10 research outputs found

    SPHR-SAR-Net: Superpixel High-resolution SAR Imaging Network Based on Nonlocal Total Variation

    Full text link
    High-resolution is a key trend in the development of synthetic aperture radar (SAR), which enables the capture of fine details and accurate representation of backscattering properties. However, traditional high-resolution SAR imaging algorithms face several challenges. Firstly, these algorithms tend to focus on local information, neglecting non-local information between different pixel patches. Secondly, speckle is more pronounced and difficult to filter out in high-resolution SAR images. Thirdly, the process of high-resolution SAR imaging generally involves high time and computational complexity, making real-time imaging difficult to achieve. To address these issues, we propose a Superpixel High-Resolution SAR Imaging Network (SPHR-SAR-Net) for rapid despeckling in high-resolution SAR mode. Based on the concept of superpixel techniques, we initially combine non-convex and non-local total variation as compound regularization. This approach more effectively despeckles and manages the relationship between pixels while reducing bias effects caused by convex constraints. Subsequently, we solve the compound regularization model using the Alternating Direction Method of Multipliers (ADMM) algorithm and unfold it into a Deep Unfolded Network (DUN). The network's parameters are adaptively learned in a data-driven manner, and the learned network significantly increases imaging speed. Additionally, the Deep Unfolded Network is compatible with high-resolution imaging modes such as spotlight, staring spotlight, and sliding spotlight. In this paper, we demonstrate the superiority of SPHR-SAR-Net through experiments in both simulated and real SAR scenarios. The results indicate that SPHR-SAR-Net can rapidly perform high-resolution SAR imaging from raw echo data, producing accurate imaging results

    Real-time Ultrasound Signals Processing: Denoising and Super-resolution

    Get PDF
    Ultrasound acquisition is widespread in the biomedical field, due to its properties of low cost, portability, and non-invasiveness for the patient. The processing and analysis of US signals, such as images, 2D videos, and volumetric images, allows the physician to monitor the evolution of the patient's disease, and support diagnosis, and treatments (e.g., surgery). US images are affected by speckle noise, generated by the overlap of US waves. Furthermore, low-resolution images are acquired when a high acquisition frequency is applied to accurately characterise the behaviour of anatomical features that quickly change over time. Denoising and super-resolution of US signals are relevant to improve the visual evaluation of the physician and the performance and accuracy of processing methods, such as segmentation and classification. The main requirements for the processing and analysis of US signals are real-time execution, preservation of anatomical features, and reduction of artefacts. In this context, we present a novel framework for the real-time denoising of US 2D images based on deep learning and high-performance computing, which reduces noise while preserving anatomical features in real-time execution. We extend our framework to the denoise of arbitrary US signals, such as 2D videos and 3D images, and we apply denoising algorithms that account for spatio-temporal signal properties into an image-to-image deep learning model. As a building block of this framework, we propose a novel denoising method belonging to the class of low-rank approximations, which learns and predicts the optimal thresholds of the Singular Value Decomposition. While previous denoise work compromises the computational cost and effectiveness of the method, the proposed framework achieves the results of the best denoising algorithms in terms of noise removal, anatomical feature preservation, and geometric and texture properties conservation, in a real-time execution that respects industrial constraints. The framework reduces the artefacts (e.g., blurring) and preserves the spatio-temporal consistency among frames/slices; also, it is general to the denoising algorithm, anatomical district, and noise intensity. Then, we introduce a novel framework for the real-time reconstruction of the non-acquired scan lines through an interpolating method; a deep learning model improves the results of the interpolation to match the target image (i.e., the high-resolution image). We improve the accuracy of the prediction of the reconstructed lines through the design of the network architecture and the loss function. %The design of the deep learning architecture and the loss function allow the network to improve the accuracy of the prediction of the reconstructed lines. In the context of signal approximation, we introduce our kernel-based sampling method for the reconstruction of 2D and 3D signals defined on regular and irregular grids, with an application to US 2D and 3D images. Our method improves previous work in terms of sampling quality, approximation accuracy, and geometry reconstruction with a slightly higher computational cost. For both denoising and super-resolution, we evaluate the compliance with the real-time requirement of US applications in the medical domain and provide a quantitative evaluation of denoising and super-resolution methods on US and synthetic images. Finally, we discuss the role of denoising and super-resolution as pre-processing steps for segmentation and predictive analysis of breast pathologies

    Innovative Techniques for the Retrieval of Earth’s Surface and Atmosphere Geophysical Parameters: Spaceborne Infrared/Microwave Combined Analyses

    Get PDF
    With the advent of the first satellites for Earth Observation: Landsat-1 in July 1972 and ERS-1 in May 1991, the discipline of environmental remote sensing has become, over time, increasingly fundamental for the study of phenomena characterizing the planet Earth. The goal of environmental remote sensing is to perform detailed analyses and to monitor the temporal evolution of different physical phenomena, exploiting the mechanisms of interaction between the objects that are present in an observed scene and the electromagnetic radiation detected by sensors, placed at a distance from the scene, operating at different frequencies. The analyzed physical phenomena are those related to climate change, weather forecasts, global ocean circulation, greenhouse gas profiling, earthquakes, volcanic eruptions, soil subsidence, and the effects of rapid urbanization processes. Generally, remote sensing sensors are of two primary types: active and passive. Active sensors use their own source of electromagnetic radiation to illuminate and analyze an area of interest. An active sensor emits radiation in the direction of the area to be investigated and then detects and measures the radiation that is backscattered from the objects contained in that area. Passive sensors, on the other hand, detect natural electromagnetic radiation (e.g., from the Sun in the visible band and the Earth in the infrared and microwave bands) emitted or reflected by the object contained in the observed scene. The scientific community has dedicated many resources to developing techniques to estimate, study and analyze Earth’s geophysical parameters. These techniques differ for active and passive sensors because they depend strictly on the type of the measured physical quantity. In my P.h.D. work, inversion techniques for estimating Earth’s surface and atmosphere geophysical parameters will be addressed, emphasizing methods based on machine learning (ML). In particular, the study of cloud microphysics and the characterization of Earth’s surface changes phenomenon are the critical points of this work

    Novel Video Completion Approaches and Their Applications

    Get PDF
    Video completion refers to automatically restoring damaged or removed objects in a video sequence, with applications ranging from sophisticated video removal of undesired static or dynamic objects to correction of missing or corrupted video frames in old movies and synthesis of new video frames to add, modify, or generate a new visual story. The video completion problem can be solved using texture synthesis and/or data interpolation to fill-in the holes of the sequence inward. This thesis makes a distinction between still image completion and video completion. The latter requires visually pleasing consistency by taking into account the temporal information. Based on their applied concepts, video completion techniques are categorized as inpainting and texture synthesis. We present a bandlet transform-based technique for each of these categories of video completion techniques. The proposed inpainting-based technique is a 3D volume regularization scheme that takes advantage of bandlet bases for exploiting the anisotropic regularities to reconstruct a damaged video. The proposed exemplar-based approach, on the other hand, performs video completion using a precise patch fusion in the bandlet domain instead of patch replacement. The video completion task is extended to two important applications in video restoration. First, we develop an automatic video text detection and removal that benefits from the proposed inpainting scheme and a novel video text detector. Second, we propose a novel video super-resolution technique that employs the inpainting algorithm spatially in conjunction with an effective structure tensor, generated using bandlet geometry. The experimental results show a good performance of the proposed video inpainting method and demonstrate the effectiveness of bandlets in video completion tasks. The proposed video text detector and the video super resolution scheme also show a high performance in comparison with existing methods

    KOLMOGOROV-SMIRNOV TYPE TESTS UNDER SPATIAL CORRELATIONS

    Get PDF
    Kolmogorov-Smirnov test is a non-parametric hypothesis test that measures the probability of deviations, that the interested univariate random variable is drawn from a pre-specified distribution (one-sample KS) or has the same distribution as a second random variable (twosample KS). The test is based on the measure of the supremum (greatest) distance between an empirical distribution function (EDF) and a pre-specified cumulative distribution function (CDF) or the largest distance between two EDFs. KS test has been widely adopted in statistical analysis due to its virtue of more general assumptions compared to parametric test like t-test. In addition, the p-value derived from the KS test is more robust and distribution-free for a large class of random variables. However, the fundamental assumption of independence is usually overlooked and may potentially cause inaccurate inferences. The KS test in its original form assumes the interested random variable to be independently distributed while it’s not true in a lot of nature datasets, especially when we are dealing with more complicated situations like imgage analysis, geostatistical which may involve spatial dependence. I proposed a modified KS test with adjustment via spatial correlation. The dissertation concerns the following three aims. First, I conducted a systematical review on the KS test, the Cramer von Mise test, the Anderson-Darling test and the Chi-square test and evaluate their performance under normal distributions, Weibull distributions and multinomial distributions. In the review, I also studied how these tests perform when random variables are correlated. Second, I proposed a modified KS test that corrects the bias in estimating CDF/EDF when spatial dependence exists and calculate the informative sample size. Finally, I conducted a revisit analysis of coronary flow reserve and pixel distribution of coronary flow capacity by Kolmogorov-Smirnov with spatial correction to evaluate the efficiency of dipyridamole and regadenoson

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    Computational and Numerical Simulations

    Get PDF
    Computational and Numerical Simulations is an edited book including 20 chapters. Book handles the recent research devoted to numerical simulations of physical and engineering systems. It presents both new theories and their applications, showing bridge between theoretical investigations and possibility to apply them by engineers of different branches of science. Numerical simulations play a key role in both theoretical and application oriented research
    corecore