behind the implemented selection algorithms.

30

4.2 Filter(s) Selection Problem Formulation

4.2.1 Filter Benefit Calculation

Before addressing the first question, the term filter benefit must be defined. It is the number of
reduced false positives if this filter is selected to forward its matched events to the application
layer. Calculating this value involves two sub-tasks: (i) obtaining the total number of false
positives on each network link due to this filter, and (ii) aggregating all values obtained from (i)
to get the benefit value upon selecting this filter. For calculating the number of false positives
on each link, subscribers periodically send the number of received false positives corresponding
to a specific filter to the controller. More formally, this means that the controller backtracks
all network paths from subscribers to publishers. For the first thought, aggregating single links
false positives may be perceived as trivial mathematical addition, but in fact, a close attention
must be paid to containment relations between subscriptions before adding values up. Three
forms of containment relations can be found between two (or more) subscriptions:

Disjoint Two subscriptions are said to be disjoint if there is no overlapping between their
subspace rectangular area of interest. In this case, the aggregation over this link will be
the sum of false positives of both subscribers.

Complete Overlap This occurs between two equal subscriptions, or when one of them is com-
pletely contained by the other. The simple addition of their number of false positives
obviously will count more false positives over the link than the actual number. If they are
equal, the total number of false positives over the link is the single value of any of them.
If one is contained by the other, the false positives of the broader subscription must be
taken as it accounts the false positives of the contained subscription.

Partial Overlap When two subscriptions areas of interest are partially overlapped, they are
said to have partial overlap relationship. For calculating the total false positives of two
partially overlapped subscriptions, the controller first must identify the overlapping area
between them, and the two disjoint areas. And then it has to obtain the number of false
positives for each area separately.

4.2.2 Filter Penalty Calculation

Filter delay penalty is the increased end-to-end latency caused by selecting this filter for ap-
plication layer filtering. For better understanding, the difference between network delay and
application delay should be highlighted here. If matching events of a specific filter is only
bounded to the network layer controller, the end-to-end delay here is simply the network delay.
But if filter fi, as an example, is selected for application layer filtering, network delays along
each path affected by fi have to be replaced by the application layer delays. This extra delay
comes as a result of the increased path length to reach the application layer, and the time it
needs for accurately filtering forwarded events. The number of network paths between publish-
ers along which it forwards events to subscribers is used as the measurement for the penalty.
Based on the previous clarification, the penalty value is directly affected by the number of these
paths.

31

4 Hybrid Content-based Publish/Subscribe Middleware

By following the same approach, the value of application threshold ∆ described in section 4.2,
can be represented by, APTH, the maximum number of paths that the application layer is
allowed to affect. This variable provides a good representation of the delay as when the number
of affected paths increases the delay proportionally increases.

4.3 Selection Algorithms

This section discusses the design of two implemented algorithms for filters selection. After
determining the effect of selecting filters on the end-to-end delay and the total number of the
false positives, the algorithms try to keep the effect on the delay minimum, while maximizing
the effect on the number of false positives. To give more flexibility to the application, the
algorithms have different time complexity and performance in terms of the number of reduced
false positives.

4.3.1 Switch Selection

Overview

After investigating why the optimal solution of selecting a combination of filters is not the most
intelligent one for systems scalability, as a simplification, selecting a subset of filters can be
replaced by selecting a subset of network switches that forward events to the application layer.
But again, for a system with n switches, 2n subsets must be evaluated for providing switches
optimal solution. So it does not solve the complexity problem that selecting filters subsets im-
poses. The solution presented here tries to compromise between the optimal solution efficiency
in terms of reduced false positives, and its time high complexity.

Algorithm Logic Design

SSA is an iterative process of selecting switches one-by-one, in such a way, a switch that achieves
maximum false positives reduction gets selected in each iteration. The process stops when the
specified application threshold is reached. The output of the algorithm is a selected subset of all
network switches that will forward matched events to the application layer while maintaining
the threshold value. For a more concrete presentation, let us consider the algorithm in terms of
sequential steps:

1. Switch Benefit and Penalty Calculation: The algorithm starts with calculating ben-
efit and penalty values for all network switches. For one switch, these values are simply
the sum of benefits and penalties of all filters installed on this switch. Calculating single
filters benefit and penalty is accomplished as described in section 4.2.1 and section 4.2.2
respectively.

32

4.3 Selection Algorithms

2. APTH Calculation: As the system represents delays in terms of network paths, the value
of APTH, which is the maximum allowed application delay in terms of paths, is calculated
as described in section 4.2.2.

3. R Set Definition: At the first iteration, the algorithm considers all switches for selection
by defining the R as the set of all network switches.

4. R Set Filtration: As the system must maintain the specified penalty threshold ∆, it
performs a filtration operation for switches inside R, such that, any switch that has penalty
value greater than the threshold will be excluded from the set. If R is empty, the process
terminates.

5. SR Set Definition: At the very first beginning, SR is defined as an empty set as no
switches are selected yet.

6. Switch Selection: From R, the switch that has maximum benefit is selected, i.e., added
to SR and excluded from R.

7. Available Paths Calculation: Upon selecting a switch, the penalty it imposes on the
system is deducted from APTH. This gives an indication of the number of available
paths that can be utilized for further selection, and hence false positives reduction. The
algorithm stops when there is no available paths, or the number of available paths cannot
be utilized, i.e., all switches in R has penalty greater than this value.

8. Switch Benefit and Penalty Recalculation: If the number of available paths calcu-
lated from the previous step allows more cycles, benefit and penalty values for all switches
inside R must be recalculated before making a selection. This is because the selection of
one switch may significantly affect the benefit and penalty of other switches.

For more clarification, let us recall how benefit value is obtained for single filters from
section 4.2.1. As it is described, calculating filter benefit is done by means of backtracking
links from subscribers to publishers. In this context, assume that switch Ri is selected and
added to SR, and one of its filters is fi. Another switch Rj ∈ R having a filter fj , such
that fi and fj affects the same, one or more, network links based on a relation between
the two filters subscriptions. In this scenario, if the algorithm just considered the old
benefit and penalty values for fj after selecting Ri, the same false positives reduced by fi

will again be considered by fj . Also, the delay added by fi affected paths, may again be
counted in the delay penalty for fj .

As a mean of prevention mechanism, for all filters of a selected switch, after determining
the benefit and penalty for fi, all false positives for filters corresponding to fi on subse-
quent switches along the downstream paths of fi is set to zero, and these paths marked
as already considered.

Algorithm Typical Scenario

Consider the simple example from figure 4.2, it includes two publishers labeled as P1 and P2,
one subscriber S, and three switches act as the forwarding plane. Assume that S is originally

33

4 Hybrid Content-based Publish/Subscribe Middleware

subscribed to all published events by P1 and P2. Initially, benefit and penalty values are
calculated per each switch ∈ R. The values are shown, B represents benefit and P represents
penalty. Assume that the average delay threshold ∆ after being mapped to a number of available
paths APT is found to be 2. Based on this value, switches will be filtered from R. In this example,
all switches will be considered as the penalty value is less than or equivalent to the threshold
APTH. Out of all switches ∈ R, R2 will be selected as it yields the maximum benefit while
maintaining the threshold. The selection is in the form of removing it from R and adding it to
the initially empty set SR. So by the end of this cycle R =

{
R1, R3

}
and SR =

{
R2
}
. After

that the new values of benefit and penalty are calculated for all switches ∈ R and the value
of APTH is updated to 0 after subtracting the selected switch penalty. If one of the available
switches can yield more reduced false positives without affecting new paths it will be chosen,
otherwise, the algorithm terminates and all events matched to filters installed in R2 will be
forwarded to the application layer for accurate filtering. Note that even though all switches
forward events to the application layer, the false positives on links between publishers and
switches will remain inside the network.

Figure 4.2: Switch Selection Algorithm Example

4.3.2 Cluster-based Selection

Overview

SSA was designed after showing the impracticality of single filters selection optimal solution due
to its high level of complexity. However, implementing an intermediate solution between them
may be a compromise between complexity level and performance in terms of network reduced

34

4.3 Selection Algorithms

false positives. Instead of selecting single filters, or switches, CSA proposes considering a group
of filters based on similarities between the subscriptions they represent. So before the selection,
all filters, on all switches, must undergo a grouping process in which they will be clustered into
spatially disjoint trees. There are many filters clustering algorithms can be found in literature
and in practice, but they are not presented here as it is out of this thesis scope.

Filters Clustering

By clustering filters in a spatially disjoint trees, each cluster C becomes responsible for forward-
ing disjoint set of events inside the network. This forms separate event dissemination trees in
the network for each cluster. As a result, a matched event gets disseminated along only a single
cluster’s tree and thus affects the false positives count along the links of this tree and has no
effect on other trees, so clusters are independent units in this scenario.

Figure 4.3: Logical Clusters Creation

Consider an example from figure 4.3 with 3 subscribers with subscriptions requests correspond-
ing to dz-expressions

{
11
}
,
{
10
}
, and

{
00
}
respectively. As there is no containment relationship

between and of those subscriptions, 3 different clusters will be created as shown. The creation
of these clusters will trigger the creation of 3 dissemination trees inside the network. For ex-
ample, any published events match dz-expression

{
10
}
will be forwarded through cluster C2

dissemination tree that includes
{
R1, R2, R4, R5, R7

}
. Following the same approach, C1 dis-

semination tree considers only
{
R1, R2, R3

}
. And finally C3 filters matched events will traverse

35

4 Hybrid Content-based Publish/Subscribe Middleware

{
R1, R2, R4, R5, R6, R8

}
. If another subscriber sends a request with dz-expression

{
000

}
, the

controller will recognize that this subscription is covered by
{
00
}
and will automatically join

the already-set dissemination tree corresponds to C3.

Algorithm Logic Design

CSA uses the same calculations for benefit and penalty values, all other used parameters and
variables are described below. Algorithm steps can be sequentially ordered as follows:

1. Filters Clustering: As previously mentioned, all filters on all switches are clustered in
a spatially disjoint trees. Each cluster disseminates a set of disjoint events.

2. APTH Calculation: Again, this is the threshold ∆ in terms of a number of affected
paths. It should be noted that the number of total paths in the system now has increased.
This is because there is a logical separate link between publishers and subscribers for each
group of clustered filters.

3. RC Set Definition: This is the set of selected switches within each cluster after each
iteration. Before the selection process starts, it is just an empty set.

4. Per Cluster Switch Penalty and Benefit Calculation: This is identical to calculating
the benefits and penalties for switches in SSA algorithm. However, it is calculated for each
group of filters that belongs to a cluster on one switch.

5. Per Cluster Switch Selection: Within each cluster, the switch that has the maximum
benefit while maintaining the threshold is selected. The difference between SSA and CSA
should be noted here. In SSA, selecting a switch means that matched events against all
filters on this switch will be forwarded to the application layer. However, in CSA, by
selecting a switch within a cluster, only matched events towards the group of filters that
belong to this particular cluster on this switch will be forwarded to the application layer.

The output of this step is a total of |C| selected switches from all clusters added to RC
set. In a system with 3 filters clusters and m switches, if switches R2, R1, and R2 selected
respectively in clusters c1,c2, and c3, RC is represented by the set

{
R2_c1, R1_c2, R2_c3

}
.

It should be noted that the same switch can be selected more than once inside different
clusters as pairing one switch with a cluster gives a different set of filters when pairing
the same switch with another cluster.

6. Pairs Combination Benefit and Penalty Calculation: The benefit of selecting n
combined switch_cluster pairs from RC is the sum of single benefit values of each pair.
The penalty is calculated by following the same scheme. Because the algorithm deals with
disjoint clusters, it is not needed to recalculate benefit and penalty values for switch_filter
pairs after one selection.

7. Maximum Benefit Combination Selection: The task now is to select the subset
SRC ∈ RC such that the combined reduction of network false positives is maximum
while maintaining the average end-to-end delay within the specified threshold ∆. Out of

36

4.4 Algorithms Complexity

values calculated from the previous step, the best combination of switch_cluster pairs is
chosen for application layer filtering.

8. Available Paths Calculation: Number of available paths is calculated as discussed in
SSA, section 4.3.1. If there is a number of available paths that can be utilized, the entire
cycle repeats.

4.4 Algorithms Complexity

By comparing the two algorithms logic design, CSA proves to have higher time complexity than
SSA. This is because each cycle requires recalculating switches benefit and penalties values for
all clusters ∈ SRC, as selecting a subset of filters on one switch affects these values. However,
this increase in time complexity comes with more reduced false positives inside the network
as the algorithm considers the selection of a group of filters on one switch instead of selecting
switch all filters.

As it can be deduced, the complexity of the two implemented algorithms highly dependent on
the number of switches in the underlying forwarding plane, as the search space size increases
with increasing switches number. Based on this, reducing the number of switches in the search
space can improve the algorithms time complexity without affecting its performance in terms of
the number of reduced false positives. To achieve this, a scheme is developed to only consider a
number of candidate switches out of the complete set while neglecting the others. Technically
speaking, a switch is selected for application layer filtering if no other switch in the network
reduces more false positives while maintaining the application threshold. In doing so, the
proposed scheme tries to identify the switches that will save more false positives compared to
the others.

37

4 Hybrid Content-based Publish/Subscribe Middleware

4.5 Conclusion

This chapter was dedicated to the presentation of hybrid-filtering middleware solution for
content-based Pub/Sub systems that exploit the technology of SDN. Recall that the devel-
opment of this middleware was motivated by real-world applications need for a system that
compromises between the system end-to-end delay and the bandwidth efficiency. As it was
investigated, network-layer filtering provides the best results when it comes to the end-to-end
delay, while application-layer filtering offers the most efficient solution in terms of the bandwidth
usage. Theoretically speaking, a hybrid solution that combines both filtering approaches would
achieve the desired results. In doing so, the proposed solution is built on PLEROMA presented
in chapter 3 that follows the in-network filtering approach. An additional plane is integrated
with PLEROMA system to perform the application layer tasks. To prove the credibility of the
theory, the next chapter introduces the results out of different evaluations.

38

Chapter 5

Testing and Performance Evaluations
This chapter is dedicated to testing and analyzing the proposed hybrid-filtering solution perfor-
mance while considering the other two solutions, i.e., pure network-layer and pure application-
layer filtering. It also provides a technical comparison between the two implemented selection
algorithms. Before presenting the results, conducted experiments setup is explained first, fol-
lowed by the specifications of the used data sets for testing purposes.

5.1 Experimental Setup

As discussed previously in section 4.1, the hybrid system combines three different planes, i.e.,
control plane, data plane, and the application plane. Control plane is built on the FloodLight
controller mentioned while introducing SDN technology in section 2.1.1. FloodLight implements
SDN-controller functions using the famous Java API. For the data plane, it consists of a number
of SDN-compliant switches, OpenFlow is used for the work of this thesis. Publishers/subscribers
are normal hosts at the end-points. For the purpose of this chapter, the experiments have been
evaluated under two different environments, i.e., hardware SDN-testbed, and mininet emulated
network incorporating different data sets.

5.1.1 Hardware SDN-Testbed

In order to provide reliable results, a real-world hardware testbed was used for the purpose
of testing. The setup is built on a number of commercial PC hardware and a SDN-compliant
OpenFlow switch from Edge-Core. A hierarchical tree topology was created from 10 switches
and 8 end-hosts connected as shown in figure 5.1. The used hardware white box switches from
Edge-Core act as the data plane responsible for forwarding tasks from publishers to subscribers.
While the connected end-hosts, that act as publishers\subscribers, are hosted on a PCs rack.
Each machine in this rack has 16 cores working at 3.50 GHz. Another separate powerful machine
was incorporated to perform both control and application planes controllers tasks. The used
machine has 40 cores, each works at 3.10 GHz.

39

5 Testing and Performance Evaluations

Figure 5.1: Hardware SDN-Testbed Topology

5.1.2 Mininet Emulated Network

Mininet [2] is a dominant tool among the available network emulation tools that support SDN
technology. It supports the connection of external SDN-controllers to virtually-created pro-
grammable networks. This was very useful while working on the initial evaluations to verify the
performance and behavior of the two used Floodlight controllers. Mininet was used to conduct
experiments on different topologies that included up to 337 switches and 729 hosts. Although
the use of mininet offers a prominent platform for testing tasks, the calculations of the time
delay cannot be applied to real-world scenarios. Hence, all latency-related experiments were
run using the hardware testbed described in the previous section.

5.1.3 Data Sets

Out of the keenness on introducing comprehensive evaluations, both synthetic data and real-
world data were used to conduct the experiments. It should be noted that data here is a notation
for subscriptions, advertisements, and events. The entire content-space was represented using
6 different dimensions, each dimension represents an attribute. All attributes domains vary in
the range from the lower value 0 to the upper value 1023. For the generation of the synthetic
data, two models were used, i.e., uniform and zipfian As it is implied by the name, the uniform
model generates independent data forming a uniform distribution. The other Zipfian model
generates dependent data around 8 specified hotspots. To reflect the performance of the hybrid

40

5.2 Experimental Results

proposed solution in real-world scenarios, stock quotes about daily closing prices procured from
Yahoo Finance were used.

5.2 Experimental Results

The hybrid middleware was put into comparison with PLEROMA model described in chapter 3
that implements pure in-network filtering, and a pure application-filtering middleware that was
implemented as a parallelized matching Pub/Sub service. In all covered scenarios, the content
space was divided into 16 partitions, each partition has its own events matcher running on a
separate core for better forwarding efficiency.

5.2.1 Total Network False Positives

The objective of the first experiment is to evaluate the performance of the hybrid-filtering solu-
tion in terms of the in-network generated false positives. Basically, network false positives is the
sum of false positives on all network links. For running this experiment, an increasing number
of subscriptions was used, while keeping the number of disseminated events from publishers
constant to 10,000 events. By examining the graph from figure 5.2, it is shown that the hy-
brid solution saves a significant number of false positives over PLEROMA in-network filtering.
These values were the result of using an application delay threshold factor of 0.6. The threshold
value represents ∆, the average end-to-end delay that the application can tolerate. Based on
this definition, using threshold factor of 1 is an indication for pure application filtering, and a
factor of 0 implies pure network filtering.

41

5 Testing and Performance Evaluations

Figure 5.2: Hybrid Vs. PLEROMA False Positives

5.2.2 End-to-End Delay

Although the hybrid middleware is capable of improving the bandwidth efficiency by reducing
the network false positive, this comes in a trade-off with the end-to-end latency. The delay
increase happens as a consequence of shifting the matching operations for a subset of the events
to the application layer. The graph presented in Figure 5.3 shows the effect of this shifting
on the average end-to-end delay under 10,000 events get matched with a different number of
subscriptions. As it can be deduced from the graph, PLEROMA proved that it operates at
a line-rate performance with the minimum latency in the order of few microseconds. On the
contrary, a pure application-filtering approach has the worst end-to-end delay which makes it
not suitable for real-time applications. As a compromise, the hybrid-filtering approach shows
less latency than the application layer, but greater than the network layer. As both the hybrid
solution and the application-layer solution involves the use of software for matching incoming
events, the delay increase with increasing the number of subscriptions because more incoming
events have to be matched by the software.

42

5.2 Experimental Results

Figure 5.3: End-to-End Delay Comparison

5.2.3 Hybrid-Middleware Performance Adjustment

Figure 5.4: The Effect of Threshold Factor on Bandwidth

43

5 Testing and Performance Evaluations

As described in section 5.2.1, the value of the allowed application delay ∆ is represented as a
factor from 0 to 1. A threshold factor of 1 means that it is allowed to forward all events to
be matched by the application layer resulting in pure application-layer filtering while 0 means
that the application cannot stand any extra end-to-end delay and no events will be forwarded
to the application layer. In this case, the system has the same performance of PLEROMA
in-network filtering. Consequently, adjusting the value of the threshold factor is a mean of
regulating the hybrid middleware performance giving more flexibility to the application. The
effect of adjusting the threshold value was tested in a system with 8000 subscriptions while
gradually increasing the threshold from 0 to 1 with a step of 0.1. In doing so, figure 5.4 and
figure 5.5 shows this effect on the bandwidth efficiency and the end-to-end delay respectively.
The effect on the bandwidth efficiency is represented on the y-axis as the benefit ratio. It is the
percentage of reduced false positives with respect to the total network false positives generated
out from using pure network filtering. As it can be noticed, the benefit ratio increases with
increasing the threshold factor. On the other hand, the average end-to-end delay increases.

Figure 5.5: The Effect of Threshold Factor on Latency

5.2.4 Hybrid-Middleware Vs. PLEROMA-v Model

As a mean of improving the bandwidth efficiency, PLEROMA-v is a variant model of PLEROMA
in which similar subscriptions are clustered in trees before any filtering operations. PLEROMA-
v follows the R-Tree [14] clustering approach for the creation of subscription clusters. Subscrip-
tions are clustered such that each cluster is represented with a Minimum Bounding Rectan-
gle (MBR). As the name implies, cluster MBR is the minimum values along each attribute that
encloses this cluster. Thesis contributions in this area are the implementation of PLEROMA-v
on SDN, and evaluating its performance. To compare between PLEROMA-v and the hybrid

44

5.2 Experimental Results

middleware, 8 subscriptions clusters were created out from synthetically generated data based
on the Zipfian distribution. The content space was represented using 5 dimensions, and the
values were generated around 8 hotspots. Figure 5.6 shows that with threshold factor 0.4 the
hybrid solution achieves higher benefit than PLEROMA-v. Also, the experiments showed that
the hybrid middleware has better performance when uniform data was used. This is because
the independence of the data set made the MBR of each cluster roughly covered the 5 attributes
entire range. As PLEROMA-v still performs in-network filtering, it has better latency compared
with the hybrid-filtering.

Figure 5.6: Hybrid Vs. PLEROMA-v Benefit

45

5 Testing and Performance Evaluations

5.2.5 SSA Vs. CSA

Figure 5.7: SSA Vs. CSA Benefit

The two proposed selection algorithms are evaluated in this section. As a result of the flexibility
that CSA provides by examining a group of filters on one switch instead of the selection of all fil-
ters, figure 5.7 shows that CSA achieves better false positives reduction with increasing the total
number of subscriptions, compared with SSA using the same number of subscriptions. Figure
5.7 proves that CSA has the same behavior in comparison with SSA for increasing the threshold
factor gradually. By recalling from section 4.3.2 that CSA uses separate dissemination tree for
each created cluster of filters, the number of those filters significantly affects its performance.
Figure 5.9 depicts that increasing the number of clusters improves the algorithm performance.
Figure 5.10 shows that this improvement comes in a trade-off the time complexity. Increasing
subscriptions number increases the runtime for both algorithms. It is shown that CSA has a
higher runtime that SSA for the same number of subscriptions. This is because each iteration
considers all switch-filters combinations for clusters, compared with SSA that only considers
switches.

46

5.2 Experimental Results

Figure 5.8: Adjusting Threshold Effect on SSA and CSA

Figure 5.9: Number of Partitions Effect on CSA

47

5 Testing and Performance Evaluations

Figure 5.10: SSA Vs. CSA Runtime

48

Chapter 6

Conclusion & Future Work
This thesis work proposed a hybrid content-based Pub/Sub system built on top of PLEROMA
[21] that exploits the evolving SDN technology. The idea of developing a hybrid-filtering system
was motivated by the inherited problem of wasting the network bandwidth when in-network
layer filtering is deployed, and the increased end-to-end delay if filtering operations are per-
formed in the application layer. Real-world applications need for systems that can operate with
a high level of bandwidth efficiency while keeping minimalist delay has led to the development
of the proposed solution.

Theoretically speaking, incorporating filtering operations in both network and application layer
can provide a compromise between the efficient bandwidth usage when application layer is
involved, and line-rate performance of the systems that use in-network layer filtering like
PLEROMA. In order to make a coherent picture about the theory, events that cause high
rates of false positives can be forwarded to the application layer for accurate filtering to reduce
bandwidth requirements, and the rest can be filtered in the network layer in order not to highly
increase the end-to-end delay. In practice, two algorithms were developed for the purpose of
selecting filters in which matched events will be forwarded to the application layer, e.g., SSA
and CSA discussed in sections 4.3.1 and 4.3.2 respectively. The two algorithms have different
time complexity and provide different rates of reduced false positives to give more choices based
on the application needs.

A number of different experiments were run on the implemented middleware to prove the cred-
ibility of the theory. The system was evaluated in comparison with PLEROMA as a represen-
tation for pure in-network layer filtering, and another system that uses pure application layer
filtering. The results showed that the hybrid solution significantly reduces the bandwidth re-
quirements compared with PLEROMA while keeping the delay in the middle between the two
filtering approaches. It was also investigated that the performance of the hybrid solution can
be adjusted by altering the value of ∆, the application threshold. This gives the application
the flexibility of adjusting the trade-off between

49

6 Conclusion & Future Work

the bandwidth efficiency and the end-to-end path delay imposed when dealing with Pub/Sub
systems.

As the system is built on top of PLEROMA[21] middleware, all proposed future enhancements
apply to the solution that this thesis presents. Apart from the model presented by PLEROMA,
the area of selecting filters for application layer filtering needs further research for a more
optimized solution. As it was investigated that the complexity of the two implemented selection
algorithms is highly dependent on the number of deployed switches in the underlying hardware
infrastructure, optimization techniques can be researched in the future on how to reduce the
search space relative to the total number of switches. Another open area for research is how to
reduce network traffic by making the switches aware of all possible types of received packets, as
the systems follows the approach of forwarding to the network layer controller for any packet
that does not find a match. Some of these packets may be out of the context of the Pub/Sub
middleware.

50

Appendix

51

Appendix A

Lists
SDN Sotware Defined Networking

TCAM Ternary Content Addressable Memory

ASICs Application Specific Integrated Circuits

SIENA Scalable Internet Event Notification Architecture

REBECA Rebeca Event-Based Electronic Commerce Architecture

JEDI Java Event-Based Distributed Infrastructure

SSA Switch Selection Algorithm

CSA Cluster-based Selection Algorithm

API Application Programmable Interface

Pub/Sub Publish/Subscribe

ICN Information-Centric Networking

CPs Content Providers

CDNs Content Distribution Networks

MBR Minimum Bounding Rectangle

52

List of Figures
2.1 SDN Architecture . 8
2.2 Pub/Sub Systems High-Level Interaction Model 9

3.1 SDN-Compliant Switch Structure . 18
3.2 PLEROMA Basic Structure . 19
3.3 Spatial Indexing Example . 20
3.4 IPv4-Multicast Address Formulation . 21
3.5 Loop-free Spanning Tree Representation . 22
3.6 Flows Installment Scenario.1 . 24
3.7 Flows Installment Scenario.2 . 25

4.1 Hybrid Filtering Pub/Sub System Structure . 29
4.2 Switch Selection Algorithm Example . 34
4.3 Logical Clusters Creation . 35

5.1 Hardware SDN-Testbed Topology . 40
5.2 Hybrid Vs. PLEROMA False Positives . 42
5.3 End-to-End Delay Comparison . 43
5.4 The Effect of Threshold Factor on Bandwidth . 43
5.5 The Effect of Threshold Factor on Latency . 44
5.6 Hybrid Vs. PLEROMA-v Benefit . 45
5.7 SSA Vs. CSA Benefit . 46
5.8 Adjusting Threshold Effect on SSA and CSA . 47
5.9 Number of Partitions Effect on CSA . 47
5.10 SSA Vs. CSA Runtime . 48

53

Bibliography
[1] Floodlight. [online]. available: http://www.projectfloodlight.org/floodlight/.

[2] Mininet. [online]. available: http://mininet.org/.

[3] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk Kutscher, and Börje
Ohlman. A survey of information-centric networking. Communications Magazine, IEEE,
50(7):26–36, 2012.

[4] Kapil Bakshi. Considerations for software defined networking (sdn): Approaches and use
cases. In Aerospace Conference, 2013 IEEE, pages 1–9. IEEE, 2013.

[5] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao, Robert E Strom,
and Daniel C Sturman. An efficient multicast protocol for content-based publish-subscribe
systems. In Distributed Computing Systems, 1999. Proceedings. 19th IEEE International
Conference on, pages 262–272. IEEE, 1999.

[6] Sukanya Bhowmik, Muhammad Adnan Tariq, Boris Koldehofe, André Kutzleb, and Kurt
Rothermel. "Distributed Control Plane for Software-defined Networks: A Case Study Using
Event-based Middleware". DEBS: Distributed Event-based Systems Conference, pp. 92–103,
2015.

[7] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and evaluation of
a wide-area event notification service. ACM Transactions on Computer Systems (TOCS),
vol. 19, no.3, pp. 332-383, 2001.

[8] Cisco. Cisco visual networking index: Forecast and methodology, 2014-–2019. Technical
report, May 2015.

[9] C Gianpaolo Cugola and H.-Arno Jacobsen. Using publish/subscribe middleware for mobile
systems. ACM SIGMOBILE Mobile Computing and Communications Review, vol. 6, no.4,
pp. 25–33, 2002.

[10] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The jedi event-based infras-
tructure and its application to the development of the opss wfms. IEEE Transactions on
Software Engineering, vol. 27, no.9, pp. 827–850, 2001.

[11] Patrick Eugster. Type-based publish/subscribe: Concepts and experiences. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), vol. 29(6), 2007.

[12] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn: An intellectual
history of programmable networks. ACM SIGCOMM Computer Communication Review,
vol. 44, no. 2, pp. 87–98, 2014.

54

Bibliography

[13] Albert Greenberg, Gisli Hjalmtysson, David A Maltz, Andy Myers, Jennifer Rexford, Ge-
offrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang. A clean slate 4d approach to network
control and management. ACM SIGCOMM Computer Communication Review, vol. 35,
no. 5, pp. 41–54, 2005.

[14] Antonin Guttman. R-trees: a dynamic index structure for spatial searching, volume 14.
ACM, 1984.

[15] Fei Hu, Qi Hao, and Ke Bao. "A Survey on Software-Defined Network and OpenFlow:
From Concept to Implementation". IEEE Communications Surveys and Tutorials, vol. 16,
no. 4, pp. 2181–2206, 2014.

[16] Boris Koldehofe, Frank Dürr, and Muhammad Adnan Tariq. "Tutorial: Event-based Sys-
tems Meet Software-Defined Networking". DEBS: Distributed Event-based Systems Con-
ference, pp. 271–180, 2013.

[17] Adrian Lara, Anisha Kolasani, and Byrav Ramamurthy. "Network Innovation using Open-
Flow: A Survey". IEEE Communications Surveys and Tutorials, vol. 16, no. 1, pp. 493–512,
2014.

[18] Xingkong Ma, Yijie Wang, Qing Qiu, Weidong Sun, and Xiaoqiang Pei. Scalable and
elastic event matching for attribute-based publish/subscribe systems. Future Generation
Computer Systems, vol. 36, pp. 102–119, 2014.

[19] Helge Parzyjegla, Daniel Graff, Arnd Schröter, Jan Richling, and Gero Mühl. Design
and implementation of the rebeca publish/subscribe middleware. In From active data
management to event-based systems and more, pages 124–140. Springer, 2010.

[20] Peter R Pietzuch and Jean Bacon. Peer-to-peer overlay broker networks in an event-based
middleware. In Proceedings of the 2nd international workshop on Distributed event-based
systems, pages 1–8. ACM, 2003.

[21] M. Adnan Tariq, Boris Koldehofe, Sukanya Bhowmik, and Kurt Rothermel. "PLEROMA:
A SDN-based High Performance Publish/Subscribe Middleware". ACM Middleware Con-
ference, pp. 217–228, 2014.

[22] Muhammad Adnan Tariq, Boris Koldehofe, Gerald G Koch, Imran Khan, and Kurt Rother-
mel. Meeting subscriber-defined qos constraints in publish/subscribe systems. Concurrency
and Computation: Practice and Experience, 23(17):2140–2153, 2011.

[23] Sasu Tarkoma. Publish/subscribe systems: design and principles. John Wiley & Sons, 2012.

[24] Sisi Xiong, Yanjun Yao, Qing Cao, and Tian He. kbf: A bloom filter for key-value storage
with an application on approximate state machines. In INFOCOM, 2014 Proceedings IEEE,
pages 1150–1158. IEEE, 2014.

[25] George Xylomenos, Christopher N. Ververidis, Vasilios A. Siris, Nikos Fotiou, Christos
Tsilopoulos, Xenofon Vasilakos, Konstantinos V. Katsaros, and George C. Polyzos. "A
Survey of Information-Centric Networking Research". IEEE Communications Surveys and
Tutorials, vol. 16, no. 2, pp. 1024–1049, 2014.

55

Bibliography

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

56

	Acknowledgments
	Introduction
	Thesis Organization

	Background
	Concepts and Technologies
	Software Defined Networking
	Publish/Subscribe Systems

	Related Work
	SIENA
	Hermes
	REBECA
	JEDI
	BlueDove

	Conclusion

	PLEROMA: SDN-based Publish/Subscribe Middleware
	Publish/Subscribe Paradigm
	Content Space Representation
	Containment Relationship and Events Matching
	IPv4 Adress Formulation

	Content-Based Routing
	Publishers/Subscribers Spanning Trees
	Publishers/Subscribers Paths Creation
	Flows Installment

	Problem Statement

	Hybrid Content-based Publish/Subscribe Middleware
	System Model and Architecture
	Data and Control Planes
	Application Plane

	Filter(s) Selection Problem Formulation
	Filter Benefit Calculation
	Filter Penalty Calculation

	Selection Algorithms
	Switch Selection
	Cluster-based Selection

	Algorithms Complexity
	Conclusion

	Testing and Performance Evaluations
	Experimental Setup
	Hardware SDN-Testbed
	Mininet Emulated Network
	Data Sets

	Experimental Results
	Total Network False Positives
	End-to-End Delay
	Hybrid-Middleware Performance Adjustment
	Hybrid-Middleware Vs. PLEROMA-v Model
	SSA Vs. CSA

	Conclusion & Future Work
	Appendix
	Lists
	List of Abbreviations
	List of Figures

	Bibliography

