172,484 research outputs found

    Analysis of Feature Models Using Alloy: A Survey

    Full text link
    Feature Models (FMs) are a mechanism to model variability among a family of closely related software products, i.e. a software product line (SPL). Analysis of FMs using formal methods can reveal defects in the specification such as inconsistencies that cause the product line to have no valid products. A popular framework used in research for FM analysis is Alloy, a light-weight formal modeling notation equipped with an efficient model finder. Several works in the literature have proposed different strategies to encode and analyze FMs using Alloy. However, there is little discussion on the relative merits of each proposal, making it difficult to select the most suitable encoding for a specific analysis need. In this paper, we describe and compare those strategies according to various criteria such as the expressivity of the FM notation or the efficiency of the analysis. This survey is the first comparative study of research targeted towards using Alloy for FM analysis. This review aims to identify all the best practices on the use of Alloy, as a part of a framework for the automated extraction and analysis of rich FMs from natural language requirement specifications.Comment: In Proceedings FMSPLE 2016, arXiv:1603.0857

    ASlib: A Benchmark Library for Algorithm Selection

    Full text link
    The task of algorithm selection involves choosing an algorithm from a set of algorithms on a per-instance basis in order to exploit the varying performance of algorithms over a set of instances. The algorithm selection problem is attracting increasing attention from researchers and practitioners in AI. Years of fruitful applications in a number of domains have resulted in a large amount of data, but the community lacks a standard format or repository for this data. This situation makes it difficult to share and compare different approaches effectively, as is done in other, more established fields. It also unnecessarily hinders new researchers who want to work in this area. To address this problem, we introduce a standardized format for representing algorithm selection scenarios and a repository that contains a growing number of data sets from the literature. Our format has been designed to be able to express a wide variety of different scenarios. Demonstrating the breadth and power of our platform, we describe a set of example experiments that build and evaluate algorithm selection models through a common interface. The results display the potential of algorithm selection to achieve significant performance improvements across a broad range of problems and algorithms.Comment: Accepted to be published in Artificial Intelligence Journa

    Automated generation of computationally hard feature models using evolutionary algorithms

    Get PDF
    This is the post-print version of the final paper published in Expert Systems with Applications. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2014 Elsevier B.V.A feature model is a compact representation of the products of a software product line. The automated extraction of information from feature models is a thriving topic involving numerous analysis operations, techniques and tools. Performance evaluations in this domain mainly rely on the use of random feature models. However, these only provide a rough idea of the behaviour of the tools with average problems and are not sufficient to reveal their real strengths and weaknesses. In this article, we propose to model the problem of finding computationally hard feature models as an optimization problem and we solve it using a novel evolutionary algorithm for optimized feature models (ETHOM). Given a tool and an analysis operation, ETHOM generates input models of a predefined size maximizing aspects such as the execution time or the memory consumption of the tool when performing the operation over the model. This allows users and developers to know the performance of tools in pessimistic cases providing a better idea of their real power and revealing performance bugs. Experiments using ETHOM on a number of analyses and tools have successfully identified models producing much longer executions times and higher memory consumption than those obtained with random models of identical or even larger size.European Commission (FEDER), the Spanish Government and the Andalusian Government

    Sentiment Analysis for Words and Fiction Characters From The Perspective of Computational (Neuro-)Poetics

    Get PDF
    Two computational studies provide different sentiment analyses for text segments (e.g., ‘fearful’ passages) and figures (e.g., ‘Voldemort’) from the Harry Potter books (Rowling, 1997 - 2007) based on a novel simple tool called SentiArt. The tool uses vector space models together with theory-guided, empirically validated label lists to compute the valence of each word in a text by locating its position in a 2d emotion potential space spanned by the > 2 million words of the vector space model. After testing the tool’s accuracy with empirical data from a neurocognitive study, it was applied to compute emotional figure profiles and personality figure profiles (inspired by the so-called ‚big five’ personality theory) for main characters from the book series. The results of comparative analyses using different machine-learning classifiers (e.g., AdaBoost, Neural Net) show that SentiArt performs very well in predicting the emotion potential of text passages. It also produces plausible predictions regarding the emotional and personality profile of fiction characters which are correctly identified on the basis of eight character features, and it achieves a good cross-validation accuracy in classifying 100 figures into ‘good’ vs. ‘bad’ ones. The results are discussed with regard to potential applications of SentiArt in digital literary, applied reading and neurocognitive poetics studies such as the quantification of the hybrid hero potential of figures

    LLAMA: Leveraging Learning to Automatically Manage Algorithms

    Full text link
    Algorithm portfolio and selection approaches have achieved remarkable improvements over single solvers. However, the implementation of such systems is often highly customised and specific to the problem domain. This makes it difficult for researchers to explore different techniques for their specific problems. We present LLAMA, a modular and extensible toolkit implemented as an R package that facilitates the exploration of a range of different portfolio techniques on any problem domain. It implements the algorithm selection approaches most commonly used in the literature and leverages the extensive library of machine learning algorithms and techniques in R. We describe the current capabilities and limitations of the toolkit and illustrate its usage on a set of example SAT problems
    • …
    corecore