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Kolmogorov-Smirnov test is a non-parametric hypothesis test that measures the probability

of deviations, that the interested univariate random variable is drawn from a pre-specified

distribution (one-sample KS) or has the same distribution as a second random variable (two-

sample KS). The test is based on the measure of the supremum (greatest) distance between

an empirical distribution function (EDF) and a pre-specified cumulative distribution function

(CDF) or the largest distance between two EDFs. KS test has been widely adopted in statistical

analysis due to its virtue of more general assumptions compared to parametric test like t-test. In

addition, the p-value derived from the KS test is more robust and distribution-free for a large

class of random variables. However, the fundamental assumption of independence is usually

overlooked and may potentially cause inaccurate inferences. The KS test in its original form

assumes the interested random variable to be independently distributed while it’s not true in

a lot of nature datasets, especially when we are dealing with more complicated situations like

imgage analysis, geostatistical which may involve spatial dependence.

I proposed a modified KS test with adjustment via spatial correlation. The dissertation

concerns the following three aims. First, I conducted a systematical review on the KS test, the

Cramer von Mise test, the Anderson-Darling test and the Chi-square test and evaluate their

performance under normal distributions, Weibull distributions and multinomial distributions.

In the review, I also studied how these tests perform when random variables are correlated.

Second, I proposed a modified KS test that corrects the bias in estimating CDF/EDF when

spatial dependence exists and calculate the informative sample size. Finally, I conducted a



revisit analysis of coronary flow reserve and pixel distribution of coronary flow capacity by

Kolmogorov-Smirnov with spatial correction to evaluate the efficiency of dipyridamole and

regadenoson.
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Introduction

Kolmogorov-Smirnov Test

Andrey Kolmogorov (1903-1987) was a mathematician born in the Soviet Union. His study

covered areas of probability theory, topology, intuitionistic logic, turbulence, classical mechanics,

algorithmic information theory and computational complexity (Stephens, 1992). Among his

prominent contributions to many fields of mathematics and statistics, the Kolmogorov statistic is

a commonly-used statistic to test the equality of an empirical distribution function (EDF) and a

given cumulative distribution function (CDF) (Stephens, 1992). In the year of 1933, Kolmogorov

published a short but landmark paper, in which he formally defined empirical distribution

function (EDF), in the Italian Giornale dell’Istituto Italiano degli Attuari (Kolmogorov, 1933).

To define the empirical distribution function, let set x1, x2, . . . , xi−1, xi, . . . , xn be the

realizations of random variables X having the F (x) = pr(X < x). Similarly, let

y1, y2, . . . , yi−1, yi, . . . , ym be the realizations of random variables Y having theG(y) = pr(Y <

y). Put

ε(x) = I(xi ≤ x)

Then the EDF of X is defined as:

Fn(x) =
1

n

n∑
i=1

ε(xi)

1



It could be easily seen that the EDF Fn(x) is the portion of x1, x2, . . . , xi−1, xi, . . . , xn of

X below x. It comes naturally to ask how close EDF Fn(x) is to its corresponding CDF F(x).

To answer this question, Kolmogorov studied and gave the asymptotic distribution of EDF.

This led to the definition of Kolmogorov statistic (or Kolmogorov-Smirnov statistic) D and the

distribution of D given finite sample size n was derived (Kolmogorov, 1933).

D = sup
x
|Fn(x)− F (x)|

where the supx is the supremum function defined as the least upper bound of all absolute

distance sets between the EDF Fn(x) and CDF F(x).

Kolmogorov’s sutdent Smirnov extended Kolmogorov’s original one-sample KS statistic

into the two sample version of the KS statistic, which is defined as (N. V. Smirnov, 1939)

Dn,m = sup
x
|Fn(x)−Gm(x)|,

where Gm(x) is the EDF of random variable Y .

The Kolmogorov-Smirnov Type Statistics and Its Variants

Later, Smirnov proposed the Cramer-von Mises statistic (CvM statistic) ω2, which can be

viewed as an extension of KS statistic, based on Cramer’s work in 1928 and von Mises’s work

in 1931 (von Mises, 1931; N. V. Smirnov, 1937; Mises, 1928). In which, Smirnov also found

the asymptotic distribution of ω2, in the form of a sum of weighted chi-squared variables.

ω2 =

∫ ∞
−∞

[Fn(x)− F (x)]2f(x)dx

2



Anderson commented on the distribution of the two-sample CvM statistic, which is defined

as followed (Anderson, 1962).

ω2
2 =

nm

n+m

∫ ∞
−∞

[Fn(x)−Gm(x)]2dH(x)

Where H(x) is the empirical function of the combination of two samples together,

H(x) =
nF (x) +mG(x)

n+m

Anderson also worked out the expected value, E(ω2
2), and variance, var(ω2

2), of the asymptotic

distribution of ω2
2 .

E(ω2
2) = 1

6
+ 1

6(m+n)

V ar(ω2
2) = 1

45
× m+n+1

(m+n)2
× 4mn(m+n)−3(m2+n2)−2mn

4mn

The way to use the asymptotic distribution of two-sample CvM statistic for hypothesis

testing will be based on the standardized statistic W 2 defined as

W 2 =
ω2
2 − E(ω2

2)

[45V ar(ω2
2)]

1
2

+
1

6

Reject H0 if W 2 > W 2
α . The critical value W 2

α at the significance level of α = 0.01 and

α = 0.05 has been worked out by Anderson (Anderson, 1962).

3



Extension of Kolmogorov-Smirnov Type Statistic on Discontinuous Distri-

bution

Researchers extended the discrete CvM into the scope of k-sample CvM for discrete distribution

or continuous distribution being grouped. Consider ordered observations Z∗1 , . . . Z
∗
L as the L

distinct pooled sample of X and Y (Brown, 1982, 1994; Lockhart, Spinelli, & Stephens, 2007).

Let

k1 = n

k2 = m

The two-sample CvM for discrete distribution is defined as followed

W 2
d =

2∑
i=1

ki

L∑
j=1

(Sij − Tij)2pj

where for ordered observations Z∗1 , . . . Z
∗
L, pj is the probability of falling into group j. S1j is

the number of observations in X not greater than Z∗j , S2j is the number of observations in Y

not greater than Z∗j .

Tij = ki

j∑
i=1

pl

and (n+m)pj is the number of observations of a pooled sample of X and Y coinciding with z∗j .

The asymptotic distribution has been worked out by Sun. If W 2
d > ω2

(d,α), then we reject H0.

By modifying the weight factor of CvM statistic, T. W. Anderson and D. A. Darling (1952)

proposed the Anderson Darling statistic (AD statistic) A.

A2 = n

∫ ∞
−∞

[Fn(x)− F (x)]2

F (x)[1− F (x)]
f(x)dx

4



Later in 1987, F.W. Scholz and M. A. Stephens proposed an extension for k-sample AD

statistic. In this paper, we only used the two-sample version which has the form as followed.

(Scholz & Stephens, 1987)

A2
n,m =

mn

N

∫ ∞
−∞

[Fm(x)−Gn(x)]2

HN(x)[1−HN(x)]
dHN(x)

where

HN(x) =
mFm(x) + nGn(x)

N
, with N = m+ n

The asymptotic distribution of A2
n,m under H0 is

A2
n,m =

∞∑
j=1

1

j(j + 1)
χ2
j

where χ2
j are independent chi-squared random variables with 1 degree of freedom. In order

to compute the statistic given sample X and Y . Given ordered observations Z1, . . . , ZN as the

pooled sample of X and Y . Formulas on how to calculate the AD statistic under the assumption

that samples were from continuous and discrete parent population is given as followed,

A2
n,m =

1

N

2∑
i=1

1

ki

N−1∑
j

(NMij − jki)2

j(N − j)

where M1j is the number of observations in X not greater than Zj and M2j is the number of

observations in Y not greater than Zj and

k1 = n

k2 = m

In order to deal with the situation when X and Y are from the discrete population, or from

the continuous population but being grouped, let ordered observations Z∗1 , . . . , Z
∗
L as the L

5



distinct pooled sample of X and Y . AD statistic under discrete setting is defined as follows.

A2
n,m =

2∑
i=1

1

ki

L−1∑
j

lj
N

(NMij −Bjki)
2

Bj(N −Bj)

Where f1j be the number of observations in X coinciding with Z∗j , f2j be the number of

observations in Y coinciding with Z∗j and let

lj = f1j + f2j

Mij = fi1 + · · ·+ fij

Bj = l1 + · · ·+ lj

Pettitt worked out an approximation formula to calculate the variance of A2
n,m. (Pettitt &

Stephens, 1977)

var(A2
n,m) =

2(π2 − 9)

3
× (1− 3.1

N
)

The test procedure for AD test is as follows,

1. Compute A2
n,m by the formula in respect to its parent distribution

2. Compute

TN =
(A2

n,m − 1)

σN

where

σ2
N = var(A2

n,m)

3. Reject H0 if

TN > tα

The critical value tα has been derived by Pettitt (Pettitt & Stephens, 1977) and confirmed

through the Monte Carlo simulation by Scholz (Scholz & Stephens, 1987).

6



Choulakian extended the Cramer-von Mises statistic into the scope for discrete distributions

or continuous distributions being grouped. (Choulakian, Lockhart, & Stephens, 1994) Consider

x∗1, . . . , x
∗
L as the ordered L-distinct sample of X .

W 2
2 =

1

n

L∑
j=1

(Sj − Tj)2pj

Where oj is the number of observations coinciding with x∗j , then

Sj =
∑j

i=1 oi

Tj =
∑j

i=1Npi

Reject the null hypothesis if the statistic is larger than the critical values of W 2
2 .

On the other hand, the Chi-squared test is also a popular test that has been widely adopted.

Similar to the EDF based tests, Chi-squared tests also has One-sample and Two- sample version.

χ2 =
2k∑
i=1

(Oi − Ei)2

Ei

From the formula above, we can see that χ2 statistic is the summation of deviations of the

observed number and expected number in ith bin divided by the expected number in ith bin.

One sample χ2 statistic is asymptotically distributed in chi-squared distribution with k-1 degrees

of freedom.

χ2
2 =

∑k
i=1

(K1O1i−K2O2i)
2

O1i+O2i

K1 =
√
n2/n1

K2 =
√
n1/n2

7



Asymptotically, the two-sample statistic χ2 follows a chi-square distribution with (k − c)

degrees of freedom where k is the number of non-empty bins and c = 1 if the sample sizes of

X and Y are equal, c = 0 otherwise. Critical value will be χ2
(1−α,k−c), at the nominal level of α.

The chi-squared test used here has two versions, one for continuous data and one for

discrete data. The discrete data one is directly from the popular package stats and has been

reported to be reliable. (Arnold & Emerson, 2011) The continuous one is from a categorized

version chi-squared test, the grouping algorithm in which the test is reported to be one of the

optimization algorithms. (D’Agostino & Stephens, 1986)

1. If sample size n ≤ 35, then the number of bins

Bn = bn
5
c

Bn which is the largest integer not greater than n/5. Therefore to ensure there’s at least 5

samples in each bin

2. If sample size n > 35, then the number of bins

Bn = b1.88× n
2
5 c

which is the largest integer not greater than 1.88× n 2
5 .

3. Cut the range of data into n bins (x1, xb n
bn
c), (x1+b n

bn
c, x n

bn
), . . . , (x1+b n

bn
c, xn)

4. Test if the number of samples in each bin same as expected. Reject if such statistic is

large than the critical value.

Since Kolmogorov’s introduction of the EDF based test, Kolmogorov-Smirnov test has

been increasingly popular in analyzing data from clinical trials. By the virtue of its relatively

less strict assumptions on the dataset to be applied, e.g. its distribution-free properties. The
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nature advantage of being generally more powerful than χ2 test (Pettitt & Stephens, 1977). The

KS test has been widely appreciated for test the distribution equality.

In many ways, the KS test seems like a safe choice and popular for spatial statistics analysis.

Researchers have been applying it for testing the equality of sample distributions of realizations

across map (Berman, 1986; P. Clifford, Richardson, & Hémon, 1989) . It is also common to see

KS test being applied to test the histogram frequency similarities and for discriminate images

(Demidenko, 2004).

However, the independence assumption is one of the very fundamental and easily overlooked

assumptions of a statistical model. Without taking care of the effect of correlations between

samples, positive linear correlations may result in the underestimation of type I error of the KS

test and vice versa (Weiss, 1978) .

Kolmogorov-Smirnov test has been used to discriminate image difference. Published papers

have confirmed the efficiency of KS test being applied in the imaging process and histogram

analysis (Lampariello, 2000). Lim showed that the KS test has relatively higher power compared

to Wilcoxon and t-test when the variation is relatively large (Lim & Jang, 2002). Geman used

KS test for discriminating homogeneous maps by pixel gray levels distribution (Geman, Geman,

Graffigne, & Dong, 1990). The interpretation ability rendered its favourable position in clinical

fields. Clinically, published reports suggested that KS test were valid for analyzing MR scans

comparison (Chen, Sans, Bogdanov, & Weissleder, 2006; F. Baselice, 2017; Rajan, Dekker, &

Sijbers, 2014). Kipritidis used KS test for CT/PET scans and Brook applied histogram analysis

with KS for spectral CT scans to evaluate the artifacts reduction (Kipritidis et al., 2016; Brook

et al., 2012) .
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Measure of Dependence

Directly measure the relationship between variables is relatively hard and usually inaccessible.

One of the statistical tools involving dependence is the measure of correlation. Correlation

coefficient has been used to measure correlations; it is usually being standardized from -1 to 1.

A value of 1 of correlation coefficient means a perfect positive correlation between samples and

vice versa. A weak correlation is indicated by a correlation coefficient with a value close to 0.

Linear Correlation Coefficient

The linear correlation measures the correlation relationship between samples linearly. Published

reports have introduced multiple linear correlation coefficients includes Pearson’s r, Spearman’s

ρ, intra-class correlation coefficient and other coefficients for different purposes and situations.

Pearson’s r correlation coefficient

The most widely used measure of correlation in statistics is Pearson’s r. It is a coefficient

measuring the correlation introduced by Karl Pearson in 1895 in Proceeding of the Royal

Society of London with his landmark paper Note on the regression and inheritance in the case

of two parents (Pearson, 1895).

Give a population of n subjects with bivariate outcome X and Y for each subject in the

population. Originally, Pearson’s r for X and Y is defined as

r =

∑n
i=1 (yi − µX)(yi − µY )√∑n

i=1 (xi − µX)
√∑n

i=1 (yi − µY )

Where µx and µy are the mean values for X and Y, respectively.
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Pearson’s r is the most popular correlation coefficient due to the reasons that it is easy

to calculate and interpret and it is invariant to linear transform. However, sound inference of

linear correlation between two random variables dependends on strict assumptions, such as

continuous and normally distributed. When, unfortunately, random variables do not meet the

these assumptions, though one can still calculate the Pearson’s r, it is hard to interpret and thus

not be informative.

Intra-class Correlation Coefficient

Similar to Pearson’s r, intra-class correlation (ICC) is a measure of how good one variable

resembles the other. It is commonly used to measure the agreement for continuously paired

outcomes. Ronald Fisher (1925) first proposed the original idea of ICC in Statistical Methods

for Research Workers (Fisher, 1925).

Consider two paired random variables X = x1, x2, . . . , xi and Y = y1, y2, . . . , yi, Fisher’s

original ICC was defined as

r =
1

ns2

n∑
i=1

(xi − µ)(yi − µ)

where

µ =
1

2n

n∑
i=1

(xi + yi),

s2 =
1

2n

n∑
i=1

[(xi − µ)2 + (yi − µ)2]

Later in 1934, Fisher introduced a form of ICC based on analysis of variance model (Fisher,

1934). More recently in 1980, Donner introduced a form of ICC within the scope of the linear
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mixed model that has been more popular credited to its virtue of parsimony (Donner & Koval,

1980).

Consider a linear mixed-effects model with n subjects from k groups. Let yij denotes ith

subject from jth group,

Yij = µ+ βi + εij; i = 1, 2, . . . , n; j = 1, 2, . . . , k

where

βi ∼ N(0, σ2
β)

εij ∼ N(0, σ2)

It is easy to derive that ICC in the linear mixed-effects model is defined as the ratio of

variance within the group and total variance

ρICC =
σ2
beta

σ2
beta + σ2

Under the linear mixed-effects model setting, ICC and Pearson’s r are comparable as

standardized coefficients that measure the linear correlation between random variables when k

= 2. ICC has advantages over Pearson’s r due to following factors, 1. Unlike the calculation of

Pearson’s r, where each variable is centered and scaled by its own mean and standard deviation,

ICC calculated mean based on pooled population. When the interested variables are paired, a

mean from the pooled population would be more reasonable. 2. When ICC is calculated from

the linear mixed model, it can be applied to cases where there are more than 2 groups, whereas

Pearson’s r can only measure the correlation of bivariate variables. One of the common negative
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aspects of linear correlation coefficient that need to be noticed is that they may suffer from

assumptions of linear correlation and normal distribution of interested random variables.

Non-linear Correlation Coefficient

The scope of non-linear correlation coefficient includes a variety type of measures on the

correlation in samples. Similarly to the linear correlation coefficient, most of the values from

standardized non-linear correlation coefficients range from -1 to 1. A non-linear correlation

coefficient of 1 is interpreted as the perfect correlating of samples, and vice versa.

Spearman’s ρ

Spearman’s ρ is another popular correlation coefficient introduced by Charles Spearman (1904).

(Spearman, 1904) Spearman published the article The Proof and Measurement of Association

between Two Things in the American Journal of Psychology as “a commencement at attempting

to remedy”. Unlike linear correlation coefficients concerning with continuous outcomes, ρ is

calculated through ranks of random variables which make it available to the discrete or grouped

outcome.

Give a population of sample size n with random variables X and Y . Spearman defined the

correlation coefficient by

ρ =
cov(Rx, Ry)

σxσy

where

• Rx and Ry are ranks of random variables X and Y ,

• cov(Rx, Ry) is the covariance of Rx and Ry,
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• σx and σy are standard deviations of ranks Rx and Ry.

It is worth noticing that there is another popular form of ρ as

ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)

where

di = Rx −Ry is the difference between each pair of ranks.

Kendall’s τ

Kendall’s τ is a correlation coefficient measuring the non-linear correlation among bivariate

random variables. It is commonly used when a researcher is curious about the non-parametric

property. (Kendall, 1938) Kendall’s τ was first introduced by Maurice Kendall (1938) titled

A New Measure of Rank Correlation in Biometrika. Consider a population of n subject with

bivariate random variables X and Y . Kendall’s τ is defined by

τ =
nc − nd

1
2
n(n− 1)

Any pair of (xi, yi) and (xj, yj), where i 6= j, are concordant if Xi < Xj and Yi < Yj

or if Xi > Xj and Yi > Yj . Pairs are considered discordant if Xi < Xj and Yi > Yj or if

Xi > Xj and Yi < Yj . The number of concordant and discordant pairs are denoted as nc and

nd, respectively.

Spatial Correlation Coefficient

In the setting of spatial statistics, the correlation relationship between samples are not only

in values but also depend on the spatial locations. Assume realizations from each location

were sampled from the same parent distribution, the correlation relathionship between each
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realizations in each location were the same as the correlation of a variable with itself through

space. Therefore, the correlation relationship under spatial setting is usually referred as the

spatial autocorrelation.

Before the introduction of spatial autocorrelation, firstly we need to define the spatial data.

There are three main categories of spatial data (N. Cressie, 1992):

• Point pattern:

- When a spatial process is observed at a set of locations and the locations themselves

are of interest. e.g. galaxies in space

• Geostatistical data:

- When a spatial process that varies continuously is observed only at a few points e.g.

mineral concentrations at various drilling locations

• Lattice data:

- When a spatial process is observed on a regular or irregular grid. Often this arises due

to aggregation of some sort, e.g. averages over a pixel in an image

Many spatial correlation coefficients have been proposed to evaluate the spatial autocorrela-

tion relationship. In order to define the spatial relationship mathematically, a good amount of

correlation functions has been introduced as followed.

Moran’s I

In the field of spatial statistics, things got more complicated when researchers are trying to

calculate the correlation coefficient. Because there are random variables and there is also

distance between each pair of subjects. To account for the effect of distance, Patrick Moran
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(1950) proposed a spatial autocorrelation coefficient in his paper of Notes on Continuous

Stochastic Phenomena in Biometrika. (Moran, 1950)

Give a population of N spatial subjects with random variable X , wij denotes the preset

weight between ith and jth subjects. Moran’s I is defined as

I =
N

S

∑N
i=1

∑N
j=1wij(xi − µ)(xj − µ)∑N

j=1(xi − µ)2

Where

S =
N∑
i=1

N∑
j=1

wij

µ = E(X)

Later in 1995, a local Moran’s I was introduced by Anselin (Anselin, 1995). After the

introduction of local Moran’s I, researchers are able to analyze not only the global spatial

autocorrelation of the geostatistical data but also be provided with a tool to analyze the local

spatial relationship.

Ii =

∑N
j=1,j 6=iwij(xi − µ)(xj − µ)∑N

j=1,j 6=i wij

N−1 − µ2

It is easy to show that under large sample, the global Moran’s I is the average of local

Moran’s I, ∑N
i=1 Ii
N

= I

Different from global Moran’s I, the value of local Moran’s I is calculated for each obser-

vation unit. Different patterns or processes may occur in different parts of the region, local

Moran’s I provide us tool to precisely identify regions that have serious spatial autocorrelation

influence.
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D Statistic

Similar to the rank statistic for traditional samples, Walter proposed a statistic to account for the

auto-correlation relationship.

Let Yi = y1, y2, . . . , yn be realizations in the map location s1, s2, . . . , sn. The D statistic is

defined as followed,

D =
∑

i=1,...,n

∑
j=1,2,...,n,i=j

wijh(rank(xi), rank(xj))

where the wij is the weight function. The weight function wij may be the inverse distance

function or the neighboring weight function.

Dejian showed the asymptotic distribution of the standardized D statistic, which is defined

as D statistic subtract mean and divided by its standard deviation. (Lai, 1997) However, the

standardized D statistic ranges from −∞to∞ and therefore not be able to be directly used for

comparing the autocorrelation relationship in different maps.

Cariovascular Disease and Nuclear Stress Test

Cardiovascular disease

Cardiovascular disease (CVD) generally refers to conditions that involve narrowed or blocked

blood vessels that can lead to a heart attack, chest pain (angina) or stroke. It is an umbrella term

that commonly includes the coronary artery disease (CAD), cerebrovascular disease, peripheral

arterial disease, rheumatic and congenital heart diseases and venous thromboembolism.(Stewart,

Manmathan, & Wilkinson, 2017) CVD is the top killer in the US that accounts for more than

836,000 deaths in 2018. The deaths caused by CVD accounts for 1 of every 3 deaths in the US
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and is more than the deaths caused by all forms of cancer combined. Among the total deaths

caused by CVD, coronary heart disease(CHD) or coronary artery disease accounts for more

than 40% of total CVD deaths and is the leading cause of CVD. Published reports projected that

in the year of 2018, about 720,000 Americans had a new coronary event and half of them will

have recurrent coronary events. (AHA guideline 2018)

CAD is usually caused by the plaque builds up in cardio arteries. As plaque builds up in the

arteries of a person with heart disease, the inside of the arteries begins to narrow, which lessens

or blocks the flow of blood. Plaques can also rupture and when they do a blood clot can form

on the plaque, blocking the flow of blood. Over time, CAD can weaken the heart muscle. This

may lead to heart failure, a serious condition where the heart can’t pump blood the way that it

should, or an irregular heartbeat, or arrhythmia, also can develop. The amount of damage to the

heart muscle is positively correlated with the time untreated.

Risk factors of CVD are the use of tobacco, unhealthy diet habits, physical inactivity,

obesity, Cholesterol, and psychosocial stress. However, the WHO estimated that about 75% of

the total cases of CVD is preventable.(technical report series, 2003) The time of diagnosis of a

premature coronary event is essential to prevent CVD deaths. The diagnosis strategy includes

electrocardiogram (ECG), echocardiogram, stress test, cardiac catheterization and angiogram,

and heart scan.

Electrocardiogram (ECG)

The nature behind the ECG theory is that the heart beats are stimulated by electrical impulses

that are generated by certain cells in heart. To record the heart rhythm, electrical impulses were

recorded. Then the heart rhythm may be indirectly computed. ECG is a common test to use for

diagnosis of heart problems and monitor heart health status by recording the electrical signal.

During the ECG test, sensors will be placed on the chest or limbs of the patients. Electrical

signal will be collected by the sensors and report in almost simultaneous results. ECG is a

popular diagnostic strategy for CAD as its nice property of non-invasive and able to record heart
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activity continuously.(Liang et al., 2017) However, due to the natural limitation, ECG may only

record electrical signals.(Gulamhusein et al., 1982)

Echocardiogram

An echocardiogram is a test that uses ultrasound waves to produce heart images. The natural

theory of the echocardiogram is that the sensor may receive reflected ultrasound signals trans-

mitted through various locations on the chest wall. An echocardiogram image is able to provide

physicians with a comprehensive and detailed image of the whole heart and in continuous time.

However, the quality of the image may be affected by various factors and may suffer from poor

quality or reproductive issue.(Gottdiener, 2003)

Cardiac catheterization and angiogram

Cardiac catheterization is an invasive strategy for diagnosis of CAD. The invasive strategy

means that different from the non-invasive diagnosis method, cardiac catheterization involves

putting sensors directly into the heart vessels. To perform the catheterization, a thin, hollow tube

is implemented to a large blood vessel that leads to heart.(Swan et al., 1970) Then it records the

blood flow. Usually, an angiogram will be done simultaneously and provide an x-ray image of

heart for physicians. The advantage of cardiac catheterization is that the process let the physician

analyze the blood flow in heart and cardiac angiogram in real time. However, published reports

claimed multiple risk factors such as chemically diagnosed acute renal dysfunction(Rich &

Crecelius, 1990) and minor problems like bruises, feel of itchy or hives or sick in stomachs.(Kern

et al., 2006; Cosman, Arthur, & Natarajan, 2011) Cardiac catheterization is a direct and accurate

way to evaluate the heart’s function. (de Bruyne et al., 1988)

Stress test and heart scan

A stress test, by its name, is a test that helps physicians to understand how the heart responds

to external stress. Usually, a stress test is carried out through obtaining the heart activity in

rest compare to in exercise. A common way of the activity form is to ask patients to run in a

treadmill or pedaling on a stationary bicycle. Throughout the exercise stress test, patients are
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attached with several sensors on the chest, arm and other places on the body to measure the

hearts activity. Usually, ECG, breathing, blood pressure, heart rhythm will be recorded for the

diagnosis purpose. During the exercise pressure, heart is required to pump more blood and

therefore physicians may learn the function of the heart. The exercise stress test is popular due

to the simplicity to implement, however, it may lack generality for patients who cannot exercise

or the heartbeat did not increase enough with exercise. The alternative of exercise stress test

are the nuclear stress test and combined nuclear-exercise stress test.(Lette et al., 1995; Dowsley

et al., 2013; Dahan et al., 2002)

Nuclear Stress Test

To account for the needs of stress test for patients without the ability to do the exercise on

pedaling machine or heart rate did not go up enough, a nuclear stress test may be done instead.

To evaluate the ability that heart responds to stress, we may involve an invasive strategy, such

as coronary angiography, as well as non-invasive strategy such as positron emission tomography

(PET)/ computed tomography (CT). Published reports find the non-invasive strategy to be both

efficient and accurate. (Danad et al., 2017; Raff, Gallagher, O’Neill, & Goldstein, 2005)

Myocardial perfusion PET is a non-invasive imaging tool for diagnosis of cardiovascular

disease.(Carli et al., 2007) In order to take the rest image, patients were given a dose of

radiotracer. After a suitable waiting period to ensure proper distribution of the radiotracer, a PET

image is taken for rest image. it is a non-invasive way to take photos of the blood flow in your

heart. To take the stress PET scan, a medication, for example, adenosine, will be administered. it

helps open coronary arteries and causes more blood to flow and simulates the effect of exercise

for patients who cannot exercise on a treadmill. Then the image will be taken again as the in

stress condition. The nuclear imaging process provides a strategy that quantifies the absolute

values of myocardial blood flow. In addition, with the absolute myocardial values, it is possible
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to use certain statistical methods to assist the diagnosis process and improve sensitivity.(Cremer,

Hachamovitch, & Tamarappoo, 2014)

The medication that typically used for nuclear stress test includes adenosine and regadeno-

son. Dipyridamole was first introduced in 1959 as an antianginal medication and was used for va-

sodilator stress imaging after proved to have vasodilator properties (Picano, 1989). Later, adeno-

sine was introduced as an alternative to dipyridamole in 1994 (Cerqueira, Verani, Schwaiger,

Heo, & Iskandrian, 1994). In 2005, an adenosine A2A receptor agonist was developed as

regadenoson.(Hendel et al., 2005) Dipyridamole, adenosine, and regadenoson served as alter-

natives to each other and there were trade-offs and arguments in terms of cost, efficiency and

timing protocol.(Johnson & Gould, 2015; Vasu et al., 2013; Pijls & van Lokien X Nunen, 2015;

Gibbs & Lip, 1998; Goudarzi, Fukushima, Bravo, Merrill, & Bengel, 2011; Bravo, Pozios, &

Abraham, 2012)

Attenuation correction

Attenuation is a condition when the coincidence events were not recorded because of their

absorption in the body or other reasons. In a nuclear stress test that produces scans for rest and

stress, attenuation correction (AC) is commonly involved to reduce the effects of attenuation

and to ensure better alignment.
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Coronary flow reserve and physiology beyond it

Myocardial blood flow

In the nuclear stress test, physicians were able to track a consistent portion in the left ventricle

continuously. With the help of PET/CT, we were able to measure the myocardial blood flow

(MBF) quantitatively in ml/min/g. By comparing the absolute difference or ratio of MBF for

patients in rest and MBF for patients in stress, physicians could evaluate the hearts function and

diagnosis for any abnormal condition.

Coronary flow reserve

Coronary flow reserve (CFR) is a relative value of stress and rest myocardial blood flow. The

concept of CFR was firstly introduced by Gould et al. in 1974.(K. Lance Gould, Lipscomb, &

Hamilton, 1974) The introduction of CFR provided a quantitative measurement to evaluate the

ability of the heart to pump blood increasingly when the body demands it. Mathematically, it is

calculated as the ratio of MBF in stress and MBF in rest.

CFR =
MBFinstress
MBFinrest

MBF and CFR are effective tools that help physicians understand how the heart functions

and respond to outside pressure.(Klocke & Lee, 2011) Published reports suggested that the

absolute myocardial perfusion analysis outperformed the relative analysis of myocardial per-

fusion.(Wichmann et al., 2015) In order to have a more comprehensive diagnosis method to

follow. The concept of coronary flow capacity which compared both absolute and relative value

of myocardial perfusion is proposed.
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Coronary flow capacity (CFC)

In order to integrate the CFR with absolute blood flow, a new concept of was approved by the

Food and Drug Administration (FDA) on September 22, 2017. The approval was based on the

comprehensive scientific review from 2012 to 2017. Several published reports(See Gould 2018)

validated the concept and proved its effects to be treat as a biomarker for CAD diagnosis.

Figure 1.1: CFC Scatter Plot of CFR versus Absolute Stress Flow
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CFC CFR Stress perfusion Color Code

Excellent CFR > 2.9 perfusion > 2.17 Red

Typical 2.9 ≥ CFR > 2.38 2.17 ≥ perfusion > 1.82 Orange

Mildly reduced 2.38 ≥ CFR > 1.6 1.82 ≥ perfusion > 1.09 Yellow

Moderately reduced 1.6 ≥ CFR > 1.27 1.09 ≥ perfusion > 0.83 Green

Severely reduced 1.27 ≥ CFR > 1 0.83 ≥ perfusion Blue

Myocardinal steal CFR < 1 0.83 ≥ perfusion Purple

Table 1.1: Coronary flow capacity

From the table we know that when CFR is larger than 2.9 (ml/g/min) or stress perfusion

greater than 2.17 then the CFC is coded as excellent and the color code is red, when the CFR

from 2.38 to 2.9 or the perfusion is from 1.82 to 2.17 then the CFC is coded as typical and the

color code is orange, when the CFR is from 1.6 to 2.38 or the stress perfusion from 1.09 to 1.82

then the CFC is coded as mildly reduced and color code is yellow, when the CFR is from 1.27

to 1.6 or the perfusion from 0.83 to 1.09 then the CFC is recorded as moderately reduced and

the color is coded as green, when the CFR is from 1 to 1.27 or the perfusion is less than 0.83

then the CFC is coded as severely reduced and the denoting color is blue, lastly when CFR is

less than 1, the CFC is coded as myocardial steal and the color code is purple. The triangle

in the upper left and bottom with black and white color were the lower limit of rest flow for

viability and the upper limit of clinically observed rest flow, respectively.
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Methods

Data Simulation

Simulating Distribution

Having studied previous works on KS type test, I have learned more about the advantage and

limitation of such kind of test. Together with other goodness of fit tests, Chi-squared, Shapiro-

Wilk tests, and other popular ones, researchers are given a considerable library of tests to pick

from. Though it is a good thing to be provided with varieties of methods to apply for different

problems, one may find it hard to decide which methods to apply. Therefore to address such

issues, I have conducted a systematic review of the performance of the original KS test, CvM

test, AD test, and Chi-squared test. The assessment will be both on one sample and two sample

tests.

Tests mentioned above are fall in the category of “distribution-free method” which means

they are robust under different distributions. However, the virtue of “distribution-free” some-

times may cause problems. When the parameter or even the distribution of our interested

random variables unknown, it is hard to estimate the sample size required for certain power of

the test. Therefore, I set up an environment with manually controlled various sample sizes. To

evaluate the performance of the tests, I used certain characteristics of the power of hypothesis

testings mentioned above under different sample size and at significance levels of 0.05. In order

to study the robustness of the above tests in the presence of dependence pattern, I generated
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subjects that are linearly correlated and autocorrelated. I simulated samples from the Weibull

distribution W (γ, λ) with two parameters, as it is commonly being applied in survival analysis,

engineering and geology, normal distributionN(µ, σ2) and multinomial distribution Mult(n, p).

Meanwhile, Weibull distribution of shape parameter γ and scale parameter λ makes us able to

control the skewness of the testing distribution.

f(x) = γ
λ
(x
λ
)γ−1e(

x
λ
)γ

F (x) = 1− e(− xλ )γ

It is possible for me to control the actual magnitude of the difference between the two

distributions by using theoretical distributions with known parameters. Thereafter I will compare

the power of above tests under certain circumstances stated as followed.

Monte Carlo simulations will be used to evaluate the statistical power of KS, CvM, AD and

Chi-squared statistics. Consider random variable X : x1, x2, . . . , xn from

W (γ, λ), whereγ = 0.5, 1, 2, 3, 5;λ = 1, 2, 3

N(µ, σ2), whereµ = 0, 1, 3, 5;σ = 0.1, 0.5, 2

Mult(n, P )

where

P =



(p1, p2) = (0.5, 0.5), Symmetric

(p1, p2) = (0.1, 0.9), Heavily Skewed

(p1, p2) = (0.3, 0.7), Skewed

(p1, p2, p3, p4, p5) = (0.1, 0.2, 0.4, 0.2, 0.1), Symmetric

(p1, p2, p3, p4, p5) = (0.7, 0.2, 0.05, 0.03, 0.02), Skewed

(p1, p2, p3, p4, p5) = (0.3, 0.15, 0.1, 0.15, 0.3), Symmetric with Heavy Tails
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(a) (b)

(c) (d)

Figure 2.2: PDF and CDF for Weibull Distributions

Left column of figures are samples from distribution of N(1, 1), while right samples are from N(1, 4). Figure (a),

(b) are the alternative is different variance. Figure (c), (d) are the alternative is different mean. Figure (e), (f) are

the alternative is different mean.

27



(a) (b)

(c) (d)

Figure 2.3: PDF and CDF for Normal Distributions

Left column of figures are samples from distribution of N(1, 1), while right samples are from N(1, 4). Figure (a),

(b) are the alternative is different variance. Figure (c), (d) are the alternative is different mean. Figure (e), (f) are

the alternative is different mean.

From the density and cumulative density plots of Weibull distribution, it is clear that

the shape parameter controls density in tail and skewness, scale parameter only stretches or

compresses on x and y-axis. Setup of parameter above ensures us to test the Weibull of heavy

left tailed, minor left tailed, symmetric and right-tailed scenarios. Meanwhile, parameter ratio

change in the mean of normal distribution will result in the location shift in PDF and CDF. The

increase in variance will result in more flat CDF curve and PDF curve. The null and alternative

hypothesis to be tested is as followed,

H0 : F (x) = G(x) (2.1)

H1 : F (x) 6= G(x) (2.2)
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G(x) is the pre-specified distribution function ofW (γ+∆, λ+∆), N(µ, σ2)andMult(n, p),

where the difference ratio ∆ is

∆ = 0.05, 0.1, 0.2, 0.5, 1

The sample size of observations generated from W (γ, λ) will be n = (10, 20, 30, 100, 500).

Power will be obtained based on tested results of 10,000 generate samples.

Meanwhile, σ controls the shape and density of the probability curve in normal distributed

data. The mean parameter µ from normal distribution shifts the entire curve while not changing

shape and density distribution. Therefore, the change in σ and µ provide us an opportunity to

test the performance under shape differences and location differences, or both differences.

Lastly, in the multinomial distributed data group, I had a chance to evaluate the performance

of KS, CvM and AD tests when data is indeed discrete. When, unfortunately, certain parameters

of the distribution were not available and we are left with no option on the table but to estimate

these parameters from the sample, then results from Kolmogorov-Smirnov test will be conser-

vative. To adjust for the effects bring by discontinuous in samples, methods were proposed to

extend EDF tests on discrete data (Simpson, 1951; Crutcher, 1975; Lilliefors, 1967). Therefore,

I simulated data from multinomial distribution under different conditions.

In the comparison of two-sample tests, Monte Carlo simulations will be used to evaluate

the type I error and statistical power of KS, CvM, AD and Chi-squared statistics in testing if

both samples are from the same certain distribution.

Correlated Realizations

Consider two random variables, X follows W (γ, λ), Y followsW (γ + ∆, λ+ ∆). To study the

performance of above tests under dependency, random variables X and Y are sampled indepen-

dently or in the existence of linear dependence, Pearson’s r = (−0.8.−0.5,−0.2,−0.1, 0.1, 0.2, 0.5, 0.8).
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Sample size for random variables XandY will include balanced and imbalanced groups in detail

as followed table.

In order to simulate correlated samples, I applied the copula method (Joe 1997). For the sake

of easy computation and estimation, I chose a Gaussian copula method for its relatively high

accuracy. The procedure of copula methods to simulate bivariate correlated Weibull distribution

is as followed.

1. First, choose a covariance matrix Σ that reflects the correlations relationship in our targeted

samples. Based on the covariance structure one would like to achieve, draw correlated

samples X1 = (x11, x
1
2, x

1
3, . . . , x

1
n) and X2 = (x21, x

2
2, x

2
3, . . . , x

2
n) from standard bivariate

Gaussian distribution. Therefore we may have

X1

X2

 ∼MVN

µ =

0

0

 , Σ =

 1 r2

r2 1




2. Find the CDF of X1 and X2 as φ(X1), φ(X2).

3. In order to simulate correlated samplesZ1 = (z11 , z
1
2 , z

1
3 , . . . , z

1
n) andZ2 = (z21 , z

2
2 , z

2
3 , . . . , z

2
n)

from the targeted distribution, we find the targeted inver-CDF function as F−1(Z1) and

F−1(Z2)

4. Compute the following function and our interested correlated samples may be obtained

Z1

Z2

 =

F−1(φ(X1))

F−1(φ(X2))


There are several choices for the correlation matrix to simulate the bivariate Gaussian

distribution. Rank correlation coefficients, such as Kendall’s τ and Spearman’s ρ, are usually

preferred as they are invariant to strictly increasing transformations (Ding & Li, 2013). The linear
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correlation coefficient, on the other hand, may not be invariant to non-linear transformations but

have the virtue of able to be applied directly to simulate normal distribution in the first step. In

addition, the trend of the correlation relationship between samples is invariant. Dithinde used a

translation-based lognormal model with Pearson’s r to capture the correlation structure between

two hyperbolic curve-fitting parameters and have relatively well results (Dithinde, Phoon, De, &

Retief, 2011). Genest report the simulation with Pearson’s r measuring the correlation structure

to be performing reasonably well when simulated sample size n is 50 or larger. Therefore, I

applied Pearson’s r to simulate the bivariate normal distribution (Genest & Rivest, 1993).

In real data analysis, we may find data to be in chaos and usually given in imbalanced

sample size. For the purpose of evaluating the performance of tests under the imbalanced sample

size condition, I have simulated our data in the sample size as showed in the following table.

Sample size of (X, Y)

10, 10 20, 20 50, 50 100, 100 500, 500

10, 20 20, 50 50, 100 100, 500

10, 50 20, 100 50, 500

10, 100 20, 500

10, 500

Table 2.2: Simulation Sample Size

The performance of EDF based tests and the chi-squared test will be evaluated by their

simulation results of type I error and power. Type I error and power will be analyzed from

realization results of 10,000 repeated iterations.
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Spatial Analysis

In previous chapters, I have discussed that the PET-CT image data is gridded spatial data in

nature. In this section, I focused on the method to generate a spatial field that simulates the

PET-CT image data with pre-defined auto-correlation structure. First, we need to define a few

spatial statistics concepts.

Let S : si ∈ Rd be interested location in d-dimensional Euclidean space, Z(si) can be

viewed as the random process in such location si.The notation z(si) is defined as a realization of

such random process Z(si). Without loss of generality, we may assume that the random process

Z(si) as followed

Z(si) = µ+ εi

Where µ is defined as the mean value of such process and the error term follows a normal

distribution, εi ∼ N(0, σ2). For the purpose of statistically analyzing the image data, intrinsic

stationary distribution is a critical assumption for the spatial random process. The intrinsic

stationery is defined as followed

E(Z(s+ h)− Z(s)) = 0

var(Z(s+ h)− Z(s)) = 2γ(h)

where h is the Euclidean distance, 2γ(h) is an important spatial statistics parameter is

known as variogram and γ(h) is the semivariogram.

Meanwhile, the second order stationary ensures the distribution of such random process

not depend on the location si, therefore all realizations across the map were from the same
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distribution.

E(Z(si)) = µ (2.3)

cov(Z(si + h), Z(si)) = C(h) (2.4)

where C(h) is the covariogram that only depend on the distance between location si and sj .

After C(h) is defined, the autocorrelation structure of such spatial process may be determined.

With the aim of creating a positive-definite covariance structure for the spatial analysis, a

valid covariance structure depend on geometry location needs to be defined. Matern (1960) con-

structed a few valid covariogram models inRd, d > 1. Assumed a valid isotropic covariogram

structure in R3.

C(h) =
σ2(α

2||h||
2

)ν2Kν(α
2||h||)

Γ(ν)
, ν > 0

where Kν is the modified Bessel function of the second kind, ||h|| is the Euclidean distance.

Specifically, ν = 1/2 may yield into a special case

C(h) = σ2exp(−α2||h||)

Cholesky Decomposition Method

With knowledge of covariogram structure Σ, we were able to apply Cholesky decomposition

methods to simulate valid autocorrelated data on the interested fields. (N. Cressie, 1992; Joe,

1997) In order to get the targeted simulated realizations, we decomposed the covariogram matrix

with Cholesky decomposition, in which

Σ = LL′
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Where L is a lower triangular n×n matrix. Then the targeted realizations could be obtained

as

Z(s) = µ+ LE (2.5)

Where E is the error term in matrix form. Note that E is from the identical independent

normal distribution with zero mean and unit variance, E ∼ N(0, 1). By applying the Cholesky

decomposition method, I was able to simulate auto-correlated spatial realizations, with pre-

defined covariogram structure, from independent simulated spatial data points.

A Moran’s I in Covariogram Form

With the Cholesky decomposition method from section , I was able to simulate spatially

correlated realizations once the covariogram Σ structure is defined. In order to measure the

spatial autocorrelation, a more general correlation coefficient is required. Moran’s I has been

introduced in section and considered to evaluate the degree of autocorrelation of my simulation.

However, the original Moran’s I was defined as a measurement for realizations, which is

inaccessible before simulation. With the purpose of simulating spatially autocorrelated samples

with respect to certian Moran’s I. With given spatial covariogram known, I used an approximation

form of Moran’s I with the weighted covariogram matrix.

IA =
N

W

∑
i

∑
j wi,jcov(Z(si), Z(sj))∑

i var(Z(si))

where N is the sample size, wi,j is the weight for location si and sj , W =
∑

i

∑
j wi,j .

In order to see if IA generates desired spatially autocorrelated samples in a given spatial

space, I have run a Monte Carlo simulation with 10,000 replications. Given the valid variogram

for R3,

C(h) = σ2exp(−α2||h||) (2.6)
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Samples were generated regarding given covariogram 3.17 and spatial structure stated in

figure 3.21. The Moran’s I in covariogram form was calculated before simulation. The Moran’s

I in original form for simulated samples were computed after simulation. The Moran’s I in

covariogram form and the simulated Moran’s I were compared in plot 3.13. It shows a satisfied

rate of fit.

Figure 2.4: IA vs. Simulated Moran’s I

Published reports suggested that when the KS test was applied directly without adjustment

on the existed spatial autocorrelation will be liberal with an underestimated p-value (Weiss,

1978). Therefore, it is reasonable for me to assume that a adjustment on the sample size may

provide us a closer guess to the truth. I defined the sample size after adjustment as informative

sample size.
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For spatial realizations y1, y2, . . . , yn of 1st, 2nd, . . . , nth locations. Notice that n is the

sample size. Assume

Y = µ+ ε

where µ denotes the population mean of Y , ε is the spatially auto-correlated error term in-

dependent of µ. We may rewrite the error term in independent form ε∗, and ε∗ ∼ i.i.d.N(0, σ2
ε∗)

. let

C(Yi, Yj) = σ2V −1

then

Y = µ+ V −
1
2 ε∗

where V is the identity matrix, V = I , if and only if Y is spatially independent.

Griffith (2005) gave that the expectation of the variance of Y is

E(σ̂2
Y ) =

tr(V −1)
n

σ2
ε

tr(V −1)
1tV −11

n

where 1 is the n× 1 matrix of 1, tr(V −1) is the trace matrix of V −1.

Then he notes that the informative sample size n∗(the equivalent number of samples without

autocorrelation) is

n∗ =
tr(V −1)

1tV −11
n

Griffith reported findings for an approximation of n∗ when the spatial realizations Y is

normally distributed given the spatial autocorrelation coefficient ρ̂ estimated from Spatial

autoregressive (SAR) models as followed

n∗ = n× [1− 1

1− exp−1.92

n− 1

n
(1− exp−2.12ρ̂+ 0.2

√
ρ̂)] (2.7)
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where the KS statistic was still obtained as the supremum of the absolute distance between two

EDFs.

Another KS test with adjustment for the violation of independence assumption is the ICC

adjusted KS test (N. Cressie, 1992). Similar to Griffith’s adjustment, the ICC adjusted KS has

an adjusted sample size. The KS statistic was still obtained as the supremum of the absolute

distance between two EDFs. The informative sample size is defined as:

n∗ = ICC ∗ n (2.8)

With previous knowledge, we may assume a general form that the informative sample size

n′with adjustment by the spatial autocorrelation coefficient of Moran’s I be

n
′
= n× 2

1 + eg(I)

Where g(I) is the function of I , g(I) = β1I +β2I
2 + · · ·+βiI

i. For the sake of parsimony,

I only consider g(I) = β1I + β2I
2 + β3I

3.

Therefore to simplify the model I considered

A =
n′

n
=

2

1 + eg(I)

The original one-sample and two-sample KS statistic has the supremum form as followed

Kn =
√
n sup

x
|Fn(X)−Gn(X)|

Km,n =

√
mn

m+ n
sup
x,y
|Fn(X)−Gm(Y )|

37



The KS statistic with adjustment for spatial autocorrelation is defined as followed

K
′

n∗ =
√
n∗ sup

x
|Fn(X)−Gn(X)|

K
′

m∗,n∗ =

√
m∗n∗

m∗ + n∗
sup
x,y
|Fn(X)−Gm(Y )|

A generalized linear model (GLM) may be considered to estimate the βs. Assuming a link

function l(A) = log ( 1
A
− 1), the adjustment ratio may be rewrite into the following general

linear form

E(l(A)) = g(I)

Parameters were estimated with the maximum likelihood. In order to simplify our model

with emphasizing on the most influential variables. I used the lasso to select for dimension

reduction. A valid hypothesis test requires controlled type I error rate, which should be near the

pre-claimed nominal level. After the type I error is controlled, a satisfied power to discriminate

against differences between tested distributions is desired. Therefore, I used type I error under

the most popular nominal level of 0.05 and power of my adjusted KS test as benchmarks to

evaluate the KS test.

In order to provide a clear picture of how the spatially adjusted KS test performed compared

to the other KS type tests. I have evaluated the traditional KS test without spatial autocorrelation

adjusted sample size, KS test adjusted with ICC, KS test with Griffith’s adjustment and lastly,

my adjusted KS test. The designed nature of image scans limit the sample locations, in other

word, the sample size is fixed at 1344. Therefore, the power of KS tests was analyzed for

differences in parameters of distributions. I was able to test the distribution change in mean, µ,

at the ratio of 0.05, 0.1, 0.2, 0.5, 1. Same differences ratio was analyzed for the variance, σ as

well as in both mean and variance.
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Spatial Coordinates and Geometry Characteristics of Human Heart

The geometry of the heart plays a critical role in the mechanics of cardiology. Back in 1892,

Wood has used a spherical coordinate system to mimic the heart shape. Since then the sphericity

index system has been popularly used by several studies to reconstruct the shape of the heart.

(Mitchell, Lamas, Vaughan, & Pfeffer, 1992a) Azhari 1998 used a special normalized helical

shape descriptor, denoted “geometrical cardiogram”, to determine the shape of left ventricular.

As the spherical shape has been proved to provide a simulation in shape that is close enough to

the heart. (Azhari, Beyar, & Sideman, 1999)

In this study, I focused on the reconstruction of cardiac geometry locations with PET-CT

image data. For each PET scan, electric signal values for CFR were recorded in a matrix form

with 21 rows and 64 radials. In order to reconstruct the cardiac locations from PET image, I

simulated a gridded map with a shape of a truncated ellipsoid, similar to a half football.

Gridded Map

Once the simulation shape of heart is decided, I simulated fixed locations D along the fields to

represent the electronic recording points in the image location. The nature of gridded spatial

data in R3 can be viewed as a two-way table. (N. Cressie, 1992) Locations si ∈ D, D is the

subset of R3 and the realization in such location is Z(si).

Given the spherical coordinates system
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Figure 2.5: Spherical Coordinates

The procedure to generate the 3-D gridded map is as followed

1. Define the radius of the half football we want as

ρ = 1.

2. Then the define θ on the circle as 64 equal cuts of 2π

Θ = (θ1, θ2, . . . , θ64) = (
1

32
π,

2

32
π, . . . , 2π).

3. Similarly define φ as 21 equal cuts of (π/2, π)

Φ = (φ1, φ2, . . . , φ21) = (
21

42
π,

22

42
π, . . . ,

41

42
π).
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4. Transfer spherical coordinates into catesian coordinates

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ

The generate 3-D space is realized as followed.

Figure 2.6: Generated Coordinates for Reconstructing PET into Heart shape

After the 3-D space is simulated, the distance between each unique pair of locations may

be calculated. I defined the arc length between two locations as the interested distance. The

distance between two location si = (xi, yi, zi) = (ρ sinφi cos θi, ρ sinφi sin θi, ρ cosφi) and

sj = (xj, yj, zj) = (ρ sinφj cos θj, ρ sinφj sin θj, ρ cosφj) is defined as
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Acos = arccos (cosφi cosφj + sinφi sinφj cos (θi − θj)) (2.9)

dist(si, sj) =


ρ× arccos (1), Acos ≥ 1

ρ× arccos (−1), Acos ≤ 1

ρ× Acos, otherwise

(2.10)

The weight function wij is defined as the squared inverse distance

wij =
1

(dist(si, sj))2

The weight matrix W is therefore defined as

W =



w11 w12 w13 . . . w1n

w21 w22 w23 . . . w2n

...
...

... . . . ...

wn1 wn2 wn3 . . . wnn


(2.11)

After the setup of the spatial environment, the procedure for simulating spatially autocorre-

lated samples in grid map figure 3.21 is followed as

1. Simulate N samples from i.i.dnormal distributionN(µ, σ2). In this study,N = 1344, µ =

(0.5, 1) and σ = (0.5, 1, 2).

2. Refer to the Cholesky decompsition method in section , calculate L from given covari-

ogram structure Σ.

3. Refer to transformation equation 3.16, transfer N i.i.d samples into the grid with respect

the weight matrix W.
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Study Design

In order to study the efficiency of dipyridamole, adenosine, and regadenoson and provide

arguments for which one outperforms others. The Weatherhead PET Center for Preventing and

Reversing Atherosclerosis of the University of Texas Medical School at Houston and Hermann

Hospital conducted an investigator-initiated, single-centered, diagnostic accuracy trial between

December 2012 to June, 2014.(Johnson & Gould, 2015) Subjects were recruited with following

but not limited to entry criteria

1. Subjects were 40 years or older

2. Subjects with written informed consent

Subjects met any of the following but not limited to exclusion criteria will not be included in

the trial

1. Any absolute contraindication to dipyridamole or regadenoson

2. Pregnancy or active breastfeeding

3. Current participation in another clinical research study

4. inability to undergo 2 PET scans within 2 months, but at least 1 day apart

Protocol

Recruited subjects were split into 6 groups, each group went through a two-stage PET imaging

procedure. The first group of subjects was administered with dipyridamole in both the first

stage and second stage of PET scans. The second group of subjects was administered with

the procedure of Rb-82 activated 15s before injection of regadenoson in one stage and with

dipyridamole in the other stage. Similarly, the third, fourth, fifth and sixth group of subjects
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were administered regadenoson with a certain time of activation of Rb-82 in one stage and

administered with dipyridamole in the other stage.

Different dipyridamole protocol timing has been studied. Researchers applied the current

optimal protocol of 4 mins dipyridamole protocol in the trail.(Harel, Finnerty, Authier, &

Pelletier-Galarneau, 2018) According to the dipyridamole protocol guideline, dipyridamole

(142ug/kg/min) was infused for 4 min. After dipyridamole is infused, Rb-82 generator was

activated. PET stress scan starts 15s after Rb-82 generator activation.

Regadenoson protocol indicates that a single-use, pre-filled, 5-ml syringe of regadenoson

was administered for 10s via a peripheral vein. Time of Rb-82 generator activation varies by

protocols. Similarly, 10s after Rb-82 generator activation, PET scan was performed.
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Notes: The bold black line in the timeline denotes the duration of medication, either dipyridamole or regadenoson,
infusion. Protocols in the left is the baseline with dipyridamole, protocols in the right are study group with
dipyridamole, Rb-82 activated 15s before regadenoson administration and Rb-82 activated 10s/40s/55s/80s after
regadenoson administration.

Figure 2.7: Description of Protocols
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Protocol Description

DD Repeated dipyridamole

L - 15 Regadenoson group with Rb-82 activated 15 seconds prior to injection of re-

gadenoson

L + 10 Regadenoson group with Rb-82 activated 10 seconds after injection of regadenoson

L + 40 Regadenoson group with Rb-82 activated 40 seconds after injection of regadenoson

L + 55 Regadenoson group with Rb-82 activated 55 seconds after injection of regadenoson

L + 80 Regadenoson group with Rb-82 activated 80 seconds after injection of regadenoson

Table 2.3: Protocols

In this single-subject design, subjects using dipyridamole was used as the baseline and

compared with themselves using either dipyridamole repeatedly in DD protocol or using

regadenoson in L-15, L+10, L+40, L+55, L+80.
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A Simulation Study of A Class of Nonparametric Test Statis-

tics: A Close Look of Continuous, Discrete and Correlated

Variables

Journal of Statistical Computation and Simulation

Abstract

Kolmogorov-Smirnov test is a non-parametric hypothesis test that measures the probability

of deviations, that the interested univariate random variable is drawn from a pre-specified

distribution (one-sample KS) or has the same distribution as a second random variable (two-

sample KS). The test is based on the measure of the supremum (greatest) distance between

an empirical distribution function (EDF) and a pre-specified cumulative distribution function

(CDF) or the largest distance between two EDFs. KS test, as well as other EDF based tests such

as Anderson-Darling test and Cramer-von Mises test, have been widely adopted in statistical

analysis due to its virtue of more general assumptions compared to parametric test like t-test.

However, it is unclear under which condition will different EDF based test works best. Therefore

to address such issues, I have conducted a systematic review of the performance of the original

KS test, CvM test, AD test, and Chi-squared test. The assessment will be both on one sample and
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two sample tests. We concluded that if we do not have prior information about the distributions

going to be tested, EDF-based tests are better. However, so long as we have prior information

about tested distribution and the distribution is bell-shaped and we are expecting differences in

variance/sparseness, then the Chi-squared test may be more preferable. When correlation exists

between tested samples, adjustment on the informative sample size is important and required.

Introduction

Together with other goodness of fit tests, Chi-squared, Shapiro-Wilk tests, and other popular

ones, researchers are given a considerable library of tests to pick from. Though it is a good

thing to be provided with varieties of methods to apply for different problems, one may find

himself/herself hard to decide which methods to apply. In order to address such issues, we

conducted a systematic review of the performance of the original KS test, CvM test, AD test,

and Wilcoxon rank-sum test. The assessment will be both on one sample and two sample tests.

In the year of 1933, Kolmogorov published a short but landmark paper, in which he formally

defined empirical distribution function (EDF), in the Italian Giornale dell’Istituto Italiano degli

Attuari (Kolmogorov, 1933).

To define the empirical distribution function, let set x1, x2, . . . , xi− 1, xi be the realizations

of random variables X having the F (x) = pr(X < x). Put

ε(x) = I(xi ≤ x)

Then the EDF is defined as:

Fn(x) =
1

n

n∑
i=1

ε(xi)
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It could be easily seen that the EDF Fn(x) is the portion of x1, x2, . . . , xi− 1, xi of X

below x. It comes naturally to ask how close EDF is to its corresponding CDF. To answer this

question, Kolmogorov studied and gave the asymptotic distribution of EDF. This led to the

definition of Kolmogorov statistic (or Kolmogorov-Smirnov statistic) D and the distribution of

D given finite sample size n was derived.

D = sup
x
|Fn(x)− F (x)|

The two sample version of the KS statistic is defined as

Dn,m = sup
x
|Fn(x)−Gm(x)|

Later, Smirnov proposed the Cramer-von Mises statistic (CvM statistic) ω2, which can be

viewed as an extension of KS statistic, based on Cramer’s work in 1928 and von Mises’s work

in 1931. (von Mises, 1931; N. V. Smirnov, 1937; Mises, 1928) In which, Smirnov also found

the asymptotic distribution of ω2, in the form of a sum of weighted chi-squared variables.

ω2 =

∫ ∞
−∞

[Fn(x)− F (x)]2f(x)dx

Choulakian extended the Cramer-von Mises statistic into the scope for discrete distributions

or continuous distributions being grouped. (Choulakian et al., 1994) Consider x∗1, . . . , x
∗
L as the

ordered L-distinct sample of X .

W 2
2 =

1

n

L∑
j=1

(Sj − Tj)2pj
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Where oj is the number of observations coinciding with x∗j , then

Sj =
∑j

i=1 oi

Tj =
∑j

i=1Npi

Researchers extended the discrete CVM into the scope of k-sample CVM for discrete

distribution or continuous distribution being grouped. Consider ordered observations Z∗1 , . . . Z
∗
L

as the L distinct pooled sample of X and Y . (Brown, 1982, 1994; Lockhart et al., 2007)

Let

k1 = n

k2 = m

The two-sample CVM for discrete distribution is defined as followed

W 2
d =

2∑
i=1

ki

L∑
j=1

(Sij − Tij)2pj

Where S1j is the number of observations in X not greater than Z∗j , S2j is the number of

observations in Y not greater than Z∗j ,

Tij = ki

j∑
i=1

pl

and (n+m)pj is the number of observations of a pooled sample of X and Y coinciding with z∗j .

The asymptotic distribution has been worked out by Sun. If W 2
d > ω2

(d,α), then we reject H0.
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By modifying the weight factor of CvM statistic, T. W. Anderson and D. A. Darling (1952)

proposed the Anderson Darling statistic (AD statistic) A.

A2 = n

∫ ∞
−∞

[Fn(x)− F (x)]2

F (x)[1− F (x)]
f(x)dx

AD statistic under discrete setting is defined as follows.

A2
n,m =

2∑
i=1

1

ki

L−1∑
j

lj
N

(NMij −Bjki)
2

Bj(N −Bj)

Where f1j be the number of observations in X coinciding with Z∗j , f2j be the number of

observations in Y coinciding with Z∗j and let

lj = f1j + f2j

Mij = fi1 + · · ·+ fij

Bj = l1 + · · ·+ lj

Pettitt worked out an approximation formula to calculate the variance of A2
n,m. (Pettitt &

Stephens, 1977)

var(A2
n,m) =

2(π2 − 9)

3
× (1− 3.1

N
)

Methods

Tests mentioned above are fall in the category of “distribution-free method” which means they

are robust under different distributions. However, the virtue of “distribution-free” sometimes

may cause problems. When the parameter or even the distribution of our interested random

variables unknown, it is hard to estimate the sample size required for certain power of the test.

Therefore, I set up an environment with manually controlled various sample sizes. To evaluate
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the performance of the tests, we used certain characteristics of the power of hypothesis testings

mentioned above under different sample size and at significance levels of 0.05. In order to study

the robustness of the above tests in the presence of dependence pattern, we generated subjects

that are linearly correlated and autocorrelated.

Simulation

Simulated samples were drawn from the Weibull distribution W (γ, λ) with two parameters,

as it is commonly being applied in survival analysis, engineering and geology, normal distri-

bution N(µ, σ2) and multinomial distribution Mult(n, p). Meanwhile, Weibull distribution of

shape parameter γ and scale parameter λ makes us able to control the skewness of the testing

distributions.

f(x) = γ
λ
(x
λ
)γ−1e(

x
λ
)γ

F (x) = 1− e(− xλ )γ

It is possible for me to control the actual magnitude of the difference between the two

distributions by using theoretical distributions with known parameters. Thereafter I will compare

the power of above tests under certain circumstances stated as followed.

Monte Carlo simulations will be used to evaluate the statistical power of KS, CvM, AD and

Chi-squared statistics. Consider random variable X : x1, x2, . . . , xn from

W (γ, λ), whereγ = 0.5, 1, 2, 3, 5;λ = 1, 2, 3

N(µ, σ2), whereµ = 0, 1, 3, 5;σ = 0.1, 0.5, 2

Mult(n, P )
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where

P =



C1 = (p1, p2) = (0.5, 0.5), Symmetric

C2 = (p1, p2) = (0.1, 0.9), Heavily Skewed

C3 = (p1, p2) = (0.3, 0.7), Skewed

C4 = (p1, p2, p3, p4, p5) = (0.1, 0.2, 0.4, 0.2, 0.1), Symmetric

C5 = (p1, p2, p3, p4, p5) = (0.7, 0.2, 0.05, 0.03, 0.02), Skewed

C6 = (p1, p2, p3, p4, p5) = (0.3, 0.15, 0.1, 0.15, 0.3), Symmetric with Heavy Tails

The null and alternative hypothesis to be tested is as followed,

H0 : F (x) = G(x) (3.12)

H1 : F (x) 6= G(x) (3.13)

G(x) is the pre-specified distribution function of W (γ + ∆, λ + ∆), N(µ + ∆, (σ +

∆)2) and Mult(n, p+ ∆), where the difference ratio ∆ is

∆ = 0.05, 0.1, 0.2, 0.5, 1

Meanwhile, σ controls the shape and density of the probability curve in normally distributed

data. The mean parameter µ from normal distribution shifts the entire curve while not changing

shape and density distribution. Therefore, the change in σ and µ provide us an opportunity to

test the performance under shape differences and location differences, or both differences.

Lastly, in the multinomial distributed data group, we will have a chance to evaluate the

performance of KS, CvM and AD tests when data is indeed discrete. When, unfortunately,

certain parameters of the distribution were not available and we are left with no option on the

table but to estimate these parameters from the sample, then results from Kolmogorov-Smirnov

test will be conservative. (Simpson, 1951; Crutcher, 1975; Lilliefors, 1967) Methods were
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proposed to extend EDF tests on discrete data. Therefore, we simulated data from multinomial

distribution under different conditions.

Correlated Realizations

In order to simulate correlated samples, we applied the copula method (Joe, 1997). For the sake

of easy computation and estimation, we choose a Gaussian copula method for its relatively high

accuracy. The procedure of copula methods to simulate bivariate correlated Weibull distribution

is as followed.

1. First, we choose a covariance matrix Σ that reflects the correlations relationship in our

targeted samples. Based on the covariance structure we would like to achieve, we draw

correlated samples X1 = (x1,1, x1,2, x1,3, . . . , x1,n) and X2 = (x2,1, x2,2, x2,3, . . . , x2,m)

from standard bivariate Gaussian distribution. Therefore we may have

X1

X2

 ∼MVN

µ =

0

0

 , Σ =

 1 r2

r2 1




2. Find the CDF of X1 and X2 as φ(X1), φ(X2).

3. In order to simulate correlated samplesZ1 = (z1,1, z1,2, z1,3, . . . , z1,n) andZ2 = (z2,1, z2,2, z2,3, . . . , z2,m)

from the targeted distribution, we find the targeted inver-CDF function as F−1(Z1) and

F−1(Z2)

4. Compute the following function and our interested correlated samples may be obtained

Z1

Z2

 =

F−1(φ(X1))

F−1(φ(X2))
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There are several choices for the correlation matrix to simulate the bivariate Gaussian

distribution. Rank correlation coefficients, such as Kendall’s τ and Spearman’s ρ, are usually

preferred as they are invariant to strictly increasing transformations (Ding & Li, 2013). The linear

correlation coefficient, on the other hand, may not be invariant to non-linear transformations

but have the virtue of able to be applied directly to simulate normal distribution in the first step.

In addition, the trend of the correlation relationship between samples is invariant. Dithinde

used a translation-based lognormal model with Pearson’s r to capture the correlation structure

between two hyperbolic curve-fitting parameters and have relatively well results. (Dithinde

et al., 2011) Genest report the simulation with Pearson’s r measuring the correlation structure to

be performing reasonably well when simulated sample size n is 50 or larger. We used Pearson’s

r to simulate the bivariate normal distribution. (Genest & Rivest, 1993)

The performance of EDF based tests and the Chi-squared test will be evaluated by their

simulation results of type I error and power. To evaluate the effects of sample size on type I error

and power, we simulated samples of size n = (10, 20, 30, 100, 500). Type I error and power

will be analyzed from realization results of 10,000 repeated iterations.

Results

Analysis of Type I error

Comparison of one-sample tests

From the simulation results of the continuous distribution, such as normal distribution and

Weibull distribution in our case, the EDF type tests achieved the type I error that is reasonably

close to nominal level even when the sample size is relatively small (n = 10). When sample size

n ≥ 30, all tests achieve a type I error around the nominal level of 0.05.
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Table 3.5: Type I Error for One-Sample Tests of Multinomial Distributions

Test Sets

Sample Size Test C1 C2 C3 C4 C5 C6

KS 0.022 0.013 0.011 0.022 0.013 0.028

CvM 0.106 0.071 0.011 0.039 0.079 0.049

AD 0.022 0.071 0.075 0.043 0.075 0.046
10

Chi-squared 0.022 0.071 0.075 0.047 0.078 0.050

KS 0.041 0.043 0.024 0.014 0.028 0.026

CvM 0.116 0.043 0.024 0.048 0.053 0.045

AD 0.116 0.043 0.081 0.052 0.041 0.047
20

Chi-squared 0.041 0.043 0.024 0.053 0.064 0.046

KS 0.046 0.028 0.028 0.015 0.029 0.054

CvM 0.098 0.028 0.028 0.044 0.054 0.048

AD 0.098 0.123 0.070 0.046 0.046 0.047
30

Chi-squared 0.046 0.028 0.070 0.047 0.067 0.050

KS 0.007 0.000 0.003 0.006 0.003 0.016

CvM 0.057 0.031 0.059 0.049 0.046 0.052

AD 0.057 0.068 0.059 0.049 0.051 0.052
100

Chi-squared 0.057 0.068 0.059 0.049 0.053 0.049

KS 0.006 0.000 0.004 0.006 0.003 0.012

CvM 0.066 0.027 0.046 0.051 0.049 0.050

AD 0.078 0.085 0.057 0.052 0.049 0.052
500

Chi-squared 0.053 0.041 0.046 0.049 0.045 0.048
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From table 3.5 we may see that when the data is multinomial distributed, the KS test, as

Conover mentioned in his paper, is more accurate when the sample size is less than 30. (Conover,

1972a) On the other hand, when the sample size n > 30, the modified KS test produced a

conservative type I error. In addition, we found that Conover’s KS test performs better when

the discrete distribution is symmetric and have heavy tails. It is more conservative when the

data is skewed. Moreover, EDF based tests are heavily influenced by the number of groups.

They seem to perform better in multinomial distribution with 5 groups than that of 2 groups.

As Chi-squared tests are for discrete samples, it performs the most stable among the 4 tests,

it tends to be more accurate when the sample is symmetric and with more number of groups.

In addition, the influence in symmetricity and number of groups were canceled out when the

sample size is large than 100.

Comparison of two-sample tests

From table 3.6, we may see that when data is normally distributed, the KS and the Chi-square

produced conservative statistics if the sample size is small, say n < 100. When n = 100, the

Chi-squared test has a controlled type I error while KS test does not. When sample size is large,

n = 500, KS, AD, and chi-squared tests all have controlled type I error. However, CvM tests

seem to be a little conservative.

Table 3.6: Type I Error for Two sample tests

Sample Size

Distribution Test 10 20 30 100 500

KS 0.01 0.03 0.04 0.04 0.05

CvM 0.05 0.04 0.04 0.04 0.04

AD 0.05 0.05 0.05 0.05 0.05
Normal

Chi-squared 0.01 0.03 0.03564 0.04 0.05
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KS 0.04 0.03 0.03 0.04 0.05

CvM 0.05 0.04 0.04 0.04 0.04

AD 0.05 0.05 0.05 0.05 0.05
Weibull

Chi-squared 0.01 0.01 0.01 0.02 0.03

KS 0 0.01 0.01 0.01 0.01

CvM 0 0 0 0 0

AD 0.06 0.05 0.05 0.05 0.05
Multinomial

Chi-squared 0.03 0.04 0.04 0.05 0.05

Normal distribution is from N(0, 4).

Weibull distribution is from W (1, 2).

Multinomial distribution from C4 = (0.1, 0.2, 0.4, 0.2, 0.1).

When simulated data is from Weibull distribution, results from table 3.6 are similar to that

of normal distributions. However, it is noticeable that Chi-squared test was conservative when

the shape parameter of Weibull is 0.5 and 1(heavily skewed), even though test slowly be more

accurate when sample size increased, it still is very conservative when sample size reached

500. Meanwhile, the chi-squared test is more accurate when the shape parameter is large than 1.

Therefore, from the simulated results we can confirm that the chi-squared test is not as stable in

skewed distributed distributions as in symmetric cases.

In the multinomial tested results, the modified AD test seems to be the most stable one.

Chi-squared is not accurate when the number of groups is 2 or the sample size is small. When

the number of groups is 2, sample size n = 500 reaches satisfied accuracy. Meanwhile, it

performs relatively well when the number of groups is 5 and symmetric. CvM is always not as

accurate but not in group 6, which has symmetric and heavy-tailed distributed samples.
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Correlated Samples

From the results from table 3.7, we may see that for normal distribution and Weibull distribution,

when X and Y were sampled from correlated distributions and we did not address for such

effects when applying the hypothesis testing, all the tests produced untrue type I errors. When

the correlation between tested samples is positive then the type I error is overestimated. On

the other hand, when correlation negative then we are more likely to have a liberal type I error.

(Cribbie & Keselman, 2003) When the Pearson’s r ≥ 0.5, the EDF-based tests had a type I error

of almost 0, however, Chi-squared test still had some rejection ability at the nominal level of

0.05. When the Pearson’s r = −0.8, the type I error almost doubled.

Table 3.7: Type I Error for Correlated Samples

Pearson’s r

Distribution Test 0.5 0.8 -0.5 -0.8

KS 0.01 0 0.09 0.12

CvM 0.01 0 0.09 0.12

AD 0.01 0 0.10 0.14
Normal

Chi-squared 0.02 0.01 0.06 0.08

KS 0 0 0.10 0.12

CvM 0 0 0.09 0.12

AD 0 0 0.10 0.14
Weibull

Chi-squared 0.02 0.01 0.06 0.08

Sample size N = 500

Normal distribution is from N(0, 4).

Weibull distribution is from W (1, 2).
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Analysis of Power

Comparison of one-sample tests

Results for normal distributions is listed in table 3.8, when under the alternative with same mean

and different variance, when the sample size is relatively small, n = 10, the chi-squared test

is the most powerful one while significantly higher than the EDF ones. Under relatively large

sample size, 100 > n > 20, the Chi-squared test is still the most powerful when the change

ratio in variance is below 50%, while when the change ratio in variance large than 100% then

the AD test is more powerful.

Varaince Mean Mean

Null Alternative Sample Size Test 0 1 3 5 Sample Size 0 1 3 5

KS 0.05 0.04 0.04 0.05 0.05 0.05 0.04 0.05

CvM 0.04 0.04 0.04 0.05 0.04 0.05 0.05 0.05

AD 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.05
2.100

Chi-Squared 0.04 0.04 0.04 0.04 0.06 0.05 0.06 0.06

KS 0.04 0.04 0.04 0.04 0.59 0.58 0.59 0.60

CvM 0.02 0.02 0.02 0.02 0.76 0.75 0.76 0.76

AD 0.01 0.01 0.01 0.01 0.92 0.92 0.93 0.92
3.000

Chi-Squared 0.11 0.11 0.11 0.10 0.92 0.91 0.91 0.91

KS 0.05 0.05 0.05 0.05 1.0 1.00 1.00 1.00

CvM 0.03 0.03 0.03 0.03 1.00 1.00 1.00 1.00

AD 0.01 0.01 0.01 0.01 1.00 1.00 1.00 1.00

2.0

4.000

10

Chi-Squared 0.27 0.27 0.27 0.27

100

1.00 1.00 1.00 1.00

Table 3.8: Power for One-sample Tests in Normal Distributed with Identical Mu

Power analsyis for Weibull distributions is listed in table 3.9, when the alternative is scale

difference, even under small sample size, n = 10, the EDF based tests were more powerful

than the chi-squared tests. Among the EDF tests, CvM and AD share almost identical power
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under various alternatives. KS has a slightly low power but almost the same as the other two

EDF ones. However, when the sample size is relatively large, the gap between AD, CvM and

KS are greater, while the order is AD test > CvM test > KS test. When the alternative is the

shape difference, similar to scale difference, the AD is the most powerful test in detecting the

difference. However, we found that KS and CvM are not always better than the Chi-squared

test.

Scale Shape Shape

Null Alternative Sample Size Test 0.5 1 2 3 5 Sample Size 0.5 1 2 3 5

KS 0.049 0.046 0.055 0.059 0.085 0.052 0.059 0.104 0.190 0.452

CvM 0.045 0.049 0.058 0.062 0.089 0.054 0.069 0.125 0.231 0.542

AD 0.047 0.045 0.054 0.060 0.084 0.051 0.068 0.127 0.236 0.554
1.05

Chi-Squared 0.041 0.038 0.044 0.048 0.058 0.051 0.057 0.071 0.101 0.222

KS 0.126 0.387 0.963 1.000 1.000 0.781 1.000 1.000 1.000 1.000

CvM 0.138 0.441 0.984 1.000 1.000 0.856 1.000 1.000 1.000 1.000

AD 0.127 0.412 0.980 1.000 1.000 0.869 1.000 1.000 1.000 1.000

1

2.00

10

Chi-Squared 0.072 0.189 0.772 0.998 1.000

100

0.458 0.997 1.000 1.000 1.000

Table 3.9: Power for One-sample Tests in Weibull Distributed with Identical Shape

From the simulation results of multinomial cases in table 3.10, we may see that EDF-based

tests have higher power when the sample distribution is not symmetric. When categories of

multinomial distribution is more than 5, EDF based tests achieved comparable or higher power

than the Chi-squared test. However, when the multinomial distribution is bell-shaped, then the

Chi-squared test is the most powerful one.

Table 3.10: Type I Error for One-Sample Tests of Multinomial Distributions

Test Sets

Sample Size Test C1 C2 C3 C4 C5 C6

KS 0.022 0.013 0.011 0.022 0.013 0.028
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CvM 0.106 0.071 0.011 0.039 0.079 0.049

AD 0.022 0.071 0.075 0.043 0.075 0.046
10

Chi-squared 0.022 0.071 0.075 0.047 0.078 0.050

KS 0.041 0.043 0.024 0.014 0.028 0.026

CvM 0.116 0.043 0.024 0.048 0.053 0.045

AD 0.116 0.043 0.081 0.052 0.041 0.047
20

Chi-squared 0.041 0.043 0.024 0.053 0.064 0.046

KS 0.046 0.028 0.028 0.015 0.029 0.054

CvM 0.098 0.028 0.028 0.044 0.054 0.048

AD 0.098 0.123 0.070 0.046 0.046 0.047
30

Chi-squared 0.046 0.028 0.070 0.047 0.067 0.050

KS 0.007 0.000 0.003 0.006 0.003 0.016

CvM 0.057 0.031 0.059 0.049 0.046 0.052

AD 0.057 0.068 0.059 0.049 0.051 0.052
100

Chi-squared 0.057 0.068 0.059 0.049 0.053 0.049

KS 0.006 0.000 0.004 0.006 0.003 0.012

CvM 0.066 0.027 0.046 0.051 0.049 0.050

AD 0.078 0.085 0.057 0.052 0.049 0.052
500

Chi-squared 0.053 0.041 0.046 0.049 0.045 0.048
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Two sample tests comparison

(a) (b)

(c) (d)

(e) (f)

Top left, shows power analysis for N(µ1 = 1, σ2 = 4) and N(µ2, σ
2 = 4), where µ2 = µ1 ∗ (1 + ∆), sample size

N = 10. Top right shows power analysis forN(µ1, σ
2 = 4) andN(µ2, σ

2 = 4), where µ2 = µ1 ∗(1+∆), sample
size N = 100. Middle left was the power for the correlated case with r = 0.8, N(µ1, σ

2 = 4) and N(µ2, σ
2 = 4),

where µ2 = µ1 ∗ (1 + ∆), sample size N = 10. Middle right is the power for the correlated case with r = 0.8,
N(µ1, σ

2 = 4) and N(µ2, σ
2 = 4), where µ2 = µ1 ∗ (1 + ∆), sample size N = 100. Bottom left is the power for

the correlated case with r = −0.8, N(µ1, σ
2 = 4) and N(µ2, σ

2 = 4), where µ2 = µ1 ∗ (1 + ∆), sample size
N = 10. Bottom right is the power for the correlated case with r = −0.8, N(µ1, σ

2 = 4) and N(µ2, σ
2 = 4),

where µ2 = µ1 ∗ (1 + ∆), sample size N = 100.

Figure 3.8: Power Analysis for Two-sample Tests on Normal distributions
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From figure 3.8, we find that when the alternative was the difference in location (µ) shift, then

the EDF based tests are more powerful than the Chi-squared test. Similarly to the previous

power analysis on the variance difference, when the assumption of independence among samples

are violated, the power of the four tests was relatively lower when there exist positive correlation

and relatively higher power when samples were negatively correlated.

(a) (b)

(c) (d)
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(e) (f)

Top left, shows power analysis forN(0, σ2
1 = 4) andN(0, σ2

2), where σ2 = σ1∗(1+∆), sample sizeN = 10. Top
right shows power analysis forN(0, σ2

1 = 4) andN(0, σ2
2), where σ2 = σ1∗(1+∆), sample sizeN = 100. Middle

left was the power for the correlated case with r = 0.8, N(0, σ2
1 = 4) and N(0, σ2

2), where σ2 = σ1 ∗ (1 + ∆),
sample size N = 10. Middle right is the power for the correlated case with r = 0.8, N(0, σ2

1 = 4) and N(0, σ2
2),

where σ2 = σ1 ∗ (1 + ∆), sample size N = 100. Bottom left is the power for the correlated case with r = −0.8,
N(0, σ2

1 = 4) and N(0, σ2
2), where σ2 = σ1 ∗ (1 + ∆), sample size N = 10. Bottom right is the power for the

correlated case with r = −0.8, N(0, σ2
1 = 4) and N(0, σ2

2), where σ2 = σ1 ∗ (1 + ∆), sample size N = 100.

Figure 3.9: Power Analysis for Two-sample Tests on Normal distributions

The results from figure 3.9 showed that under the distribution of normal, the two-sample

tests have almost identical power to the one-sample conditions. When the alternative is the

difference in dispersion rate (σ) then the Chi-squared test is the most powerful one. However,

under the two-sample condition, the AD test has an acceptable rate to rightly discriminate

among alternatives. When the underlying assumption of independence between samples is

violated, r = 0.8, then the four tests achieved relatively lower powers than the independent cases.

However, when r = −0.8 then the four tests were relatively more powerful to discriminate

among alternative.

66



(a) (b)

(c) (d)

(e) (f)

Top left, shows power analysis for W (γ1 = 1, λ = 2) and W (γ2, λ = 2), where γ2 = γ1 ∗ (1 + ∆), sample size
N = 10. Top right shows power analysis for W (γ1 = 1, λ = 2) and W (γ2, λ = 2), where γ2 = γ1 ∗ (1 + ∆),
sample size N = 100. Middle left was the power for the correlated case with r = 0.8, W (γ1 = 1, λ = 2) and
W (γ2, λ = 2), where γ2 = γ1 ∗ (1 + ∆), sample size N = 10. Middle right was the power for the correlated
case with r = 0.8, W (γ1 = 1, λ = 2) and W (γ2, λ = 2), where γ2 = γ1 ∗ (1 + ∆), sample size N = 100.
Bottom left was the power for the correlated case with r = −0.8, W (γ1 = 1, λ = 2) and W (γ2, λ = 2), where
γ2 = γ1 ∗ (1 + ∆), sample size N = 10. Bottom right was the power for the correlated case with r = −0.8,
W (γ1 = 1, λ = 2) and W (γ2, λ = 2), where γ2 = γ1 ∗ (1 + ∆), sample size N = 100.

Figure 3.10: Power Analysis for Two-sample Tests on Weibull distributions

Figure 3.10 showed that when tested samples were from Weibull distribution, the simulation

results showed that EDF tests were more powerful than the chi-squared tests when the tested
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distributions were significantly different. Given the alternative that X and Y sampled from that

of Weibull distribution with identical scale parameter, λ, but different shape parameter, γ1 and

γ2, CvM, KS and Chi-squared tests were almost as powerful when the change ratio was less

than 50%. However, when the change ratio in the shape parameter of tested Weibull populations

was significant, more than 50%, then the EDF-based tests were much more powerful.

(a) (b)

(c) (d)
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(e) (f)

Top left, shows power analysis for W (γ = 1, λ1 = 2) and W (γ, λ2), where λ2 = λ1 ∗ (1 + ∆), sample size
N = 10. Top right shows power analysis for W (γ = 1, λ1 = 2) and W (γ, λ2), where λ2 = λ1 ∗ (1 + ∆), sample
size N = 100. Middle left was the power for the correlated case with r = 0.8, W (γ = 1, λ1 = 2) and W (γ, λ2),
where λ2 = λ1 ∗ (1 + ∆), sample size N = 10. Middle right was the power for the correlated case with r = 0.8,
W (γ = 1, λ1 = 2) and W (γ, λ2), where λ2 = λ1 ∗ (1 + ∆), sample size N = 100. Bottom left was the power
for the correlated case with r = −0.8, W (γ = 1, λ1 = 2) and W (γ, λ2), where λ2 = λ1 ∗ (1 + ∆), sample size
N = 10. Bottom right was the power for the correlated case with r = −0.8, W (γ = 1, λ1 = 2) and W (γ, λ2),
where λ2 = λ1 ∗ (1 + ∆), sample size N = 100.

Figure 3.11: Power Analysis for Two-sample Tests on Weibull distributions

Figure 3.11 showed results from Weibull distribution with identical shape parameter, γ,

while different scale parameter, λ, generally, the EDF based tests were more powerful than the

Chi-squared test. It was worth noticing that when the independence assumption for the tested

population was violated, the positive correlation leads to a conservative probability of rejecting

of the null hypothesis when the difference between tested populations are not significant, while

the rejecting probability increased drastically when the difference was more significant.
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 3.12 (a), shows power analysis for skewed case with P 1
2 = (p11 = 0.3, p12 = 0.7) and P 2

2 = (p21, p
2
2),

where p2n = p1n × (1 + ∆)/
∑n

i=1 p
2
n, sample size N = 10. Figure 3.12 (b) shows power analysis for P 1

2 =
(p11 = 0.3, p12 = 0.7) and P 2

2 = (p21, p
2
2), where p2n = p1n × (1 + ∆)/

∑n
i=1 p

2
n, sample size N = 100. Figure

3.12 (c) was the power for symmetric case with P 1
2 = (p11 = 0.1, p12 = 0.2, p13 = 0.4, p14 = 0.2, p15 = 0.1)

and P 2
2 = (p21, p

2
2, p

2
3, p

2
4, p

2
5), where p2n = p1n × (1 + ∆)/

∑n
i=1 p

2
n, sample size N = 10. Figure 3.12 (d)

was the power for P 1
2 = (p11 = 0.1, p12 = 0.2, p13 = 0.4, p14 = 0.2, p15 = 0.1) and P 2

2 = (p21, p
2
2, p

2
3, p

2
4, p

2
5),

where p2n = p1n × (1 + ∆)/
∑n

i=1 p
2
n, sample size N = 100. Figure 3.12 (e) was the power for symmetric

multinomial distribution with heavy tails P 1
2 = (p11 = 0.3, p12 = 0.15, p13 = 0.1, p14 = 0.15, p15 = 0.3) and

P 2
2 = (p21, p

2
2, p

2
3, p

2
4, p

2
5), where p2n = p1n × (1 + ∆)/

∑n
i=1 p

2
n, sample size N = 10. Figure 3.12 (f) was

the power for P 1
2 = (p11 = 0.3, p12 = 0.15, p13 = 0.1, p14 = 0.15, p15 = 0.3) and P 2

2 = (p21, p
2
2, p

2
3, p

2
4, p

2
5),

where p2n = p1n × (1 + ∆)/
∑n

i=1 p
2
n, sample size N = 100. Figure 3.12 (g) was the power for skewed

multinomial distribution with heavy tails P 1
2 = (p11 = 0.7, p12 = 0.2, p13 = 0.05, p14 = 0.03, p15 = 0.02) and

P 2
2 = (p21, p

2
2, p

2
3, p

2
4, p

2
5), where p2n = p1n × (1 + ∆)/

∑n
i=1 p

2
n, sample size N = 10. Figure 3.12 (h) was the

power for P 1
2 = (p11 = 0.7, p12 = 0.2, p13 = 0.05, p14 = 0.03, p15 = 0.02) and P 2

2 = (p21, p
2
2, p

2
3, p

2
4, p

2
5), where

p2n = p1n × (1 + ∆)/
∑n

i=1 p
2
n, sample size N = 100.

Figure 3.12: Power Analysis for Two-sample Tests on Multinomial distributions

Interesting results from figure 3.12 were found from the power plots for multinomial

distributions. When group numbers in multinomial are small or when the distributions are

skewed, EDF-based tests were more powerful than the Chi-Squared test. When the multinomial

distributions are symmetric and sample size large than 30, Chi-squared test has the highest

power. The number of groups increases in a multinomial distribution, the more powerful the

KS, the CvM, the AD and the Chi-squared test will be. Interestingly, the more skewed the

multinomial distributions are, the more powerful the KS, the CvM, the AD and the Chi-squared

test will be.
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Discussion and Concluding Remarks

As compared to the Chi-squared test, the EDF-based tests have a steeper discriminate curve,

in another word, EDF- based test may not perform as powerful to minor differences between

tested populations but very powerful towards more significant differences. In addition, from

the simulation results, we have shown that the Anderson-Darling test has the most satisfactory

controlled type I error and power under sample sizes ranged from small to large and across

multiple distributions.

The bell-shape assumption of distribution is critical for the Chi-squared test. We have

noticed a considerable decline of accuracy for Chi-squared test when the tested distributions

were from an unsymmetrical distribution family. On the other hand, EDF-based tests were

consistent across distributions.

When correlation exists between tested samples, none of the tests was a suitable choice. The

KS test in its original form, the CvM test, the AD test and the Chi-squared test have conservative

type I error when the correlation was positive and liberal type I error when the correlation was

negative, the degree of conservative/liberal of the tests increases when the degree of correlation

increases and vice versa. Noticeably, Chi-squared test was less vulnerable to the violation of

the independence assumption of tested samples than EDF-based tests, in another word, the

Chi-squared test has less performance reduced when correlation exists among tested samples.

We may conclude that if we do not have prior information about the distributions going

to be tested, EDF-based tests are better. However, so long as we have prior information

about tested distribution and the distribution is bell-shaped and we are expecting differences in

variance/sparseness, then the Chi-squared test may be more preferable. When correlation exists

between tested samples, adjustment on the informative sample size is important and required.

Our simulation results for the one-sample KS test in discrete distribution is from Conover’s

method. Conover has mentioned in his paper that his discrete KS test is inaccurate when the
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sample size n is larger than 30. In the two sample KS test simulation, we applied the original

KS test which is known to be conservative when the tested distribution is discontinuous. Further

research on the two-sample KS test for discontinuous distributions is needed.

The Chi-squared test has a relatively better power for continuous distribution when applying

an optimal grouping algorithm. However, our simulation results have shown that the EDF-based

tests, such as KS, CvM and AD, were more powerful and robust than the Chi-squared test.

Only under certain conditions like the difference only exists in variation and the distribution is

bell-shaped, Chi-squared test to be preferred. Among the EDF-based tests, the CvM and AD

outperformed the KS in most cases as they have cumulative the difference while KS used the

supremum of the density difference as the testing statistic. When the data is discrete, we may

still apply the EDF based tests due to their higher power. Under the condition that tested samples

are correlated, the tests are inaccurate and adjustments account for such effect is necessary.
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An Adjustment of Kolmogorov-Smirnov Test Under Spatial

Autocorrelation

Journal of Statistical Planning and Inference

Abstract

Kolmogorov-Smirnov (KS) test is a non-parametric hypothesis test that measures the probability

of deviations, that the interested univariate random variable is drawn from a pre-specified

distribution (one-sample KS) or has the same distribution as a second random variable (two-

sample KS). KS test, as well as other EDF based tests such as Anderson-Darling test and Cramer-

von Mises test, have been widely adopted in statistical analysis due to its virtue of more general

assumptions compared to parametric test like t-test. However, the independence assumption is

one of the very fundamental and easily overlooked assumptions of a statistical model.Without

taking care of the effect of correlations between samples, positive linear correlations may result

in the conservative estimation of type I error of the KS test and vice versa. In order to address

the effects of autocorrelation, I introduced a novel approach of reconstruction of grid map with

spherical coordinates. I studied the true distribution of KS statistic under sptial autocorrelation

from Monte Carlo simulation and introduced a KS test with spatial adjustment from modelling
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on the simulation results. Our KS test with spatial adjustment has a controlled type I error and

satisfied power.

Introduction

Kolmogorov-Smirnov test has been a popular test in many fields of applications. It is a non-

parametric method under simply settings. It measures the supremum divergence of EDF

difference between an interested dataset and the second dataset. By the virtue of its relatively

generous on the assumptions of the dataset to be applied, e.g. it is distribution-free which means

it does not require knowledge of the samples. The test has been widely appreciated for test the

distribution equality. In addition, the EDF test tends to give more power than the χ2 test. (Pettitt

& Stephens, 1977)

The original one-sample and two-sample K-S statistic has the supremum form as followed

Kn =
√
n sup

x
|Fn(X)−Gn(X)|

Km,n =

√
mn

m+ n
sup
x,y
|Fn(X)−Gm(Y )|

However, the independence assumption is one of the very fundamental and easily overlooked

assumptions of a statistical model. Without taking care of the effect of correlations between

samples, positive linear correlations may result in the conservative estimation of type I error of

the KS test and vice versa (Weiss, 1978). We conducted a comprehensive simulation to study

the KS test in its original form on distributions under correlations. Under the significance level

of 0.05, we found the KS test in its original form have a uncontrolled small type I error under

positive correlations and uncontrolled large type I error under negative type I error (Zheng &

et al, 2019a). When the KS test is applied in the spatial analysis, spatial autocorrelation may

cause the KS test to have a larger type I error if no adjustments for spatial correlation are applied.
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In order to apply the KS test in the right form, adjustments have been studied and proposed.

ICC adjustment (N. Cressie, 1992; Kitkungvan et al., 2017). Marc suggested modifying the

KS statistic as a function of the original KS statistic and the linear correlation coefficient of r

(Weiss, 1978). Adjustment for KS test considering the spatial structure has not been studied.

One of our primary goals in this article is to apply the KS test in analyzing the cardiac PET

scans. Therefore, the geometry characteristics of the human heart were studied and a simulated

spatial structure was proposed.

First, we need to define a few spatial statistics concepts. Let S : si ∈ Rd be interested

location in d-dimensional Euclidean space, Z(si) can be viewed as the random process in such

location si.The notation z(si) is defined as a realization of such random process Z(si). Without

loss of generality, we may assume that the random process Z(si) as followed

Z(si) = µ+ εi

Where µ is defined as the mean value of such process and the error term follows a normal

distribution, εi ∼ N(0, σ2). For the purpose of statistically analyzing the image data, intrinsic

stationary distribution is a critical assumption for the spatial random process. The intrinsic

stationery is defined as followed

E(Z(s+ h)− Z(s)) = 0

var(Z(s+ h)− Z(s)) = 2γ(h)

where h is the Euclidean distance, 2γ(h) is an important spatial statistics parameter is

known as variogram and γ(h) is the semivariogram.

Meanwhile, the second order stationary ensures the distribution of such random process

not depend on the location si, therefore all realizations across the map were from the same
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distribution.

E(Z(si)) = µ (3.14)

cov(Z(si + h), Z(si)) = C(h) (3.15)

where C(h) is the covariogram that only depend on the distance between location si and sj .

After C(h) is defined, the autocorrelation structure of such spatial process may be determined.

With the aim of creating a positive-definite covariance structure for the spatial analysis, a

valid covariance structure depend on geometry location needs to be defined. Matern (1960) con-

structed a few valid covariogram models inRd, d > 1. Assumed a valid isotropic covariogram

structure in R3.

C(h) =
σ2(α

2||h||
2

)ν2Kν(α
2||h||)

Γ(ν)
, ν > 0

where Kν is the modified Bessel function of the second kind, ||h|| is the Euclidean distance.

Specifically, ν = 1/2 may yield into a special case

C(h) = σ2exp(−α2||h||)

Methods

The KS test with spatial autocorrelation were found by using the Monte Carlo simulation. In

this section, we introduced some methods and elaborated on the procedures we applied.

Cholesky Decomposition Method

With knowledge of covariogram structure Σ, we were able to apply Cholesky decomposition

methods to simulate valid autocorrelated data on the interested fields. (N. Cressie, 1992; Golub &
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Loan, 2012) In order to get the targeted simulated realizations, we decomposed the covariogram

matrix with Cholesky decomposition, in which

Σ = LL′

Where L is a lower triangular n×n matrix. Then the targeted realizations could be obtained

as

Z(s) = µ+ LE (3.16)

Where E is the error term in matrix form. Note that E is from the identical independent

normal distribution with zero mean and unit variance, E ∼ N(0, 1). By applying the Cholesky

decomposition method, I was able to simulate auto-correlated spatial realizations, with pre-

defined covariogram structure, from independent simulated spatial data points.

Moran’s I and A Moran’s I in Covariogram Form

In order to measure the spatial autocorrelation with a coefficient, Patrick Moran (1950) proposed

a spatial autocorrelation coefficient in his paper of Notes on Continuous Stochastic Phenomena

in Biometrika. (Moran, 1950)

Give a population of N spatial subjects with random variable X , wij denotes the preset

weight between ith and jth subjects. Moran’s I is defined as

I =
N

S

∑N
i=1

∑N
j=1wij(xi − µ)(xj − µ)∑N

j=1(xi − µ)2

Where

S =
N∑
i=1

N∑
j=1

wij

µ = E(X)
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With the Cholesky decomposition method from section , we were able to simulate spatially

correlated realizations once the covariogram Σ structure is defined. In order to measure the

spatial autocorrelation, a more general correlation coefficient is required. However, the original

Moran’s we were defined as a measurement for realizations, which is inaccessible before

simulation. With the purpose of simulating spatially autocorrelated samples with respect to

certian Moran’s I. With given spatial covariogram known, we used an approximation form of

Moran’s I with the weighted covariogram matrix.

IA =
N

W

∑
i

∑
j wi,jcov(Z(si), Z(sj))∑

i var(Z(si))

where N is the sample size, wi,j is the weight for location si and sj , W =
∑

i

∑
j wi,j .

In order to see if IA generates desired spatially autocorrelated samples in a given spatial

space, we have run a Monte Carlo simulation with 10,000 replications. Given the valid variogram

for R3,

C(h) = σ2exp(−α2||h||) (3.17)

Samples were generated regarding given covariogram 3.17 and spatial structure stated in

figure 3.21. The Moran’s I in covariogram form was calculated before simulation. The Moran’s

I in original form for simulated samples were computed after simulation. The Moran’s I in

covariogram form and the simulated Moran’s I were compared in plot 3.13. It shows a satisfied

rate of fit.
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Figure 3.13: IA vs. Simulated Moran’s I

Spatial Coordinates and Geometry Characteristics of Human Heart

The geometry of the heart plays a critical role in the mechanics of cardiology. Back in 1892,

Wood has used a spherical coordinate system to mimic the heart shape. Since then the sphericity

index system has been popularly used by several studies to reconstruct the shape of the heart.

(Mitchell et al., 1992a) Azhari 1998 used a special normalized helical shape descriptor, denoted

“geometrical cardiogram”, to determine the shape of left ventricular. As the spherical shape has

been proved to provide a simulation in shape that is close enough to the heart. (Azhari et al.,

1999)

In this study, we focused on the reconstruction of cardiac geometry locations with PET-CT

image data. For each PET scan, electric signal values for CFR were recorded in a matrix form

with 21 rows and 64 radials. In order to reconstruct the cardiac locations from PET image, we

simulated a gridded map with a shape of a truncated ellipsoid, similar to a half football.

Once the simulation shape of heart is decided, we simulated fixed locations D along the

fields to represent the electronic recording points in the image location. The nature of gridded
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spatial data in R3 can be viewed as a two-way table. (N. Cressie, 1992) Locations si ∈ D, D is

the subset of R3 and the realization in such location is Z(si).

Given the spherical coordinates system

Figure 3.14: Spherical Coordinates

The procedure to generate the 3-D gridded map is as followed

1. Define the radius of the half football we want as

ρ = 1.

2. Then the define θ on the circle as 64 equal cuts of 2π

Θ = (θ1, θ2, . . . , θ64) = (
1

32
π,

2

32
π, . . . , 2π).

3. Similarly define φ as 21 equal cuts of (π/2, π)

Φ = (φ1, φ2, . . . , φ21) = (
21

42
π,

22

42
π, . . . ,

41

42
π).
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4. Transfer spherical coordinates into catesian coordinates

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ

The generate 3-D space is realized as followed.

Figure 3.15: Generated Coordinates for Reconstructing PET into Heart shape

After the 3-D space is simulated, the distance between each unique pair of locations may

be calculated. I defined the arc length between two locations as the interested distance. The

distance between two location si = (xi, yi, zi) = (ρ sinφi cos θi, ρ sinφi sin θi, ρ cosφi) and

sj = (xj, yj, zj) = (ρ sinφj cos θj, ρ sinφj sin θj, ρ cosφj) is defined as
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Acos = arccos (cosφi cosφj + sinφi sinφj cos (θi − θj)) (3.18)

dist(si, sj) =


ρ× arccos (1), Acos ≥ 1

ρ× arccos (−1), Acos ≤ 1

ρ× Acos, otherwise

(3.19)

The weight function wij is defined as the squared inverse distance

wij =
1

(dist(si, sj))2

The weight matrix W is therefore defined as

W =



w11 w12 w13 . . . w1n

w21 w22 w23 . . . w2n

...
...

... . . . ...

wn1 wn2 wn3 . . . wnn


(3.20)

After the setup of the spatial environment, the procedure for simulating spatially autocorre-

lated samples in grid map figure 3.21 is followed as

1. Simulate N samples from i.i.dnormal distributionN(µ, σ2). In this study,N = 1344, µ =

(0.5, 1) and σ = (0.5, 1, 2).

2. Refer to the Cholesky decompsition method in section , calculate L from given covari-

ogram structure Σ.

3. Refer to transformation equation 3.16, transfer N i.i.d samples into the grid with respect

the weight matrix W.
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A KS Test with Spatial Adjustment

Published reports suggested that when the KS test was applied directly without adjustment on

the existed spatial autocorrelation will be liberal with an underestimated p-value (Weiss, 1978).

Therefore, it is reasonable to assume that a adjustment on the sample size may provide us a

closer guess to the truth. The sample size after adjustment is called the informative sample size

in this article.

For spatial realizations y1, y2, . . . , yn of 1st, 2nd, . . . , nth locations. Notice that n is the

sample size. Assume

Y = µ+ ε

where µ denotes the population mean of Y , ε is the spatially auto-correlated error term in-

dependent of µ. We may rewrite the error term in independent form ε∗, and ε∗ ∼ i.i.d.N(0, σ2
ε∗)

. let

C(Yi, Yj) = σ2V −1

then

Y = µ+ V −
1
2 ε∗

where V is the identity matrix, V = I , if and only if Y is spatially independent under

Gaussian.

Griffith (2005) gave that the expectation of the variance of Y is

E(σ̂2
Y ) =

tr(V −1)
n

σ2
ε

tr(V −1)
1tV −11

n

where 1 is the n× 1 matrix of 1, tr(V −1) is the trace matrix of V −1.
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Then he notes that the informative sample size n∗(the equivalent number of samples without

autocorrelation) is

n∗ =
tr(V −1)

1tV −11
n

The approximation of n∗ when the spatial realizations Y is normally distributed given the

spatial autocorrelation coefficient ρ̂ estimated from Spatial autoregressive (SAR) models as

followed

n∗ = n× [1− 1

1− exp−1.92

n− 1

n
(1− exp−2.12ρ̂+ 0.2

√
ρ̂)] (3.21)

where the KS statistic was still obtained as the supremum of the absolute distance between two

EDFs.

Another KS test with adjustment for the violation of independence assumption is the ICC

adjusted KS test (N. Cressie, 1992). Similar to Griffith’s adjustment, the ICC adjusted KS has

an adjusted sample size. The KS statistic was still obtained as the supremum of the absolute

distance between two EDFs. The informative sample size is defined as:

n∗ = ICC ∗ n (3.22)

With previous knowledge, we assumed a general form that the informative sample size n′

with adjustment by the spatial autocorrelation coefficient of Moran’s I be

n
′
= n× 2

1 + eg(I)

Where g(I) is the function of I , g(I) = β1I +β2I
2 + · · ·+βiI

i. For the sake of parsimony,

I only consider g(I) = β1I + β2I
2 + β3I

3.

Therefore to simplify the model I considered

A =
n′

n
=

2

1 + eg(I)
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For jth individual we may have

Aj =
n′j
nj

=
2

1 + eβjIj+εj

In order to find the informative sample size and the true distribution of KS statistic under

spatial autocorrelation, we used the Monte Carlo procedure as followed.

1. Simulate spatial autocorrelated samples in grid map 3.21 with respect to Moran’s I at

certain levels. In this study we used Moran’s I = (0.2, 0.4, 0.6, 0.8), sample size n = 1344,

sample distribution of N(0, 1).

2. Compute the KS statistic from simulated samples in step 1.

3. Find the 95 percentile of the KS statistics, denote as KSsim from step 2. Assume KSsim

is the critical value of true distribution of KS statistic under spatial autocorrelation at the

95 percentile, find the corresponding sample sizes n′.

After we have obtained the informative sample size n′, generalized linear model (GLM)

with L1 regularization (Lasso) was used to estimate the βs. The L1 regularization ensured our

model with virtue of parsimony by emphasizing on the most influential variables. Assuming a

link function l(A) = log ( 1
A
− 1), the adjustment ratio may be rewrite into the following general

linear form

E(l(A)) = g(I)

88



Figure 3.16: GLM with Lasso

After the lasso procedure ??, we have I and I3 in the model and I2 were eliminated from

proposed model.

g(I) = β1I + β3I
3 (3.23)

The estimated parameters are as followed,

n
′
= n× 2

1 + e3.934I+3.172I3
(3.24)

The KS statistic with adjustment for spatial autocorrelation is defined as followed

K∗
n′

=
√
n∗ sup

x
|Fn(X)−Gn(X)|

K∗
m
′
,n
′ =

√
m′n′

m′ + n′
sup
x,y
|Fn(X)−Gm(Y )|
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A valid hypothesis test requires controlled type I error rate, which should be near the

pre-claimed nominal level. After the type I error is controlled, a satisfied power to discriminate

against differences between tested distributions is desired. Therefore, I used type I error under

the most popular nominal level of 0.05 and power of my adjusted KS test as benchmarks to

evaluate the KS test.

In order to provide a clear picture of how the spatially adjusted KS test performed compared

to the other KS type tests. I have evaluated the traditional KS test without spatial autocorrelation

adjusted sample size, KS test adjusted with ICC, KS test with Griffith’s adjustment and lastly,

the KS test with spatial adjustment. The designed nature of image scans limit the sample

locations, in other word, the sample size is fixed at 1344. Therefore, the power of KS tests was

analyzed for differences in parameters of distributions. I was able to test the distribution change

in mean, µ = 1 + ∆, at the ratio of 0.05, 0.1, 0.2, 0.5, 1. Same differences ratio was analyzed

for the variance, σ = (0.5, 1, 2) + ∆.
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Results

Type I Error

Parameters (µ, σ2) Parameters (µ, σ2)
Moran’s I Test

(1, 0.25) (1, 1) (1, 4)
Moran’s I Test

(1, 0.25) (1, 1) (1, 4)

KS 0.169 0.167 0.173 KS 0.693 0.704 0.699

KS(1) 0.050 0.052 0.048 KS(1) 0.033 0.037 0.037

KS(2) 0.064 0.067 0.064 KS(2) 0.197 0.209 0.201
0.2

KS(3) 0.167 0.165 0.172

0.6

KS(3) 0.687 0.698 0.694

KS 0.407 0.411 0.412 KS 0.928 0.927 0.927

KS(1) 0.049 0.049 0.053 KS(1) 0.032 0.032 0.032

KS(2) 0.110 0.110 0.112 KS(2) 0.374 0.381 0.369
0.4

KS(3) 0.402 0.407 0.410

0.8

KS(3) 0.921 0.919 0.921

* KS(1) = KS adjusted with Moran’s I

* KS(2) = Griffith’s adjusted KS

* KS(3) = Adjusted KS with ICC

Table 3.11: Type I Error for Two sample tests of Spatial Normal Distributed Samples

The traditional KS test without any adjustment was unable to achieve the exact type I error when

the spatial correlation exists. The type I error for traditional KS test without adjustment and KS

test with ICC adjustment have an uncontrolled type I error larger than 0.15 when the Moran’s I

is 0.2. When the spatial autocorrelation is more serious, a Moran’s I of 0.4, the type I error is

more than 0.4. The KS tests without adjustment or adjusted by ICC were unable to be used.
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KS test with Griffith’s adjustment was able to eliminate the unwanted autocorrelation effects

when Moran’s I is small. When the spatial autocorrelation is more serious, above 0.2, the type I

error is liberal.

Our proposed KS statistic with adjustment of Moran’s I has proved to have a controlled

type I error rate while previous KS statistic from Griffith’s tends to have liberal Moran’s I when

the Moran’s I is relatively large. When the Moran’s I is small, less than 0.5, we have a type I

error of 0.5. When the Moran’s I is relatively large, Moran’s I larger than 0.6, our proposed test

may be rather conservative, with a type I error of 0.03.

(a) 1a (b) 1b

(c) 1c (d) 1d

Figure 3.17: Type I error under the nominal level of 0.05

Power analysis

In order to evaluate the ability of rightfully rejecting null hypothesis, we conducted power

analysis for the proposed KS test via MC simulation. The power analysis were evaluated on

several mean and variance sets to study the performance under different normal distributions.
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From the power analysis we may see that the power of our proposed KS test were able to achieve

satisfied power.

When the alternative hypothesis are parameters difference in both mean and variance and

the Moran’s I is moderate, less than 0.2, the proposed test was able to have a power of 0.8 when

the parameter difference ratio is 0.1. When the spatial autocorrelation is more serious, Moran’s

I is 0.4, proposed KS test was able to achieve a power of 0.9 when parameter difference is

0.5, when the parameters difference ratio is 0.2, the power is less than 0.5. When the spatial

autocorrelation is very serious with a Moran’s I of 0.6, the power of rejecting null when the

parameters difference ratio is 0.2 is 0.2, when the parameters difference is 0.5, the power is 0.6.

When the spatial autocorrelation is extreme among samples, with a Moran’s I of 0.8, then the

power is very low and unable to discriminate the null.

When the alternative hypothesis is parameters differences in mean, power was consistent

among different variances. Given a relatively weak spatial autocorrelation of 0.2, our proposed

KS test was almost as powerful as independent cases. As the spatial autocorrelation increases in

samples, the power of our proposed KS test decreased. If the spatial autocorrelation is extremely

severe, the proposed test may be unpowerful to discriminate null when it is false.

When the alternative hypothesis is parameters difference in variance, we were able to find

a similar conclusion as for when the alternative hypothesis is parameters difference in mean.

Given a relatively moderate spatial autocorrelation, Moran’s I less than 0.6, then our proposed

test was powerful to reject null when the parameter differences are larger than 0.5.
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(a) (b)

(c) (d)

(e) (f)

Left column of figures are samples from distribution of N(1, 1), while right samples are from N(1, 4). Figure (a),
(b) are the alternative is different variance. Figure (c), (d) are the alternative is different mean. Figure (e), (f) are
the alternative is different mean.

Figure 3.18: Power analysis for proposed KS test with spatial autucorrelation adjustment

Discussion and Concluding Remarks

In this paper, we provide a relatively simple way of applying the KS test for samples with

spatial autocorrelations. Griffith’s adjustment on the informative sample size is specifically for

SAR model which may have caused the inadequately shrink in sample size to reflect the true

informative samples.
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We noticed an uncontrolled type I error in the case of extreme spatial autocorrelation. It

was interpreted as even though our KS test was proposed to eliminate the effect of spatial

autocorrelation, it may fail when the auto-correlation is extremely large. When the Moran’s I is

close to 1, the similarities among samples may be too serious. The informative sample size may

be too small for the KS test to produce a reasonable result. Our proposed test may serve as a

rescue when the spatial independence assumption is violated.

The importance of addressing the right correction correspondence to the correlation structure

is self-evident. In our simulation, we have full knowledge of what degree and structure may

the Moran’s I be. However, in real life data analysis, it may be difficult to identify the exact

weight matrix that corresponds to the spatial autocorrelation structure. Therefore, an algorithm

that assigns weight automatically based on observed data may need to be studied in future

researches.

Future study of adjusting informative sample size for spatial autocorrelation in discrete

spatial samples is desired. In the study of the image scan, we find the interested variables were

separate in groups. The KS test was rather conservative when tested samples were from grouped

or discrete populations. Therefore, our proposed test may direct to conservative type I error. In

addition, the Moran’s I can only capture the autocorrelation of continuous spatial realizations.

The Moran’s I may be difficult to apply and uninterpretable when the samples are discrete. D

statistic is able to measure the autocorrelation in discrete samples but the null distribution of D

statistic is not general and therefore may not be applied directly. In order to solve this issue, a

standardized D statistic ranges from -1 to 1 needs to be addressed in future researches.

Meanwhile, multi-dimensional KS tests has been studied. (Justel, Peña, & Zamar, 1997;

Fasano & Franceschini, 1987; Peacock, 1983) In the introduction I have suggested that published

articles proved that the effectiveness and power for such tests in analyzing images. In future

studies, we may focused on proposing a multi-dimensional KS type test with spatial adjustment

via Moran’s I.
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Comparing Heart PET Scans: A Revision of Komogorov-Smirnov

Test

Computational Statistics & Data Analysis

Abstract

Kolmogorov-Smirnov (KS) test has been a popular test in many fields of applications. Published

papers have confirmed the efficiency of KS test being applied in the imaging process, histogram

analysis and PET/CT scan analysis. However, the independence assumption is one of the very

fundamental and easily overlooked assumptions of a statistical model. Without taking care

of the effect of correlations between samples, positive linear correlations may result in the

conservative estimation of type I error of the KS test and vice versa. When the KS test is

applied in the spatial analysis, spatial autocorrelation may cause the KS test to have a larger

type I error if no adjustments for spatial correlation are applied. We revisited a trial comparing

the efficiency of regadenoson under different timeing and dipyridamole by the Weatherhead

PET Imaging Center in Houston. In order to study the PET scans with spatial autocorrelation,

we have introced a novel way of reconstructing the shape of human heart by using spherical

coordinates. Meanwhile, the KS test in its original form does not have a controlled type I error

and therefore we used the KS test with spatial adjustment. We compared the KS test with spatial
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adjustment with other KS test with adjustment for correlation. The results showed that the KS

test with spatial adjustment has a controlled type I error and a satisfied power.

Introduction

In order to integrate the CFR with absolute blood flow, a new concept was approved by the

Food and Drug Administration (FDA) on September 22, 2017. The approval was based on the

comprehensive scientific review from 2012 to 2017. Several published reports validated the

concept and proved its effects to be treated as a biomarker for CVD diagnosis (K. Lance Gould

& Johnson, 2018).

Figure 3.19: CFC Scatter Plot of CFR versus Absolute Stress Flow
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CFC CFR Stress perfusion Color Code

Excellent CFR > 2.9 perfusion > 2.17 Red

Typical 2.9 ≥ CFR > 2.38 2.17 ≥ perfusion > 1.82 Orange

Mildly reduced 2.38 ≥ CFR > 1.6 1.82 ≥ perfusion > 1.09 Yellow

Moderately reduced 1.6 ≥ CFR > 1.27 1.09 ≥ perfusion > 0.83 Green

Severely reduced 1.27 ≥ CFR > 1 0.83 ≥ perfusion Blue

Myocardial steal CFR < 1 0.83 ≥ perfusion Purple

Table 3.12: Coronary flow capacity

From the table 3.12 and figure 3.19, we know that when CFR is larger than 2.9 (ml/g/min)

or stress perfusion > 2.17 then the CFC is coded as excellent and the color code is red, when

the CFR from 2.38 to 2.9 or the perfusion is from 1.82 to 2.17 then the CFC is coded as typical

and the color code is orange, when the CFR is from 1.6 to 2.38 or the stress perfusion from

1.09 to 1.82 then the CFC is coded as mildly reduced and color code is yellow, when the CFR

is from 1.27 to 1.6 or the perfusion from 0.83 to 1.09 then the CFC is recorded as moderately

reduced and the color is coded as green, when the CFR is from 1 to 1.27 or the perfusion is

less than 0.83 then the CFC is coded as severely reduced and the denoting color is blue, lastly

when CFR is less than 1, the CFC is coded as myocardial steal and the color code is purple. The

triangle in the upper left and bottom with black and white color were the lower limit of rest flow

for viability and the upper limit of clinically observed rest flow, respectively.

Kolmogorov-Smirnov test has been a popular test in many fields of applications. It is a

non-parametric method under simply settings. It measures the supremum divergence of EDF

difference between an interested dataset and the second dataset. By the virtue of its relatively

generous on the assumptions of the dataset to be applied, e.g. it is distribution-free which means

it does not require knowledge of the samples. The test has been widely appreciated for test the
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distribution equality. In addition, the EDF test tends to give more power than the χ2 test. (Pettitt

& Stephens, 1977)

The original one-sample and two-sample K-S statistic has the supremum form as followed

Kn =
√
n sup

x
|Fn(X)−Gn(X)|

Km,n =

√
mn

m+ n
sup
x,y
|Fn(X)−Gm(Y )|

Kolmogorov-Smirnov test has been used to discriminate image difference. Published papers

have confirmed the efficiency of KS test being applied in the imaging process and histogram

analysis (Lampariello, 2000). Lim showed that the KS test has relatively higher power compared

to Wilcoxon and t-test when the variation is relatively large (Lim & Jang, 2002). Geman used

KS test for discriminating homogeneous maps by pixel gray levels distribution (Geman et al.,

1990). The interpretation ability rendered its favourable position in clinical fields. Clinically,

published reports suggested that KS test were valid for analyzing MR scans comparison (Chen

et al., 2006; F. Baselice, 2017; Rajan et al., 2014). Kipritidis used KS test for CT/PET scans

and Brook applied histogram analysis with KS for spectral CT scans to evaluate the artifacts

reduction (Kipritidis et al., 2016; Brook et al., 2012).

However, the independence assumption is one of the very fundamental and easily overlooked

assumptions of a statistical model. Without taking care of the effect of correlations between

samples, positive linear correlations may result in the conservative estimation of type I error of

the KS test and vice versa (Weiss, 1978). When the KS test is applied in the spatial analysis,

spatial autocorrelation may cause the KS test to have a larger type I error if no adjustments for

spatial correlation are applied.

Under positive spatial autocorrelation, the locations closer tend to be similar and dependent,

locations further away tend be more independent. Therefore, the sample size in effect under

spatial autocorrelation may be different from the original sample size (N. Cressie, 1992). We
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called the true sample size under spatial autocorrelation as informative sample size n′ . In order

to adjust for the spatial autocorrelation, we worked out the KS test with spatial adjustment

(Zheng & et al, 2019b).

n
′
= n× 2

1 + e3.934I+3.172I3
(3.25)

The KS statistic with adjustment for spatial autocorrelation is defined as followed

K∗
n′

=
√
n∗ sup

x
|Fn(X)−Gn(X)|

K∗
m′ ,n′

=

√
m′n′

m′ + n′
sup
x,y
|Fn(X)−Gm(Y )|

The other popular test in analyzing the PET scan is the t-test (Kershah et al., 2013).

t = (X̄ − µ)/(
σ√
n

)

where X̄ is the sample mean of X : x1, x2, . . . , xn, σ is the standard deviation and µ is the

population/hypothesized mean. The most used type of t-test used is the paired t-test ??.

t = (X̄d − 0)/(
σd√
n

)

where X̄d is the sample mean of the difference of paired samples Xd : (x1,1−x2,1), (x1,2−

x2,2), . . . , (x1,n − x2,n), σd is the standard deviation of the paired differences.

In order to provide analysis on the cardiac PET scans. We applied the KS test with spatial

adjustment via Moran’s I on the averaged pixel distribution of CFC and compared the results

from t-test in its original form.
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Methods

The geometry of the heart plays a critical role in the mechanics of cardiology. Back in 1892,

Wood has used a spherical coordinate system to mimic the heart shape. Since then the sphericity

index system has been popularly used by several studies to reconstruct the shape of heart

(Mitchell, Lamas, Vaughan, & Pfeffer, 1992b). Azhari (1999) used a special normalized

helical shape descriptor, denoted “geometrical cardiogram”, to determine the shape of left

ventricular.(Azhari et al., 1999) As the spherical shape has been proved to provide a simulation

in shape that is close enough to the heart. (Hansen, Marinucci, Natoli, & Vittorio, 2002)

In this study, we focused on the reconstruction of cardiac geometry locations with PET-CT

image data. For each PET scan, electric signal values for CFR were recorded in a matrix form

with 21 rows and 64 radials. In order to reconstruct the cardiac locations from PET image, we

simulated a gridded map with a shape of a truncated ellipsoid, similar to a half football.

Once the simulation shape of heart is decided, we simulated fixed locations D along the

fields to represent the electronic recording points in the image location. The nature of gridded

spatial data in R3 can be viewed as a two-way table. (N. Cressie, 1992) Locations si ∈ D, D is

the subset of R3 and the realization in such location is Z(si).

Given the spherical coordinates system
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Figure 3.20: Spherical Coordinates

The procedure to generate the 3-D gridded map is as followed

1. Define the radius of the half football we want as

ρ = 1.

2. Then the define θ on the circle as 64 equal cuts of 2π

Θ = (θ1, θ2, . . . , θ64) = (
1

32
π,

2

32
π, . . . , 2π).

3. Similarly define φ as 21 equal cuts of (π/2, π)

Φ = (φ1, φ2, . . . , φ21) = (
21

42
π,

22

42
π, . . . ,

41

42
π).
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4. Transfer spherical coordinates into Cartesian coordinates

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ

The generate 3-D space is realized as followed.

Figure 3.21: Generated Coordinates for Reconstructing PET into Heart shape

After the 3-D space is simulated, the distance between each unique pair of locations may

be calculated. We defined the arc length between two locations as the interested distance. The

distance between two location si = (xi, yi, zi) = (ρ sinφi cos θi, ρ sinφi sin θi, ρ cosφi) and

sj = (xj, yj, zj) = (ρ sinφj cos θj, ρ sinφj sin θj, ρ cosφj) is defined as
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Acos = arccos (cosφi cosφj + sinφi sinφj cos (θi − θj)) (3.26)

dist(si, sj) =


ρ× arccos (1), Acos ≥ 1

ρ× arccos (−1), Acos ≤ 1

ρ× Acos, otherwise

(3.27)

The weight function wij is defined as the squared inverse distance

wij =
1

(dist(si, sj))2

The weight matrix W is therefore defined as

W =



w11 w12 w13 . . . w1n

w21 w22 w23 . . . w2n

...
...

... . . . ...

wn1 wn2 wn3 . . . wnn


(3.28)

After the reconstruction 3.21 is finished, PET scan data will be put into the coordinates

in respect to the column and row order. Spatial autocorrelation coefficient can be computed

therefore.

Data Collection

Recruited subjects were split into 6 groups, each group went through a two-stage PET imaging

procedure. The first group of subjects was administered with dipyridamole in both the first

stage and second stage of PET scans. The second group of subjects was administered with

the procedure of Rb-82 activated 15s before injection of regadenoson in one stage and with

dipyridamole in the other stage. Similarly, the third, fourth, fifth and sixth group of subjects
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were administered regadenoson with a certain time of activation of Rb-82 in one stage and

administered with dipyridamole in the other stage.

Different dipyridamole protocol timing has been studied. Researchers applied the current

optimal protocol of 4 mins dipyridamole protocol in the trail.(Harel et al., 2018) According

to the dipyridamole protocol guideline, dipyridamole (142ug/kg/min) was infused for 4 min.

After dipyridamole is infused, Rb-82 generator was activated. PET stress scan starts 15s after

Rb-82 generator activation.

Regadenoson protocol indicates that a single-use, pre-filled, 5-ml syringe of regadenoson

was administered for 10s via a peripheral vein. Time of Rb-82 generator activation varies by

protocols. Similarly, 10s after Rb-82 generator activation, PET scan was performed.
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Notes: The bold black line in the timeline denotes the duration of medication, either dipyridamole or regadenoson,
infusion. Protocols in the left is the baseline with dipyridamole, protocols in the right are study group with
dipyridamole, Rb-82 activated 15s before regadenoson administration and Rb-82 activated 10s/40s/55s/80s after
regadenoson administration.

Figure 3.22: Description of Protocols
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Protocol Description

DD Repeated dipyridamole

L - 15 Regadenoson group with Rb-82 activated 15 seconds prior to injection of re-

gadenoson

L + 10 Regadenoson group with Rb-82 activated 10 seconds after injection of regadenoson

L + 40 Regadenoson group with Rb-82 activated 40 seconds after injection of regadenoson

L + 55 Regadenoson group with Rb-82 activated 55 seconds after injection of regadenoson

L + 80 Regadenoson group with Rb-82 activated 80 seconds after injection of regadenoson

Table 3.13: Protocols

The protocol for the trial is described in figure 3.22 and table 3.13. In this single-subject

design, subjects using dipyridamole was used as the baseline and compared with themselves

using either dipyridamole repeatedly in DD protocol or using regadenoson in L-15, L+10, L+40,

L+55, L+80.

Statistical Analysis

Statistical analysis was conducted with R version 3.5.1(The R Foundation for Statistical Comput-

ing Platform: x86 64-w64-mingw32/x64 (64-bit)). Descriptive tables including means, standard

deviations, percentages, and p-values will be presented. For the categorical variable, multiple

chi-squared tests will be applied. For variables with counts less than 5, a Fisher’s exact test will

be applied. For continuous variables, t-tests will be carried out.

Frequency plots for the averaged pixel distribution of CFC were presented for each protocol.

In addition, cumulative frequency plots for the averaged pixel distribution of CFC were presented

for each protocol. The primary approach to analyze the PET scans is to evaluate the differences

in the averaged pixel distribution of CFC for baseline and test protocols via spatially adjusted
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KS test. In addition, in order to evaluate the traditional approaches, we conducted a comparison

for a paired t-test, original KS test, KS test with ICC adjustment and the spatially adjusted KS

test. P-values for each test were reported and analyzed.

Results

There were 188 patients recruited in the trial and 176 of them finished the trial. Exclusions

of subjects include 7 subjects had severe side effects, intravenous access of 2 subjects were

unable to be obtained and another 2 subjects had other reasons. Table 3.15 shows the number of

patients in each protocol, demographic, clinical and relative PET uptake results.

The test for age and BMI were significant. However, we could see that the differences

were small from mean and standard deviation. Subjects have similar risk factors and history

conditions including smoking, myocardial infarction (MI), hypertension, dyslipidemia, diabetes,

cardiac catheterization, percutaneous intervention (PCI) or bypass surgery (CABG). The percent-

age of interested medication used were comparable. For the baseline cardiac characters, there

were statistically significant differences across protocols for cholesterol and low-density lipopro-

tein cholesterol (LDL). No significant difference was detected from low-density lipoprotein

cholesterol (HDL). We noticed a relatively high percentage of missing in cholesterol (32.10%),

LDL (33.24%) and HDL (32.10%). The PET uptake was consistent across protocols. In addition,

significant differences in rest heart rate and stress heart rate were reported. We noticed that the

L-15 protocol was having lower rest and stress heart rate.

Table 3.15: Descriptive Table

Protocols

Population
DD L-15 L + 10 L + 40 L + 55 L + 80

P-value

Clinical characteristics

Age 60± 9 62± 10 64± 8 57± 10 61± 7 60± 10 58± 6 0.02

BMI 29± 5 28± 5 27± 5 28± 4 30± 4 28± 5 31± 6 < 0.001

Risk factors and history

Smoking 52(0.3) 16(0.32) 3(0.2) 17(0.34) 5(0.33) 9(0.29) 2(0.13) 0.66
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MI 15(0.09) 4(0.08) 3(0.2) 4(0.08) 1(0.07) 2(0.06) 1(0.07) 0.72

Hypertension 81(0.46) 23(0.46) 10(0.67) 21(0.42) 7(0.47) 14(0.45) 6(0.4) 0.68

Dyslipidemia 132(0.75) 40(0.8) 10(0.67) 34(0.68) 14(0.93) 24(0.77) 10(0.67) 0.32

Diabetes 17(0.1) 7(0.14) 3(0.2) 4(0.08) 1(0.07) 2(0.06) 0(0) 0.39

Catheterization 38(0.22) 12(0.24) 4(0.27) 10(0.2) 5(0.33) 4(0.13) 3(0.2) 0.68

PCI 28(0.16) 8(0.16) 5(0.33) 8(0.16) 3(0.2) 1(0.03) 3(0.2) 0.19

CABG 8(0.05) 3(0.06) 2(0.13) 2(0.04) 0(0) 1(0.03) 0(0) 0.48

Medications

Statin 89(0.51) 25(0.5) 10(0.67) 23(0.46) 11(0.73) 15(0.48) 5(0.33) 0.23

ACEI/ARB 48(0.27) 14(0.28) 3(0.2) 12(0.24) 7(0.47) 9(0.29) 3(0.2) 0.55

Antiplatelet 85(0.48) 17(0.34) 9(0.6) 27(0.54) 9(0.6) 17(0.55) 6(0.4) 0.20

Beta Blocker 50(0.28) 15(0.3) 8(0.53) 11(0.22) 5(0.33) 7(0.23) 4(0.27) 0.27

Diuretic 25(0.14) 7(0.14) 3(0.2) 7(0.14) 3(0.2) 4(0.13) 1(0.07) 0.91

Calcium blockers 14(0.08) 3(0.06) 1(0.07) 4(0.08) 2(0.13) 4(0.13) 0(0) 0.67

Nitrate 3(0.02) 1(0.02) 0(0) 1(0.02) 1(0.07) 0(0) 0(0) 0.65

Baseline Cardiac

Cholesterol 180± 46 183± 50 153± 42 179± 38 155± 44 193± 43 216± 45 0.01

LDL 100± 36 102± 36 84± 30 98± 35 85± 39 105± 31 136± 32 0.01

HDL 54± 16 51± 16 54± 16 54± 14 50± 15 62± 19 51± 16 0.21

Rest Systolic blood pressure 115± 17 119± 19 117± 16 113± 16 114± 15 115± 16 112± 12 0.59

Rest Diastolic blood pressure 65± 10 68± 10 63± 10 63± 9 67± 14 64± 12 68± 6 0.26

Rest Heart Rate 63± 11 61± 10 60± 10 63± 11 64± 13 65± 12 66± 14 0.37

Stress Systolic blood pressure 119± 15 122± 17 111± 15 117± 15 121± 13 120± 15 120± 14 0.21

Stress Diastolic blood pressure 63± 10 64± 9 57± 12 61± 9 65± 14 64± 11 63± 8 0.19

Stress Heart Rate 89± 13 87± 13 83± 13 90± 13 92± 13 91± 13 93± 15 0.17

Non-baseline Cardiac

Cholesteral 180± 46 185± 50 158± 43 178± 39 155± 44 193± 42 205± 46 0.03

LDL 100± 36 103± 36 87± 30 97± 36 85± 39 107± 31 127± 36 0.04

HDL 54± 17 51± 16 56± 16 55± 16 50± 15 61± 19 50± 15 0.29

Rest Systolic blood pressure 117± 16 117± 15 116± 18 116± 17 116± 24 117± 13 117± 14 0.99

Rest Diastolic blood pressure 67± 11 67± 9 63± 9 66± 12 68± 14 67± 9 70± 10 0.61

Rest Heart Rate 63± 12 60± 10 59± 8 65± 13 61± 9 67± 12 68± 15 0.03

Stress Systolic blood pressure 119± 19 120± 14 111± 18 119± 22 114± 21 124± 19 122± 18 0.29

Stress Diastolic blood pressure 62± 12 64± 10 61± 14 60± 14 62± 14 62± 11 63± 9 0.68

Stress Heart Rate 91± 15 85± 15 82± 12 96± 15 88± 11 98± 14 93± 13 < 0.001

Continuous variables were presented as mean± standard deviation, categorical variables were presented as count(percentage)

BMI in kg perm2

Systolic/Diastolic Blood pressure in mm Hg

Heart rate in beats per minute

Table 3.16 lists the averaged rest perfusion, averaged stress perfusion and averaged CFR.

It was clear that the rest perfusion for subjects in non-base condition and base condition is

comparable. This indicates no significant effects other than protocol difference existed. As we

expected, the stress perfusion for subjects using dipyridamole in the baseline group and subjects

using different timing protocols of regadenoson were different. Subjects using dipyridamole

have relatively higher stress perfusions. The trends in averaged CFR were similar to stress
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perfusion. Subjects with dipyridamole had relatively higher CFR. A weak but noticeable positive

correlation could be spotted between Rb-82 activation time and CFR. In other word, subjects in

protocol with Rb-82 activated later tended to have a higher CFR.

Table 3.17 reported the p-values from paired t-test and KS test with spatial adjustment.

From p-value we can make similar conclusion we had in table 3.16. We may see that the spatial

adjusted KS were more sensitive than the paired t-test. The paired t-test analyzed the global

CFR and global flow and therefore minor differences were overlooked.

Rest Perfusion Stress Perfusion CFR
Protocol

Non-Base Base ∆ Non-Base Base ∆ Non-Base Base ∆

DD 0.79 ± 0.28 0.81 ± 0.27 -0.02 ± 0.2 2.13 ± 0.7 2.22 ± 0.65 -0.09 ± 0.46 2.78 ± 0.73 2.86 ± 0.76 -0.09 ± 0.7

L-15 0.73 ± 0.22 0.76 ± 0.23 -0.02 ± 0.18 1.3 ± 0.46 1.87 ± 0.61 -0.57 ± 0.4 1.78 ± 0.48 2.52 ± 0.73 -0.74 ± 0.75

L + 10 0.79 ± 0.28 0.78 ± 0.25 0.01 ± 0.24 1.71 ± 0.52 2.15 ± 0.61 -0.44 ± 0.48 2.25 ± 0.55 2.88 ± 0.79 -0.63 ± 0.72

L + 40 0.77 ± 0.24 0.76 ± 0.23 0.01 ± 0.22 1.79 ± 0.52 2.1 ± 0.55 -0.31 ± 0.38 2.43 ± 0.65 2.87 ± 0.69 -0.43 ± 0.79

L + 55 1.01 ± 0.37 0.96 ± 0.34 0.05 ± 0.21 2.28 ± 0.68 2.49 ± 0.71 -0.21 ± 0.42 2.36 ± 0.61 2.73 ± 0.78 -0.36 ± 0.77

L + 80 0.89 ± 0.32 0.87 ± 0.35 0.02 ± 0.23 2.14 ± 0.56 2.43 ± 0.74 -0.28 ± 0.49 2.53 ± 0.66 2.91 ± 0.65 -0.39 ± 0.56

∆: The difference between base and Non-Base.

Table 3.16: Averaged Rest Flow, Averaged Stress Flow and Averaged CFR by Protocol
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Rest Perfusion Stress Perfusion CFR
Protocol

Paired t-test Spatial KS Paired t-test Spatial KS Paired t-test Spatial KS

DD 0.483 0.288 0.094 0.004** 0.221 < 10−7***

L-15 0.589 0.285 < 0.001** < 10−16*** < 0.001** < 10−16***

L+10 0.691 0.635 < 10−10*** < 10−16*** < 10−10*** < 10−16***

L+40 0.879 0.361 < 0.001** < 10−16*** 0.013* < 10−16***

L+55 0.105 0.002** 0.001** < 10−9*** 0.004** < 10−16***

L+80 0.676 0.384 0.019* < 10−13*** < 0.001** < 10−16***

* p-value < 0.05

** p-value < 0.005

*** p-value < 0.0005

Table 3.17: P - values from Paired t-test and Spatially Adjusted KS test
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(a) DD (b) L-15

(c) L+10 (d) L+40

(e) L+55 (f) L+80

Figure 3.23: CFC frequency plots of protocols

Figure 3.23 shows the averaged CFC frequency distribution for each protocol. From the

sub-plot 3.23a, we may see that the average CFC distribution for subjects in DD protocol

was almost comparable. Therefore, we may conclude that if there were differences between

baseline(dipyridamole) and non-baseline(regadenoson with different timing), the differences

were due to the medication/timing difference as the trial controlled other effects pretty well.

Major discrepancy was noticed between dipyridamole and regadenoson in L-15 protocol in

sub-plot 3.23b. The frequency plot showed that subjects administered with regadenoson and

Rb-82 activated 15s prior to the drug administration in the baseline had a much higher frequency
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of mild/minimal reduced flow but a much lower frequency of good CFC compared to subjects

administered with dipyridamole. Similar trends were also presented in L+10 protocol and

L+40 protocol. Protocols with a suitable delay, 55s, to activate Rb-82 after regadenoson

was administered had the average pixel distribution of CFC comparable to its baseline of

dipyridamole. While a relatively lower frequency of pixels of good CFC was found in subjects

with Rb-82 activated 80s after regadenoson bolus compared to their CFC using dipyridamole.

(a) DD (b) L-15

(c) L+10 (d) L+40

(e) L+55 (f) L+80

Figure 3.24: Cumulative Averaged CFC Pixel Frequencies
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P-Values
Protocol KS statistic

Spatial Adjusted KS Original KS ICC adjusted KS

DD 0.05 0.96 0.047* 0.29

L - 15 0.52 < 10−16*** < 10−16*** < 10−16***

L + 10 0.38 < 10−10*** < 10−16*** < 10−16***

L + 40 0.32 < 10−7*** < 10−16*** < 10−16***

L + 55 0.11 0.24 < 10−16*** 0.0004***

L + 80 0.19 0.004** < 10−16*** < e− 10***

* p-value < 0.05

** p-value < 0.005

*** p-value < 0.0005

Table 3.18: Kolmogorov-Smirnov Tests for Averaged Pixel Distribution of CFC

From the results of figure 3.24 and table 3.18 we may see that the original KS test without

any adjustment tends to give smaller p-values. Liberal p-values lead to the overestimation of the

significance of the test result. Hence, from the original KS test, before any adjustment, we may

untruely conclude that the all protocols, including the repeated dipyridamole group, reported a

statistically significant difference in CFC distribution between subjects baseline, administered

dipyridamole, and test stage, either regadenoson or repeated dipyridamole.

With adjustment on the informative sample size, both the ICC adjusted KS test and the

spatially adjusted KS test were able to report a higher p-value. It is worth noticing that the p-value

from ICC adjusted KS was relatively lower than that of spatially adjusted KS. The averaged pixel

distribution of CFC of subjects in L+55 protocol showed no statistically significant difference,

based on the p-value reported from spatially adjusted KS test, between stages with dipyridamole

administration and that of regadenoson administration. However,
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Formula Mode of action Administration Dose Duration of infusion Terminal half-life Time to peak Duration of action Elimination Antidote

C15H18N8O5H2O Selective A2A IV bolus 400 ug 10-s bolus 33–108 min 33 s 2.3 min Renal (57%) Aminophylline

Table 3.19: Regadenoson Pharmacokinetic and Pharmacodynamic Properties in Human Volun-
teers

From pharmacokinetic and pharmacodynamic table 3.19 we may see that the peak time of

regadenoson concentration in blood is 33s (Jaroudi & Iskandrian, 2009). The lack of time for

the medication to be absorbed by the organ may have lead to insufficient stress perfusion in

protocols of early Rb-82 generator activation.

The KS tests for the L+80 protocol showed significant differences (p = 0.004) between the

averaged pixel distribution of CFC for subjects administered with dipyridamole and regadenoson.

Resutls from CFC could be supported with the absolute differences in stress perfusion and CFR

from table 3.17. Compared with their baseline characteristics, the ordered protocols of absolute

difference of stress perfusion are L - 15 > L + 10 > L + 40 > L + 80 > L + 55 > DD.

Discussion and Concluding Remarks

The original KS overestimated the significance scale and produced a p-value that was too small.

ICC adjustment in the KS test adjusts the p-values in the right direction. However, it is not as

effective as the KS test with spatial adjustment. Spatial adjusted KS is able to adjust for the

effect of autocorrelation in spatial settings and therefore produced a p-value closer to the true

scale of significance. Regardless of the scale of the existing correlation, the original KS test

did not adjust the sample size. The ICC adjusted KS test was able to shrink the sample size

linearly while the spatially adjusted KS test was able to adjust the sample size exponentially.

The KS statistics from original KS, ICC adjusted KS and spatially adjusted KS were the same.

The differences in p-value are caused by the difference in informative sample size.
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Our results partially agreed with results from mixed-effects ANOVA on stress flow (Johnson

& Gould, 2015). The ANOVA results failed to detect the differences in the protocol of Rb-82

activated 80s after regadenoson bolus time. Analysis of averaged pixel distribution of CFC has

proved to be more accurate than only considering CFR or absolute flow. Our analysis on the

CFC provides an evaluation of the effectiveness of dipyridamole and different timing protocol

of regadenoson. Even though the difference of averaged pixel distribution of CFC between

dipyridamole and L+80 regadenoson is statistically significant, the clinical meaning of such

difference needs more in-depth evaluation. Based on our findings, physicians may evaluate the

cost-effect trade-off from each protocol and decide or inform patients with the findings so they

could decide which protocol may be optimal in each case.

A bell shape hyperemia produced by different timing of regadenoson bolus time can be

concluded from reported results of the trial. The stress perfusion increased as Rb-82 activation

time delays, as the medication takes time to be distributed in blood and absorbed by organ. Then

the stress perfusion decreased as the medication peak time and effectiveness time passed.

Our approach of analyzing PET scans may provide assistance in future image analysis as it

is simple to apply and easy to understand. In our trial, the CFC is defined as a discontinuous

variable determined by the value of CFR and stress flow. The KS test is a powerful tool in

analyzing the pixel distribution. However, it may lack power and be conservative when the

underlying pixel distribution was discrete (Conover, 1972a; Gleser, 1985). A two-sample

spatially adjusted KS test for discontinuous distribution is desired. Meanwhile, the multi-

dimensional KS tests were studied by researchers (Justel et al., 1997). Multi-dimensional KS

test has been proved to be a sensitive and powerful tool in discriminating images.(Metchev &

Grindlay, 2002) Therefore, in future studies, we may consider proposing a multi-dimensional

KS test with adjustment for spatial autocorrelation based on such findings. Then a direct analysis

could be carried on CFR and stress flow simultaneously.
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This single-subject designed trial was imbalanced and therefore may have been vulnerable

to insufficient power. The researchers did not blind any party in the trial. Therefore, there may

be uncontrolled confounders that need to be addressed. In addition, subjects recruitment was

carried out by convenience. There was no randomization in recruitment. Hence the conclusion

from the trial may be potentially questionable in nature. In addition, the imbalanced trial design

and the small sample sizes in L-15, L+40, and L+80 arm could potentially reduce the results

reliability.

The spatial autocorrelation coefficient is one of the fundamental pillars of the spatially

adjusted KS test. However, currently, there are no certain ’absolute’ coefficients that account for

spatial autocorrelation. By saying ’absolute’ we mean that the spatial correlation coefficient was

defined without any human-defining structure. Currently available coefficients were subjective

in the sense that one has to define the spatial structure and the correlation scale regards to

the spatial relationship between locations. For example, in this article, we assumed that the

correlation between locations decay in proportion to the square of the distance. Another popular

spatial correlation is the neighboring correlation, weight function wij equal to 1 if Xi and

Xj is adjacent and equal to 0 otherwise. A method that could evaluate the spatial correlation

absolutely, without any subjective definition is needed.

From the results of spatially adjusted KS test, we found that the regadenoson protocol with

Rb-82 activated 55s after the injection of regadenoson has similar performance as dipyridamole.

The protocols that activate Rb-82 15 seconds before, 10 seconds after, 40 seconds after or

80 seconds after regadenoson bolus time were sub-optimal compared to the hyperemia of

dipyridamole.
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A A Simulation Study of A Class of Nonparametric Test Statis-

tics: A Close Look of Continuous, Discrete and Correlated

Variables: R Codes

A.1 One-sample Simulation

1 ###########################################################################################
2 ###########################################################################################
3 ################################### Author: Wenjun Zheng ##################################
4 ################################### Date: 03-19-2018 ######################################
5 ################################## Title: A simulation study of KS ########################
6 ###########################################################################################
7
8 # load necessary packages
9 if (!is.loaded("mpi_initialize")) {

10 library("Rmpi")
11 }
12 library(snow)
13
14 # generate cluster in MPI type
15 ncs <- parallel::detectCores()
16 cl <- makeCluster(ncs - 1, type = "MPI")
17
18 # pass necessary packages to load in clusters
19 clusterEvalQ(cl, library(psych))
20 clusterEvalQ(cl, library(MASS))
21 clusterEvalQ(cl, library(cramer))
22 clusterEvalQ(cl, library(goftest))
23 clusterEvalQ(cl, library(EWGoF))
24 clusterEvalQ(cl, library(kSamples))
25 clusterEvalQ(cl, library(zoo))
26 clusterEvalQ(cl, library(dgof))
27 clusterEvalQ(cl, library(KSgeneral))
28 clusterEvalQ(cl, library(EnvStats))
29
30 #############################################################################################
31 ##################################### Preparing functions ###################################
32 ########################################### One-Sample ######################################
33 #############################################################################################
34
35 ###################################### Type I error #########################################
36
37 Comp1err.1s <- function(itn = 1000, sh1 = 1,
38 sc1 = 0.5, size = 500, probm = c(0.1, 0.9), dist = ’Weibull’){
39 options(warn=-1)
40 test.results <- lapply(vector("list", itn), function(x) vector("list", 4))
41 if (dist == "Weibull"){
42 for (i in 1:itn){
43 x1 <- rweibull(size, shape = sh1, scale = sc1)
44
45 ks_1sam <- stats::ks.test(x1, ’pweibull’, shape = sh1, scale = sc1)$p.value
46 cvm_1sam <- goftest::cvm.test(x1, ’pweibull’, shape = sh1, scale = sc1)$p.value
47 ad_1sam <- goftest::ad.test(x1, ’pweibull’, shape = sh1, scale = sc1)$p.value
48 chisq_1sam <- EnvStats::gofTest(x1, test = "chisq", distribution = "weibull",
49 param.list = list(shape = sh1, scale = sc1))$p.value
50 # chisq_1sam <- chisq1s(x1, sh1, sc1, dist)
51
52 test.results[[i]] <- list("One-sample Kolmogorov-Smirnov Test"=ks_1sam,
53 "One-sample Cramer-von Mises Test"=cvm_1sam,
54 "One-sample Anderson-Darling Test" = ad_1sam,
55 "One-sample Chi-Squared Test" = chisq_1sam)
56 }
57 }
58 else if (dist == "Normal"){
59 for (i in 1:itn){
60 x1 <- rnorm(size, mean = sh1, sd = sc1)
61
62 ks_1sam <- stats::ks.test(x1, ’pnorm’, mean = sh1, sd = sc1)$p.value
63 cvm_1sam <- goftest::cvm.test(x1, ’pnorm’, mean = sh1, sd = sc1)$p.value
64 ad_1sam <- goftest::ad.test(x1, ’pnorm’, mean = sh1, sd = sc1)$p.value
65 chisq_1sam <- EnvStats::gofTest(x1, test = "chisq", distribution = "norm",
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66 param.list = list(mean = sh1, sd = sc1))$p.value
67 # chisq_1sam <- chisq1s(x1, sh1, sc1, dist)
68
69 test.results[[i]] <- list("One-sample Kolmogorov-Smirnov Test"=ks_1sam,
70 "One-sample Cramer-von Mises Test"=cvm_1sam,
71 "One-sample Anderson-Darling Test" = ad_1sam,
72 "One-sample Chi-Squared Test" = chisq_1sam)
73 }
74 }else if (dist == "Multinomial"){
75 for (i in 1:itn){
76 x1 <- rmultinom(n=1, size, prob = probm)
77 # categorize data
78 x1_dt <- unlist(apply(as.data.frame(1:length(x1)), 1,
79 function(l){rep(l, x1[l])}))
80 null_ecdf <- stepfun(1:length(x1), cumsum(c(0, probm)))
81
82 ks_1sam <- dgof::ks.test(x1_dt, null_ecdf, simulate.p.value = T)$p.value
83 cvm_1sam <- dgof::cvm.test(x1_dt, null_ecdf, type = "W2")$p.value
84 ad_1sam <- dgof::cvm.test(x1_dt, null_ecdf, type = "A2")$p.value
85 chisq_1sam <- chisq.test(x1, p = probm, rescale.p = T)$p.value
86
87 test.results[[i]] <- list("One-sample Kolmogorov-Smirnov Test"=ks_1sam,
88 "One-sample Cramer-von Mises Test"=cvm_1sam,
89 "One-sample Anderson-Darling Test" = ad_1sam,
90 "One-sample Chi-Squared Test" = chisq_1sam)
91 }
92 }
93 err_list <- lapply(test.results, function(c) c < 0.05)
94 ks_err <- mean(sapply(err_list, function(l) l[[1]]))
95 cvm_err <- mean(sapply(err_list, function(l) l[[2]]))
96 ad_err <- mean(sapply(err_list, function(l) l[[3]]))
97 chisq_err <- mean(sapply(err_list, function(l) l[[4]]))# l[[4]]))
98 type1err <- list("Type I error of Kolmogorov-Smirnov Test"=ks_err,
99 "Type I error of Cramer-von Mises Test"=cvm_err,

100 "Type I error of Anderson-Darling Test" = ad_err,
101 "Type I error of Chi-Squared Test" = chisq_err)
102 options(warn=0)
103 if(dist == "Multinomial"){
104 outlist<-c(probm)}else{ outlist<- c(sh1, sc1)}
105 return(list(’Parameters’ = outlist,
106 ’size’ = size, ’Iteration times’ = itn, ’distribution’ = dist,
107 ’Type I error’= type1err, ’P-value List’ = test.results))
108 }
109
110 #################################### Power Calculation #######################################
111 ComPower.1s <- function(itn = 1000, sh1 = 1, sc1 = 0.5,
112 sh2 = 1, sc2 = 0.5, probm = c(0.1, 0.9),
113 probm2 = c(0.1, 0.9), size = 500, dist = ’Weibull’){
114 options(warn=-1)
115 test.results <- lapply(vector("list", itn), function(x) vector("list", 4))
116 if (dist == "Weibull"){
117 for (i in 1:itn){
118 x1 <- rweibull(size, shape = sh1, scale = sc1)
119
120 ks_1sam <- stats::ks.test(x1, ’pweibull’, shape = sh2, scale = sc2)$p.value
121 cvm_1sam <- goftest::cvm.test(x1, ’pweibull’, shape = sh2, scale = sc2)$p.value
122 ad_1sam <- goftest::ad.test(x1, ’pweibull’, shape = sh2, scale = sc2)$p.value
123 chisq_1sam <- EnvStats::gofTest(x1, test = "chisq", distribution = "weibull",
124 param.list = list(shape = sh2, scale = sc2))$p.value
125 # chisq_1sam <- chisq1s(x1, sh2, sc2, dist)
126
127 test.results[[i]] <- list("One-sample Kolmogorov-Smirnov Test"=ks_1sam,
128 "One-sample Cramer-von Mises Test"=cvm_1sam,
129 "One-sample Anderson-Darling Test" = ad_1sam,
130 "One-sample Chi-Squared Test" = chisq_1sam)
131 }
132 }
133 else if (dist == "Normal"){
134 for (i in 1:itn){
135 x1 <- rnorm(size, mean = sh1, sd = sc1)
136
137 ks_1sam <- stats::ks.test(x1, ’pnorm’, mean = sh2, sd = sc2)$p.value
138 cvm_1sam <- goftest::cvm.test(x1, ’pnorm’, mean = sh2, sd = sc2)$p.value
139 ad_1sam <- goftest::ad.test(x1, ’pnorm’, mean = sh2, sd = sc2)$p.value
140 chisq_1sam <- EnvStats::gofTest(x1, test = "chisq", distribution = "norm",
141 param.list = list(mean = sh2, sd = sc2))$p.value
142 # chisq_1sam <- chisq1s(x1, sh2, sc2, dist)
143
144 test.results[[i]] <- list("One-sample Kolmogorov-Smirnov Test"=ks_1sam,
145 "One-sample Cramer-von Mises Test"=cvm_1sam,
146 "One-sample Anderson-Darling Test" = ad_1sam,
147 "One-sample Chi-Squared Test" = chisq_1sam)
148 }
149 }
150 else if (dist == "Multinomial"){
151 for (i in 1:itn){
152 x1 <- rmultinom(n=1, size, prob = probm)
153 # categorize data
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154 x1_dt <- unlist(apply(as.data.frame(1:length(x1)), 1,
155 function(l){rep(l, x1[l])}))
156 null_ecdf <- ecdf(unlist(apply(as.data.frame(1:length(probm2)), 1,
157 function(l){rep(l, probm2[l]*100)})))
158
159 ks_1sam <- dgof::ks.test(x1_dt, null_ecdf, simulate.p.value = T)$p.value
160 cvm_1sam <- dgof::cvm.test(x1_dt, null_ecdf, type = "W2")$p.value
161 ad_1sam <- dgof::cvm.test(x1_dt, null_ecdf, type = "A2")$p.value
162 chisq_1sam <- chisq.test(x1, p = probm2, rescale.p = T)$p.value
163
164 test.results[[i]] <- list("One-sample Kolmogorov-Smirnov Test"=ks_1sam,
165 "One-sample Cramer-von Mises Test"=cvm_1sam,
166 "One-sample Anderson-Darling Test" = ad_1sam,
167 "One-sample Chi-Squared Test" = chisq_1sam)
168 }
169 }
170 power_list <- lapply(test.results, function(c) c < 0.05)
171 ks_power <- mean(sapply(power_list, function(l) l[[1]]))
172 cvm_power <- mean(sapply(power_list, function(l) l[[2]]))
173 ad_power <- mean(sapply(power_list, function(l) l[[3]]))
174 chisq_power <- mean(sapply(power_list, function(l) l[[4]]))
175 powerlist <- list("Power of Kolmogorov-Smirnov Test"=ks_power,
176 "Power of Cramer-von Mises Test"=cvm_power,
177 "Power of Anderson-Darling Test" = ad_power,
178 "Power of Chi-Squared Test" = chisq_power)
179 options(warn=0)
180 if(dist == "Multinomial"){
181 outlist<-c(’null’=probm, ’alternative’=probm2)}else{ outlist<- c(sh1, sc1)}
182 return(list(’Parameters’ = outlist,
183 ’size’ = size, ’Iteration times’ = itn, ’distribution’ = dist,
184 ’MC power’ = powerlist, ’P-value List’ = test.results))
185 }
186
187 # pass function to clusters
188 clusterExport(cl, list(’Comp1err.1s’))
189 clusterExport(cl, list(’ComPower.1s’))
190
191 # example: sample weibull distributed observations
192 # x <- rweibull(100, shape = 1, scale = 1)
193 # shape = (0.5, 1, 2, 3, 5), scale = (1, 2, 3)
194 # delta teps: "shape: 0.1-1 by 0.1 ;scale:0.1-0.5 by 0.1"
195 # generate correlated variables first
196 # use Gaussian copula, due to the property of copula, it may change correlation
197 set.seed(831111)
198 # shape and scale parameters
199 shape_para <- c(0.5, 1, 2, 3, 5)
200 scale_para <- c(1, 2, 3)
201 # generate unique combinations for shape and scale
202 para_list <- t(expand.grid(shape_para, scale_para))
203
204
205 # delta , 5 levels of change in original parameter to see the power
206 para_dlt <- c(0.05, 0.1, 0.2, 0.5, 1)
207 # generate unique list for delta
208 weibull_dlt_list <- t(expand.grid(para_dlt, shape_para, scale_para))
209 weibull_dlt_list <- rbind(weibull_dlt_list, weibull_dlt_list[1,]*weibull_dlt_list[2,],
210 weibull_dlt_list[1,]*weibull_dlt_list[3,] )
211 weibull_dlt_list[4,] <- weibull_dlt_list[2,] + weibull_dlt_list[4,]
212 weibull_dlt_list[5,] <- weibull_dlt_list[3,] + weibull_dlt_list[5,]
213 rownames(weibull_dlt_list) <- c(’dlt’, ’nul_shape’, ’nul_scale’, ’al_shape’, ’al_scale’)
214 weibull_dlt_list <- weibull_dlt_list[-1,]
215
216 # for normal distribution
217 mu_para <- c(0, 1, 3, 5)
218 sigma_para <- c(0.1, 0.5, 2)
219 norm_para_list <- t(expand.grid(mu_para, sigma_para))
220
221
222 norm_dlt_list <- t(expand.grid(para_dlt, mu_para, sigma_para))
223 norm_dlt_list <- rbind(norm_dlt_list, norm_dlt_list[1,]*norm_dlt_list[2,],
224 norm_dlt_list[1,]*norm_dlt_list[3,] )
225 norm_dlt_list[4,] <- norm_dlt_list[2,] + norm_dlt_list[4,]
226 norm_dlt_list[5,] <- norm_dlt_list[3,] + norm_dlt_list[5,]
227 rownames(norm_dlt_list) <- c(’dlt’, ’nul_mu’, ’nul_sd’, ’al_mu’, ’al_sd’)
228 norm_dlt_list <- norm_dlt_list[-1,]
229 for (i in 1:3){
230 norm_dlt_list[3, ((i-1)*20+1):((i-1)*20+5)] <- norm_dlt_list[3, ((i-1)*20+1):((i-1)*20+5)] + c(0.01, 0.02, 0.03, 0.04,

0.05)
231 }
232
233
234 # MC iteration times
235 tot_itn <- 10000
236 # calculate iterations needed for each computing core
237 it_n <- round(tot_itn/(ncs-1))
238
239 # sample size
240 size_n <- c(10, 20, 30, 100, 500)
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241 # try different corr coef to make sure we have a good simulation sample
242 # rho <- c(-0.8, -0.5, -0.2, -0.1, 0.1, 0.2, 0.5, 0.8)
243
244 # a function for simulation, note itn is the simulation numbers, sh is shape parameter
245 # sc is the scale parameter, sig is the correlation matrix, make sure it’s 2*2 if two sample
246 # Two-sample simulation, weibull
247
248 # set cluster random number generator to each nodes.
249 clusterSetupRNG(cl)
250
251
252 err1_norm <- lapply(1:ncol(norm_para_list), function(l) {
253 lapply(1:ncs, function(l) {
254 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})})
255 err1_norm_list <- lapply(1:5, function(j){
256 lapply(1:ncol(norm_para_list), function(l) {
257 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
258 })
259 #################11 cores, parallel##############
260 # parallel version is 6 times faster than the usual one
261 start_t <- Sys.time()
262 for (q in 1:5){
263 err1_norm <- apply(norm_para_list, 2, function(l) {
264 clusterCall(cl, Comp1err.1s, itn = it_n, sh1 = l[1],
265 sc1 = l[2], dist = "Normal", size = size_n[q])
266 })
267 err1_norm_list[[q]] <- err1_norm
268 }
269 end_t <- Sys.time()
270 jobtime <- end_t - start_t
271 jobtime
272
273 # clusterExport(cl, "it_n")
274 # clusterExport(cl, "para_list")
275 # clusterExport(cl, "size_n")
276 #
277 # start_t <- Sys.time()
278 #
279 # err1_weibull_list <- parRapply(cl, para_list, function(l){
280 # err1_weibull<- Comp1err.1s(itn = it_n,
281 # sh1 = l[1], sc1 = l[2], size = size_n[q])
282 # return(err1_weibull)
283 # } )
284 save(err1_norm_list, file = ’T1E_Norm.RData’)
285
286 #######################perform power study###############
287 pow1_norm <- lapply(1:ncol(norm_para_list), function(l) {
288 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
289 pow1_norm_list <- lapply(1:5, function(l) {
290 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
291 start_t <- Sys.time()
292 for (q in 1:5){
293 pow1_norm <- apply(norm_dlt_list, 2, function(l) {
294 clusterCall(cl, ComPower.1s, itn = it_n, sh1 = l[1],
295 sc1 = l[2], sh2 = l[3], sc2 = l[2], dist = "Normal", size = size_n[q])
296 })
297 pow1_norm_list[[q]] <- pow1_norm
298 }
299 end_t <- Sys.time()
300 jobtime <- end_t - start_t
301 jobtime
302
303 save(pow1_norm_list, file = ’POW_norm_Nulvar.RData’)
304
305 # null: nul_shape nul_scale, alternative: nul_shape, alt_scale
306 pow1_norm <- lapply(1:ncol(norm_para_list), function(l) {
307 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
308 pow1_norm_list <- lapply(1:5, function(l) {
309 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
310 start_t <- Sys.time()
311 for (q in 1:5){
312 pow1_norm <- apply(norm_dlt_list, 2, function(l) {
313 clusterCall(cl, ComPower.1s, itn = it_n, sh1 = l[1],
314 sc1 = l[2], sh2 = l[1], sc2 = l[4], dist = "Normal", size = size_n[q])
315 })
316 pow1_norm_list[[q]] <- pow1_norm
317 }
318 end_t <- Sys.time()
319 jobtime <- end_t - start_t
320 jobtime
321
322 save(pow1_norm_list, file = ’POW_norm_Nulmu.RData’)
323
324 # null: nul_shape nul_scale, alternative: alt_shape, alt_scale
325 pow1_norm <- lapply(1:ncol(norm_para_list), function(l) {
326 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
327 pow1_norm_list <- lapply(1:5, function(l) {
328 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
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329 start_t <- Sys.time()
330 for (q in 1:5){
331 pow1_norm <- apply(norm_dlt_list, 2, function(l) {
332 clusterCall(cl, ComPower.1s, itn = it_n, sh1 = l[1],
333 sc1 = l[2], sh2 = l[3], sc2 = l[4], dist = "Normal", size = size_n[q])
334 })
335 pow1_norm_list[[q]] <- pow1_norm
336 }
337 end_t <- Sys.time()
338 jobtime <- end_t - start_t
339 jobtime
340
341 save(pow1_norm_list, file = ’POW_norm_alt.RData’)
342
343 # close cluster
344 stopCluster(cl)
345
346 # Tell all slaves to close down, and exit the program
347 mpi.quit()

A.2 Two-sample Simulation

1 #!/usr/bin/env Rscript
2 getwd()
3
4 if (!is.loaded("mpi_initialize")) {
5 library("Rmpi")
6 }
7 library(snow)
8
9 # generate cluster in MPI type

10 ncs <- parallel::detectCores()
11 avilable_mpi_ncs <- ncs -1
12 cl <- makeCluster(avilable_mpi_ncs, type = "MPI")
13
14 # pass necessary packages to load in clusters
15 clusterEvalQ(cl, library(psych))
16 clusterEvalQ(cl, library(MASS))
17 clusterEvalQ(cl, library(cramer))
18 clusterEvalQ(cl, library(goftest))
19 clusterEvalQ(cl, library(EWGoF))
20 clusterEvalQ(cl, library(kSamples))
21 clusterEvalQ(cl, library(zoo))
22 clusterEvalQ(cl, library(dgof))
23 clusterEvalQ(cl, library(KSgeneral))
24 clusterEvalQ(cl, library(EnvStats))
25 clusterEvalQ(cl, library(dplyr))
26
27 #############################################################################################
28 ##################################### Preparing functions ###################################
29 ########################################### Two-Sample ######################################
30 #############################################################################################
31
32 # binning mechanism is actually very scientific
33 # The small-n(N<35) part is a rule of thumb that says you should have on average
34 # at least five data points per bin (a rule which is not always followed in practice).
35 # The large-n part(n>=35) has a real basis in statistical theory. A reference for it is in
36 # Goodness-of-Fit Tests by Ralph D’Agostino and Michael Stephens (Dekker 1986), page 70.
37
38 chisq2s <- function(x1, x2, dists = ’Weibull’){
39 if(is.null(x1)|is.null(x2)){
40 stop("Insert a valid test data.")
41 }
42 if(min(length(x1), length(x2)) < 35){
43 n_bin <- round(length(x1)/5, 0)
44 }else{
45 n_bin <- floor(1.88*(min(length(x1), length(x2))ˆ(2/5)))
46 }
47 # set the binning range
48 range_para <- ifelse(dists == "Normal", 1.1, 0.9)
49 while(n_bin>2 ){
50 brks <- seq(min(x1, x2)-.01,max(x1, x2)+.01, length.out = n_bin)
51 p1 <- hist(x1, breaks=brks, right=FALSE, plot = F)
52 p2 <- hist(x2, breaks=brks, right=FALSE, plot = F)
53 if (sum(p2$counts < 5) ==0){
54 break
55 }
56 n_bin = n_bin-1
57 }
58 if (n_bin==2){
59 brks <- seq(min(x1, x2)-.01,max(x1, x2)+.01, length.out = n_bin+1)
60 p1 <- hist(x1, breaks=brks, right=FALSE, plot = F)
61 p2 <- hist(x2, breaks=brks, right=FALSE, plot = F)

140



62 }
63 # calculate expected pr for each bins
64 return(chisq.test(cbind(p1$counts, p2$counts))$p.value)
65 }
66
67 Asym.Cvm.2s <- function(x1, x2, alpha = 0.05){
68 if(is.null(x1)|is.null(x2)){
69 stop("Insert a valid test data.")
70 }
71
72 m <- length(x1)
73 n <- length(x2)
74 N <- m + n
75
76 rank_xy <- rank(c(x1,x2), ties.method = "min")
77 rank_x <- sort(rank_xy[1:m])
78 rank_y <- sort(rank_xy[-(1:m)])
79
80 component_xy <- (4*m*n-1)/(6*N)
81
82 component_xx <- (1/(N*n))*sum(sapply(1:m, function(l) {
83 (l-rank_x[l])ˆ2
84 }))
85 component_yy <- (1/(m*N))*sum(sapply(1:n, function(l) {
86 (l-rank_y[l])ˆ2
87 }))
88
89 t_stat <- -(component_xy-component_xx-component_yy)
90 exp_t_stat <- 1/6 + 1/(6*N)
91 var_t_stat <- ((N + 1)/(180*(Nˆ2)))*(4*(N-1)-(3*(Nˆ2))/(m*n))
92 z_stat <- (t_stat-exp_t_stat)/sqrt(var_t_stat) + 1/6
93 ################# need to compute the significance value ####################################
94 # in paper(Curry, Dang, 2018) it suggest using d = 4 or 10, we try 4 here.
95 t_sig <- (sqrt(45)/(piˆ2))*sum(sapply(c(1:2), function(k){
96 (1/(kˆ2))*(qchisq(1-0.05, df=1)-1)
97 }))
98 if (z_stat > t_sig){
99 test_result <- 0.04

100 }else{
101 test_result <- 0.06
102 }
103 return(list(’Ranked-CvM statistic’ = z_stat, "Significance value" = t_sig,
104 ’Significance’=test_result))
105 }
106
107 disc_cvm <- function(x1, y1, alpha = 0.05){
108 n_x <- length(x1)
109 n_y <- length(y1)
110 N <- n_x + n_y
111 N_xy <- c(n_x, n_y)
112 # pooled x and y
113 obs_xy <- as.data.frame(sort(c(x1, y1)))
114 colnames(obs_xy) <- ’obs’
115 # compute L distinct ordered observations, l_j = f_ct[,2]
116 f_ct <- dplyr::add_count(obs_xy, obs) %>% distinct(obs, n)
117 distinct_f <- f_ct[,1]
118 # compute f_1j
119 f1_ct_temp <- dplyr::add_count(as.data.frame(x1), x1) %>% distinct(x1, n)
120 colnames(f1_ct_temp)[1] <- ’obs’
121 f1_ct <- merge(f_ct[,1], f1_ct_temp, all.x = T)
122 f1_ct[is.na(f1_ct)] <- 0
123 # compute f_2j
124 f2_ct_temp <- dplyr::add_count(as.data.frame(y1), y1) %>% distinct(y1, n)
125 colnames(f2_ct_temp)[1] <- ’obs’
126 f2_ct <- merge(f_ct[,1], f2_ct_temp, all.x = T)
127 f2_ct[is.na(f2_ct)] <- 0
128 # pool f_1 and f_2
129 f_ij <- rbind(t(f1_ct[,2]), t(f2_ct[,2]))
130 # compute L
131 c_l <- nrow(f_ct)
132 # compute l = sum(f_ij)
133 l <- t(f_ct[,2])
134 # compute M_aij
135 M_a1j <- sapply(1:c_l, function(l) sum(f_ij[1,1:l]))
136 M_a2j <- sapply(1:c_l, function(l) sum(f_ij[2,1:l]))
137 M_aij <- rbind(M_a1j, M_a2j)
138 # comput1e T_ij
139 T_ij <- as.matrix(N_xy, nrow = 2) %*% t(as.matrix(sapply(1:c_l, function(l) sum(f_ct[1:l,2]))/N))
140 # Compute statistic
141 p_j <- unlist(f_ct[,2]/N)
142 W_k <- sum(sapply(1:2, function(i){
143 (1/N_xy[i])*sum(sapply(1:c_l, function(j){
144 ((M_aij[i,j] - T_ij[i,j])ˆ2)*p_j[j]
145 }))
146 }))
147 # to standarize the statistic we need to calculate mu and var, capital p(P), capital d(D), capital q(Q)
148 c_p <- matrix(0, nrow = c_l, ncol = c_l)
149 c_p[lower.tri(c_p, diag = T)] <- 1
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150 c_d <- diag(p_j)
151 c_q <- c_p%*%(c_d - as.matrix(p_j)%*%t(as.matrix(p_j)))%*%t(c_p)
152 mu_T <- psych::tr(c_q)
153 var_T <- psych::tr(c_qˆ2)
154 # standardize T
155 T_w <- (W_k - mu_T)/sqrt(var_T)
156 # calculate critical value
157 # critical value given in table
158 critical_list <- t(matrix(c(0.25, .1, .05, .025, .01,
159 .295, 1.252, 2.012, 2.791, 3.838),
160 nrow = 2, byrow = T))
161 critical <- critical_list[critical_list[,1]==alpha/2, 2]
162 #compare ad statistic with critical value
163 rej <- (T_w >= critical)
164 p_val <- ifelse(rej == T, 0, 1)
165 results <- list(’Statistic’ = W_k, ’Rejection’ = rej, ’P-value’ = p_val)
166 return(results)
167 }
168 # take x1, y1 in contigency table as well
169 disc_ad <- function(x1, y1, alpha = 0.05){
170 n_x <- length(x1)
171 n_y <- length(y1)
172 N <- n_x + n_y
173 N_xy <- c(n_x, n_y)
174 # compute the variance of statistic
175 g_v <- sum(sapply(1:(N-2), function(l){
176 sum(sapply((l+1):(N-1), function(k){
177 1/((N-l)*k)
178 }))
179 }))
180 # H: capital h,
181 c_h_v <- do.call(sum, lapply(c(n_x, n_y), function(l) 1/l))
182 # h
183 h_v <- sum(sapply(1:(N-1), function(l) 1/l))
184 # a, b, c, d parameters according to paper
185 a_v <- (4*g_v-6) + (10-6*g_v)*c_h_v
186 b_v <- (2*g_v-4)*(2ˆ2) + 8*h_v*2 + (2*g_v-14*h_v-4)*c_h_v - 8*h_v + 4*g_v - 6
187 c_v <- (6*h_v+2*g_v -2)*(2ˆ2) + (4*h_v - 4*g_v+6)*2 + (2*h_v-6)*c_h_v + 4*h_v
188 d_v <- (2*h_v+6)*(2ˆ2)-4*h_v*2
189 # compute the variance
190 var_n <- (a_v*(Nˆ3) + b_v*(Nˆ2)+c_v*N+d_v)/((N-1)*(N-2)*(N-3))
191
192 # before compute statistic, first we define the variables for statistic
193 obs_xy <- as.data.frame(sort(c(x1, y1)))
194 colnames(obs_xy) <- ’obs’
195 # compute L distinct ordered observations, l_j = f_ct[,2]
196 f_ct <- dplyr::add_count(obs_xy, obs) %>% distinct(obs, n)
197 distinct_f <- f_ct[,1]
198 # compute f_1j
199 f1_ct_temp <- dplyr::add_count(as.data.frame(x1), x1) %>% distinct(x1, n)
200 colnames(f1_ct_temp)[1] <- ’obs’
201 f1_ct <- merge(f_ct[,1], f1_ct_temp, all.x = T)
202 f1_ct[is.na(f1_ct)] <- 0
203 # compute f_2j
204 f2_ct_temp <- dplyr::add_count(as.data.frame(y1), y1) %>% distinct(y1, n)
205 colnames(f2_ct_temp)[1] <- ’obs’
206 f2_ct <- merge(f_ct[,1], f2_ct_temp, all.x = T)
207 f2_ct[is.na(f2_ct)] <- 0
208 # pool f_1 and f_2
209 f_ij <- rbind(t(f1_ct[,2]), t(f2_ct[,2]))
210 # compute L
211 c_l <- nrow(f_ct)
212 # compute l = sum(f_ij)
213 l <- t(f_ct[,2])
214 # compute M_aij
215 M_a1j <- sapply(1:c_l, function(l) ifelse(l == 1, f_ij[1,l]/2, sum(f_ij[1,1:(l-1)], f_ij[1,l]/2)))
216 M_a2j <- sapply(1:c_l, function(l) ifelse(l == 1, f_ij[2,l]/2, sum(f_ij[2,1:(l-1)], f_ij[2,l]/2)))
217 M_aij <- rbind(M_a1j, M_a2j)
218 # compute B_aj
219 B_aj <- sapply(1:c_l, function(k) ifelse(k == 1, l[k]/2, sum(l[1:(k-1)], l[k]/2)))
220 # compute statistic
221 A_a2N <- ((N-1)/N)*sum(sapply(1:2, function(i) {
222 (1/N_xy[i])*sum(sapply(1:c_l, function(j){
223 (l[j]/N)*(((N*M_aij[i,j] - N_xy[i]*B_aj[j])ˆ2)/((B_aj[j]*(N-B_aj[j]))-(N*l[j])/4))
224 }))
225 }))
226
227 T_a2N <- (A_a2N - 1)/sqrt(var_n)
228 # calculate critical value
229 # actually it should gose to infinity, but I choose to go 3 as it should be enough
230 # derive critical value
231 critical_list <- t(matrix(c(0.25, .1, .05, .025, .01,
232 .326, 1.225, 1.96, 2.719, 3.752),
233 nrow = 2, byrow = T))
234 critical <- critical_list[critical_list[,1]==alpha/2, 2]
235
236 #compare cvm statistic with critical value
237 rej <- (T_a2N >= critical)
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238 p_val <- ifelse(rej == T, 0, 1)
239 results <- list(’Statistic’ = A_a2N, ’Rejection’ = rej, ’P-value’ = p_val)
240 return(results)
241 }
242 #########################################################################################
243 ################################# wrapper for tests #####################################
244 #########################################################################################
245 Comp1err.2s <- function(itn = 1000, sh1 = 1,
246 sc1 = 0.5, size = 500, rho = 0,
247 probm = c(0.1, 0.9), dist = ’Weibull’){
248 options(warn=-1)
249 test.results <- lapply(vector("list", itn), function(x) vector("list", 4))
250 if (dist == "Weibull"){
251
252 test.results <- lapply(1:itn, function(q){
253 if (rho == 0) {
254 x1 <- rweibull(size, shape = sh1, scale = sc1)
255 x2 <- rweibull(size, shape = sh1, scale = sc1)}
256 else{
257 covar <- matrix(c(1, rho, rho, 1), ncol=2)
258 z <- MASS::mvrnorm(1000 ,mu=rep(0, 2),Sigma=covar,empirical=T)
259 # get the inv-cdf of z
260 u <- pnorm(z)
261 # generate weibull distribution use gaussian copula
262 x1 <- qweibull(u[,1], shape = sh1, scale = sc1)
263 x2 <- qweibull(u[,2], shape = sh1, scale = sc1)
264 }
265
266 ks_2sam <- stats::ks.test(x1, x2)$p.value
267 cvm_2sam <- Asym.Cvm.2s(x1, x2)[[3]]
268 # cvm_2sam <- cramer::cramer.test(x1,x2)$p.value
269 ad_2sam <- kSamples::ad.test(x1, x2, method = "asymptotic")$ad[1,3]
270 chisq_2sam <- chisq2s(x1, x2, dist)
271
272 test.results.temp <- list("Two-sample Kolmogorov-Smirnov Test"=ks_2sam,
273 "Two-sample Cramer-von Mises Test"=cvm_2sam,
274 "Two-sample Anderson-Darling Test" = ad_2sam,
275 "Two-sample Chi-Squared Test" = chisq_2sam)
276 })
277
278 }
279 else if (dist == "Normal"){
280
281 test.results <- lapply(1:itn, function(q){
282 if (rho == 0) {
283 x1 <- rnorm(size, mean = sh1, sd = sc1)
284 x2 <- rnorm(size, mean = sh1, sd = sc1)}
285 else{
286 covar <- matrix(c(sc1*sc1, rho*sc1*sc1, rho*sc1*sc1, sc1*sc1), ncol=2)
287 z <- MASS::mvrnorm(1000 ,mu=rep(sh1, 2),Sigma=covar,empirical=T)
288 # generate weibull distribution use gaussian copula
289 x1 <- z[,1]
290 x2 <- z[,2]
291 }
292
293 ks_2sam <- stats::ks.test(x1, x2)$p.value
294 cvm_2sam <- Asym.Cvm.2s(x1, x2)[[3]]
295 # cvm_2sam <- cramer::cramer.test(x1,x2)$p.value
296 ad_2sam <- kSamples::ad.test(x1, x2, method = "asymptotic")$ad[1,3]
297 chisq_2sam <- chisq2s(x1, x2, dist)
298
299 test.results.temp <- list("Two-sample Kolmogorov-Smirnov Test"=ks_2sam,
300 "Two-sample Cramer-von Mises Test"=cvm_2sam,
301 "Two-sample Anderson-Darling Test" = ad_2sam,
302 "Two-sample Chi-Squared Test" = chisq_2sam)
303 })
304
305 }else if (dist == "Multinomial"){
306
307 test.results <- lapply(1:itn, function(q){
308 x1 <- rmultinom(n=1, size, prob = probm)
309 # categorize data
310 x2 <- rmultinom(n=1, size, prob = probm)
311
312 x1_dt <- unlist(apply(as.data.frame(1:length(x1)), 1, function(l){rep(l, x1[l])}))
313 x2_dt <- unlist(apply(as.data.frame(1:length(x2)), 1, function(l){rep(l, x2[l])}))
314 x2_ecdf <- stepfun(1:(length(x2)), cumsum(c(0, x2))/sum(x2))
315
316
317 ks_2sam <- tryCatch({dgof::ks.test(x1_dt, x2_dt)$p.value},
318 error = function(e){ return(NA)} )
319 cvm_2sam <- tryCatch({disc_cvm(x1_dt, x2_dt)[[3]]},
320 error = function(e){ return(NA)} )
321 ad_2sam <- tryCatch({disc_ad(x1_dt, x2_dt)[[3]]},
322 error = function(e){ return(NA)} )
323 chisq_2sam <- chisq.test(as.table(cbind(x1, x2)))$p.value
324
325 test.results.temp <- list("Two-sample Kolmogorov-Smirnov Test"=ks_2sam,
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326 "Two-sample Cramer-von Mises Test"=cvm_2sam,
327 "Two-sample Anderson-Darling Test" = ad_2sam,
328 "Two-sample Chi-Squared Test" = chisq_2sam)
329 })
330
331 }
332 err_list <- lapply(test.results, function(c) c < 0.05)
333 ks_err <- mean(sapply(err_list, function(l) l[[1]]), na.rm = T)
334 cvm_err <- mean(sapply(err_list, function(l) l[[2]]), na.rm = T)
335 ad_err <- mean(sapply(err_list, function(l) l[[3]]), na.rm = T)
336 chisq_err <- mean(sapply(err_list, function(l) l[[4]]), na.rm = T)
337 type1err <- list("Type I error of Kolmogorov-Smirnov Test"=ks_err,
338 "Type I error of Cramer-von Mises Test"=cvm_err,
339 "Type I error of Anderson-Darling Test" = ad_err,
340 "Type I error of Chi-Squared Test" = chisq_err)
341 options(warn=0)
342 if(dist == "Multinomial"){
343 outlist<-c(probm)}else{ outlist<- c(sh1, sc1)}
344 return(list(’Parameters’ = outlist,
345 ’size’ = size, ’Iteration times’ = itn, ’distribution’ = dist,
346 ’Type I error’= type1err,
347 ’P-value List’ = test.results))
348 }
349
350 #################################### Power Calculation #######################################
351 ComPower.2s <- function(itn = 1000, sh1 = 1, sc1 = 0.5,
352 sh2 = 1, sc2 = 0.5, probm = c(0.1, 0.9),
353 probm2 = c(0.1, 0.9), size = 500, rho = 0, dist = ’Weibull’){
354 options(warn=-1)
355 test.results <- lapply(vector("list", itn), function(x) vector("list", 4))
356
357 if (dist == "Weibull"){
358
359 test.results <- lapply(1:itn, function(q){
360 if (rho == 0) {
361 x1 <- rweibull(size, shape = sh1, scale = sc1)
362 x2 <- rweibull(size, shape = sh2, scale = sc2)}
363 else{
364 covar <- matrix(c(1, rho, rho, 1), ncol=2)
365 z <- MASS::mvrnorm(1000 ,mu=rep(0, 2),Sigma=covar,empirical=T)
366 # get the inv-cdf of z
367 u <- pnorm(z)
368 # generate weibull distribution use gaussian copula
369 x1 <- qweibull(u[,1], shape = sh1, scale = sc1)
370 x2 <- qweibull(u[,2], shape = sh2, scale = sc2)
371 }
372
373 ks_2sam <- stats::ks.test(x1, x2)$p.value
374 cvm_2sam <- Asym.Cvm.2s(x1, x2)[[3]]
375 # cvm_2sam <- cramer::cramer.test(x1,x2)$p.value
376 ad_2sam <- kSamples::ad.test(x1, x2, method = "asymptotic")$ad[1,3]
377 chisq_2sam <- chisq2s(x1, x2, dist)
378
379 test.results.temp <- list("Two-sample Kolmogorov-Smirnov Test"=ks_2sam,
380 "Two-sample Cramer-von Mises Test"=cvm_2sam,
381 "Two-sample Anderson-Darling Test" = ad_2sam,
382 "Two-sample Chi-Squared Test" = chisq_2sam)
383 })
384
385 }
386 else if (dist == "Normal"){
387
388 test.results <- lapply(1:itn, function(q){
389 if (rho == 0) {
390 x1 <- rnorm(size, mean = sh1, sd = sc1)
391 x2 <- rnorm(size, mean = sh2, sd = sc2)}
392 else{
393 covar <- matrix(c(sc1*sc1, rho*sc1*sc2, rho*sc1*sc2, sc2*sc2), ncol=2)
394 z <- MASS::mvrnorm(1000 ,mu=rep(sh1, 2),Sigma=covar,empirical=T)
395 # generate weibull distribution use gaussian copula
396 x1 <- z[,1]
397 x2 <- z[,2]
398 }
399
400 ks_2sam <- stats::ks.test(x1, x2)$p.value
401 cvm_2sam <- Asym.Cvm.2s(x1, x2)[[3]]
402 # cvm_2sam <- cramer::cramer.test(x1,x2)$p.value
403 ad_2sam <- kSamples::ad.test(x1, x2, method = "asymptotic")$ad[1,3]
404 chisq_2sam <- chisq2s(x1, x2, dist)
405
406 test.results.temp <- list("Two-sample Kolmogorov-Smirnov Test"=ks_2sam,
407 "Two-sample Cramer-von Mises Test"=cvm_2sam,
408 "Two-sample Anderson-Darling Test" = ad_2sam,
409 "Two-sample Chi-Squared Test" = chisq_2sam)
410 })
411
412 }else if (dist == "Multinomial"){
413
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414 test.results <- lapply(1:itn, function(q){
415 x1 <- rmultinom(n=1, size, prob = probm)
416 # categorize data
417 x2 <- rmultinom(n=1, size, prob = probm2)
418 # generate categorize data
419 x1_dt <- unlist(apply(as.data.frame(1:length(x1)), 1, function(l){rep(l, x1[l])}))
420 x2_dt <- unlist(apply(as.data.frame(1:length(x2)), 1, function(l){rep(l, x2[l])}))
421 x2_ecdf <- ecdf(unlist(apply(as.data.frame(1:length(x2)), 1, function(l){rep(l, x2[l])})))
422
423
424 ks_2sam <- tryCatch({dgof::ks.test(x1_dt, x2_dt)$p.value},
425 error = function(e){ return(NA)} )
426 cvm_2sam <- tryCatch({disc_cvm(x1_dt, x2_dt)[[3]]},
427 error = function(e){ return(NA)} )
428 ad_2sam <- tryCatch({disc_ad(x1_dt, x2_dt)[[3]]},
429 error = function(e){ return(NA)} )
430 chisq_2sam <- chisq.test(as.table(cbind(x1, x2)))$p.value
431
432 test.results.temp <- list("Two-sample Kolmogorov-Smirnov Test"=ks_2sam,
433 "Two-sample Cramer-von Mises Test"=cvm_2sam,
434 "Two-sample Anderson-Darling Test" = ad_2sam,
435 "Two-sample Chi-Squared Test" = chisq_2sam)
436 })
437
438 }
439
440 power_list <- lapply(test.results, function(c) c < 0.05)
441 ks_power <- mean(sapply(power_list, function(l) l[[1]]))
442 cvm_power <- mean(sapply(power_list, function(l) l[[2]]))
443 ad_power <- mean(sapply(power_list, function(l) l[[3]]))
444 chisq_power <- mean(sapply(power_list, function(l) l[[4]]))
445 powerlist <- list("Power of Kolmogorov-Smirnov Test"=ks_power,
446 "Power of Cramer-von Mises Test"=cvm_power,
447 "Power of Anderson-Darling Test" = ad_power,
448 "Power of Chi-Squared Test" = chisq_power)
449 options(warn=0)
450 if(dist == "Multinomial"){
451 outlist<-c(’null’=probm, ’alternative’=probm2)}else{ outlist<- c(sh1, sc1)}
452 return(list(’Parameters’ = outlist,
453 ’size’ = size, ’Iteration times’ = itn, ’distribution’ = dist,
454 ’MC power’ = powerlist, ’P-value List’ = test.results))
455 }
456
457 # pass function to clusters
458 clusterExport(cl, list(’chisq2s’))
459 clusterExport(cl, list(’Asym.Cvm.2s’))
460 clusterExport(cl, list(’disc_cvm’))
461 clusterExport(cl, list(’disc_ad’))
462 clusterExport(cl, list(’Comp1err.2s’))
463 clusterExport(cl, list(’ComPower.2s’))
464
465 set.seed(831111)
466
467 # sample size
468 size_n <- c(10, 20, 30, 100, 500)
469
470 # decide the total number of iterations needed
471 tot_itn <- 10000
472 # calculate iterations needed for each computing core
473 it_n <- round(tot_itn/avilable_mpi_ncs)
474 # delta , 5 levels of change in original parameter to see the power
475 para_dlt <- c(0.05, 0.1, 0.2, 0.5, 1)
476 # generate unique list for delta
477 problist <- list(c(0.5, 0.5), c(0.1, 0.9), c(0.3, 0.7),
478 c(0.1, 0.2, 0.4, 0.2, 0.1), c(0.7, 0.2, 0.05, 0.03, 0.02),
479 c(0.3, 0.15, 0.1, 0.15, 0.3))
480 # probability in alternative
481 prob_dlt_list <- lapply(problist, function(k)
482 {apply(as.data.frame(para_dlt), 1, function(l) (return(list(k, round((k + l)/sum(k+l), 2)))))})
483 ########################################################################################################
484 ########################################### Type I Error Analysis ######################################
485 ########################################################################################################
486 err1_multn_2s <- lapply(1:length(problist), function(l) {
487 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
488 err1_multn_list_2s <- lapply(1:5, function(j){
489 lapply(1:length(problist), function(l) {
490 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
491 })
492 start_t <- Sys.time()
493
494 for (q in 1:5){
495 err1_multn_2s <- lapply(problist, function(l) {
496 clusterCall(cl, Comp1err.2s, itn = it_n,
497 probm = l, dist = "Multinomial", size = size_n[q])})
498 err1_multn_list_2s[[q]] <- err1_multn_2s
499 }
500 # save(err1_weibull, file = ’T1E_Wei.RData’)
501 save(err1_multn_list_2s, file = ’T1E_multn_size_2s.RData’)
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502
503 end_t <- Sys.time()
504 jobtime <-difftime(end_t, start_t, unit = "hours")
505 outline <- paste(end_t, ": T1E_multn_size_2s.RData"," is finished. Time difference is ", jobtime,sep="")
506 print(outline)
507 flush.console()
508 # rm(err1_multn_list_2s, err1_multn_2s)
509 #
510 # ##############################################################################################
511 # ##################################### Power study ############################################
512 # ##############################################################################################
513 # # Nul shape while alternative scale
514 pow_multn2s <- lapply(1:(length(prob_dlt_list)*5), function(l) {
515 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
516 pow_multnlist_2s <- lapply(1:5, function(j){
517 lapply(1:(length(prob_dlt_list)*5), function(l) {
518 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
519 })
520
521 start_t <- Sys.time()
522 for (q in 1:5){
523 pow_multn2s <- lapply(prob_dlt_list, function(l) {
524 lapply(1:5, function(k){
525 clusterCall(cl,ComPower.2s, itn = it_n,
526 probm = l[[k]][[1]], probm2 = l[[k]][[2]], dist = "Multinomial", size = size_n[q])})
527 })
528 pow_multnlist_2s[[q]] <- pow_multn2s
529 }
530 # save(err1_multn2s, file = ’T1E_Wei.RData’)
531 Pow_multn_2s <- pow_multnlist_2s
532 save(Pow_multn_2s, file = ’Pow_multn_2s.RData’)
533
534 end_t <- Sys.time()
535 jobtime <-difftime(end_t, start_t, unit = "hours")
536 outline <- paste(end_t, ": Pow_multn_2s.RData"," is finished. Time difference is ", jobtime,sep="")
537 print(outline)
538 flush.console()
539 # remove unecessary things causing system slowing down
540 rm(pow_multn2s, pow_multnlist_2s, Pow_multn_2s)
541
542 # Nul scale while alternative shape
543 # pow_multn2s <- lapply(1:ncol(multndlt_list), function(l) {
544 # list(vector("list", 4), lapply(1:it_n, function#!/usr/bin/env Rscript
545
546 # close cluster
547 stopCluster(cl)
548
549 # Tell all slaves to close down, and exit the program
550 mpi.quit()
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B An Adjustment of Kolmogorov-Smirnov Test Under Spatial

Autocorrelation: R Codes

B.1 Simulation and Adjustment Estimation for Distributions with Spatial
Autocorrelation

1 #!/usr/bin/env Rscript
2 print(getwd())
3 set.seed(1234)
4 ###########################################################################################
5 ###########################################################################################
6 ################################### Author: Wenjun Zheng ##################################
7 ################################### Date: 09-04-2018 ######################################
8 ##################### Title: A simulation study of Spatial Adjustment #####################
9 ###########################################################################################

10 ###########################################################################################
11 # use Gaussian copula, due to the property of copula, it may change correlation
12 # if (!is.loaded("mpi_initialize")) {
13 # library("Rmpi")
14 # }
15 library(snow)
16
17 # generate cluster in MPI type
18 ncs <- parallel::detectCores()
19 avilable_mpi_ncs <- ncs
20 cl <- makeCluster(avilable_mpi_ncs, type = "SOCK")
21
22 # pass necessary packages to load in clusters
23 clusterEvalQ(cl, library(psych))
24 clusterEvalQ(cl, library(MASS))
25
26 #############################################################################################
27 ##################################### Preparing functions ###################################
28 ########################################### Two-Sample ######################################
29 #############################################################################################
30 Spa_DP_Gen <- function(weights.dis, dist_p = ’Normal’, N_sam,
31 para1 = 0, para2 = 1, mult_p = C(0.5, 0.5)){
32
33 # spatially correlated errors
34 # could be directly used as observations in locations if necessary
35 if (dist_p == ’Normal’){
36 sim_points <- para1 + weights.dis %*% rnorm(N_sam, mean = 0, sd = 1)
37 }else if(dist_p == ’Weibull’){
38 sim_points <- weights.dis %*% rweibull(N_sam, shape = para1, scale = para2)
39 }else if(dist_p == ’Multinomial’){
40 sim_points_cont <- weights.dis %*% rnorm(N_sam)
41 mult_p_cum <- sapply(1:length(mult_p), function(l) sum(mult_p[1:l]))
42 multi_P <- c(-Inf, qnorm(mult_p_cum))
43 # cut points into interval
44 sim_points <- as.numeric(cut(sim_points_cont, breaks = multi_P, include.lowest = T))
45 }
46 # sim_points <- 1 + errors
47 # Moran.I(as.numeric(sim_points), dists.inv)
48 return(sim_points)
49 }
50
51 # function to compute the global and local Moran’s I
52 lisa_Moran <- function(x, w, scaled = T, na.rm = F){
53 # remove missing values
54 N <- length(x)
55 if(na.rm == T){
56 x <- as.numeric(na.omit(x))}
57 # create standard weighting matrix/vector
58 if(scaled == T){
59 ROWSUM <- rowSums(w)
60 ROWSUM[ROWSUM == 0] <- 1
61 w <- w/ROWSUM
62 }
63
64 # compute the deviations
65 deviation_mean <- x - mean(x)
66
67 # compute the local Moran’s I, lisa_M
68 # to speed up the procedure, we use matrix form
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69 lisa_M <- c((deviation_mean/(sum(deviation_meanˆ2)/N))*(w%*%deviation_mean))
70
71 # compute the global Moran’s I, M.I
72 # to speed up the procedure, we use matrix form
73 M.I <- as.numeric((N/sum(w))*(t(deviation_mean)%*%w%*%deviation_mean)/sum(deviation_meanˆ2))
74
75 return(list(’Anselin Local Moran I’ = lisa_M, ’Moran I’ = M.I))
76 }
77
78 MI.adj.ks.test <- function(x, y, alternative = "two.sided", G_Moran_I = c(NULL, NULL),
79 L_Moran_I = list(NULL, NULL), adj_method = NULL){
80 x <- x[!is.na(x)]
81 y <- y[!is.na(y)]
82 n.x <- length(x)
83 n.y <- length(y)
84
85 # stop the process if data is not enough
86 if (n.x < 1L)
87 stop("not enough ’x’ data")
88 if (isTRUE(adj_method == "Global") || isTRUE(adj_method == "Local")){
89 if (is.null(G_Moran_I) && is.null(L_Moran_I[[1]]) && is.null(L_Moran_I[[2]]))
90 stop("please insert valid global Moran’s I and local Moran’s I")}
91 w <- c(x, y)
92 # compute the superemum distance between tested ecdf/cdf
93 z <- cumsum(ifelse(order(w) <= n.x, 1/n.x, -1/n.y))
94 z <- z[c(which(diff(sort(w)) != 0), n.x + n.y)]
95 STAT_VAL <- switch(alternative, two.sided = max(abs(z)),
96 greater = max(z), less = -min(z))
97 PVAL <- NULL
98 if (is.null(adj_method))
99 PVAL <- 1 - .Call(stats:::C_pSmirnov2x, STAT_VAL, n.x, n.y)

100 else if (adj_method == "Global"){
101 G_n.x <- (1-G_Moran_I[1])*n.x
102 G_n.y <- (1-G_Moran_I[2])*n.y
103 PVAL <- 1 - .Call(stats:::C_pSmirnov2x, STAT_VAL, G_n.x, G_n.y)}
104 else if (adj_method == "Local"){
105 # adjust sample sizes by local Moran’s I
106 L_n.x <- sum(L_Moran_I[[1]] >= G_Moran_I[1])
107 L_n.y <- sum(L_Moran_I[[2]] >= G_Moran_I[2])
108 PVAL <- 1 - .Call(stats:::C_pSmirnov2x, STAT_VAL, L_n.x, L_n.y)}
109 else if (adj_method == "ICC"){
110 # adjusted sample size by ICC
111 ICC.xy <- psych::ICC(as.data.frame(matrix(c(x,y), ncol = 2)))$results[2][[1]][3]
112 ICC.n.x <- (1-ICC.xy)*n.x
113 ICC.n.y <- (1-ICC.xy)*n.y
114 PVAL <- 1 - .Call(stats:::C_pSmirnov2x, STAT_VAL, ICC.n.x, ICC.n.y)}
115
116 output <- list(’statistic’ = STAT_VAL, "p.value" = PVAL)
117 return(output)
118 }
119 #########################################################################################
120 ################################# wrapper for tests #####################################
121 #########################################################################################
122 Spa.Comp1err.2s <- function(itn = 1000, sh1 = 1,
123 sc1 = 0.5, probm = c(0.1, 0.9), dist = ’Normal’,
124 spa_mat, corstr = 0.1, dists_inv = dists.inv, alpha.level = 0.05){
125 options(warn=-1)
126 test.results <- lapply(vector("list", itn), function(x) vector("list", 4))
127 N_mat <- nrow(spa_mat)
128 # here p is the strength of autocorrelation
129 # if |p| is large then the autocorrelation is weak
130 p <- corstr
131 # distance matrix between points
132 # already have it as dist_sph
133 # weights matrix
134 # compute the cholesky decomposition
135 if (dist == "Weibull"){
136 Omega <- exp(-(pˆ2)*spa_mat)}
137 else if (dist == "Normal"){
138 Omega <- (sc1ˆ2)*exp(-(pˆ2)*spa_mat)}
139 weights_sph <- chol(Omega)
140 weights_inv <- t(weights_sph)
141
142 # this section is for true sample size, however I realized it is too liberal
143 # indi.matrix <- matrix(rep(1, nrow(Omega)), ncol = 1)
144 # adj.rat <- psych::tr(Omega)/(t(indi.matrix)%*%Omega%*%indi.matrix)
145
146 if (dist == "Weibull"){
147
148 test.results <- lapply(1:itn, function(q){
149 # simulate data by Cholesky
150 Sim_sph1 <- Spa_DP_Gen(weights.dis = weights_inv, N_sam = N_mat,
151 para1 = sh1, para2 = sc1, dist_p = dist)
152 Sim_sph2 <- Spa_DP_Gen(weights.dis = weights_inv, N_sam = N_mat,
153 para1 = sh1, para2 = sc1, dist_p = dist)
154
155 # to compute the Moran’s I therefore to adjust
156 MoranI_1_bug <- lisa_Moran(Sim_sph1, dists_inv, scaled = T, na.rm = T)
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157 MoranI_2_bug <- lisa_Moran(Sim_sph2, dists_inv, scaled = T, na.rm = T)
158
159 GM1 <- MoranI_1_bug[[2]]
160 GM2 <- MoranI_2_bug[[2]]
161
162
163 LM1 <- MoranI_1_bug[[1]]
164 LM1_R <- sum(abs(LM1) <= abs(MoranI_1_bug[[1]]))/N_mat
165 LM2 <- MoranI_2_bug[[1]]
166 LM2_R <- sum(abs(LM1) <= abs(MoranI_1_bug[[2]]))/N_mat
167
168 ks_2sam <- stats::ks.test(Sim_sph1, Sim_sph2)
169
170
171 test.results.temp <- list(list("Local Moran’s I" = list(LM1_R, LM2_R),
172 "Global Moran’s I" = list(GM1, GM2)),
173 list("Original Two-sample Kolmogorov-Smirnov Statistic"= ks_2sam$statistic))
174 })
175 }else if (dist == "Normal"){
176
177 test.results <- lapply(1:itn, function(q){
178
179 # simulate data by Cholesky
180 Sim_sph1 <- Spa_DP_Gen(weights.dis = weights_inv, N_sam = N_mat,
181 para1 = sh1, para2 = sc1, dist_p = dist)
182 Sim_sph2 <- Spa_DP_Gen(weights.dis = weights_inv, N_sam = N_mat,
183 para1 = sh1, para2 = sc1, dist_p = dist)
184
185 # to compute the Moran’s I therefore to adjust
186 MoranI_1_bug <- lisa_Moran(Sim_sph1, dists_inv, scaled = T, na.rm = T)
187 MoranI_2_bug <- lisa_Moran(Sim_sph2, dists_inv, scaled = T, na.rm = T)
188
189 GM1 <- MoranI_1_bug[[2]]
190 GM2 <- MoranI_2_bug[[2]]
191
192 LM1 <- MoranI_1_bug[[1]]
193 LM1_R <- sum(abs(LM1) <= abs(MoranI_1_bug[[1]]))/N_mat
194 LM2 <- MoranI_2_bug[[1]]
195 LM2_R <- sum(abs(LM1) <= abs(MoranI_1_bug[[2]]))/N_mat
196
197 ks_2sam <- stats::ks.test(Sim_sph1, Sim_sph2)
198
199
200 test.results.temp <- list(list("Local Moran’s I" = list(LM1_R, LM2_R),
201 "Global Moran’s I" = list(GM1, GM2)),
202 list("Original Two-sample Kolmogorov-Smirnov Statistic"= ks_2sam$statistic))
203 })
204
205 }#else if (dist == "Multinomial"){
206
207
208 options(warn=0)
209 if(dist == "Multinomial"){
210 outlist<-c(probm)}else{ outlist<- c(sh1, sc1)}
211 return(list(’Parameters’ = outlist,
212 ’Correlation Strength’ = corstr, ’Iteration times’ = itn, ’distribution’ = dist,
213 ’Results List’ = test.results))
214 }
215
216 # pass function to clusters
217
218 clusterExport(cl, list(’Spa_DP_Gen’))
219 clusterExport(cl, list(’lisa_Moran’, ’MI.adj.ks.test’))
220 clusterExport(cl, list(’Spa.Comp1err.2s’))
221
222 # set seed to ensure reproduction
223 parallel::clusterSetRNGStream(cl, iseed = 1234)
224
225 # decide the total number of iterations needed
226 tot_itn <- 10000
227 # calculate iterations needed for each computing core
228 it_n <- ceiling(tot_itn/(avilable_mpi_ncs))
229
230 # generate parameter list for normal distribution
231 mu_para <- c(0, 1)
232 sigma_para <- c(1, 2)
233
234 # generate normality distribution parameter list
235 norm_para_list <- t(expand.grid(mu_para, sigma_para))
236
237
238 # Spatial coordinates
239 spher_to_cart <- function(r, theta, phi) {
240 list(r_sph = r,
241 theta_sph = theta,
242 phi_sph = phi,
243 x_car=r*sin(phi)*cos(theta),
244 y_car=r*sin(phi)*sin(theta),
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245 z_car=r*cos(phi))
246 }
247
248 arcL <- function(p1, p2, r){
249 cos_prod <- as.numeric(cos(p1[3])*cos(p2[3]) + sin(p1[3])*sin(p2[3])*cos(p1[2] - p2[2]))
250 if (cos_prod > 1 ){
251 arclength <- r*(acos(1))
252 }else if( cos_prod < -1){
253 arclength <- r*(acos(-1))
254 }else{
255 arclength <- r*(acos(cos_prod))
256 }
257 names(arclength) <- ’Arclength’
258 return(arclength)
259 }
260 # this will generate a matrix of 64 columns and 21 rows.
261 # deleting the first and last observation of phi as phi = 0 or phi =pi was not what we want
262 coord <- list(phi=c(seq(pi/2, pi, length =23)[-c(1,23)]),
263 theta = seq(0,2*pi,length=65)[-c(1)])
264
265 scan_matrix <- expand.grid(coord$theta, coord$phi)
266 # label scan matrix
267 names(scan_matrix) <- c(’theta’, ’phi’)
268 # generate spherical coordinates
269 # first we assign the radius we want as r
270 radius_t <- 1
271 spher_coord <- spher_to_cart(radius_t, scan_matrix$theta, scan_matrix$phi)
272
273 # distance calculated from xy locations
274 # dist_sph <- as.matrix(dist(xy))
275 sph_coords <- as.data.frame(spher_coord)
276 # compute the arclength for each pair of the locations
277 # the greatest distance between points is pi(3.141593)
278 dist_sph <- apply(sph_coords[,1:3], 1, function(i){
279 apply(sph_coords[,1:3], 1, function(j){
280 arcL(i, j , radius_t)
281 })
282 })
283
284 # inverse distance
285 dists.inv <- 1/dist_sph
286 # making the inverse distance matrix
287 diag(dists.inv) <- 0
288 # distance decreasing strength, weight matrix to the second power
289 weight.matrix <- exp(dists.inv)
290 diag(weight.matrix) <- 0
291 # cor_list <- c(-0.01, -0.1, -0.38, -0.83, -2.9, -6 )
292 # Moran’s I: 0.6, 0.55, 0.4, 0.3, 0.25, 0.15, 0.1, 0.05, 0
293 cor_list <- c(0.01, 0.02, 1, 1.8, 2.5, 3, 4, 5.5, 8, 50)
294 # plot the coordinates
295 clusterExport(cl, "dist_sph")
296 clusterExport(cl, "dists.inv")
297 clusterExport(cl, "weight.matrix")
298 clusterExport(cl, "sph_coords")
299 clusterExport(cl, "cor_list")
300
301 # a function for simulation, note itn is the simulation numbers, sh is shape parameter
302 # sc is the scale parameter, sig is the correlation matrix, make sure it’s 2*2 if two sample
303 # Two-sample simulation, weibull
304 # perform the simulation on all parameters # shape = (0.5, 1, 2, 3, 5), scale = (1, 2, 3)
305
306 err1_spatial_2s <- lapply(1:ncol(norm_para_list), function(l) {
307 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
308 err1_spatial_list_2s <- lapply(1:length(cor_list), function(j){
309 lapply(1:ncol(norm_para_list), function(l) {
310 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
311 })
312
313 start_t <- Sys.time()
314 for (q in 1:length(cor_list)){
315
316 err1_spatial_2s <- lapply(1:ncol(norm_para_list), function(l) {
317 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
318
319 err1_spatial_2s <- apply(norm_para_list, 2, function(l) {
320 clusterCall(cl, Spa.Comp1err.2s, itn = it_n, corstr = cor_list[q],
321 sh1 = l[1], sc1 = l[2], dist = ’Normal’, spa_mat = dist_sph,
322 dists_inv = weight.matrix, alpha.level = 0.05)})
323 err1_spatial_list_2s[[q]] <- err1_spatial_2s
324 }
325 # save(err1_spatial_2s, file = ’T1E_Wei.RData’)
326 save(err1_spatial_list_2s, file = ’T1E_Spa_size_2s_Oct30.RData’)
327
328
329 end_t <- Sys.time()
330 jobtime <-difftime(end_t, start_t, unit = "hours")
331 outline <- paste(end_t, ": Tests for spatial distributed samples"," is finished. Time difference is ", jobtime,sep="")
332 print(outline)
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333 flush.console()
334
335 # release memory
336 rm(err1_spatial_2s, err1_spatial_list_2s)
337
338 # close cluster
339 stopCluster(cl)
340
341 # Tell all slaves to close down, and exit the program
342 # mpi.quit()

B.2 Simulation for Distributions with Spatial Autocorrelation

1 #!/usr/bin/env Rscript
2 print(getwd())
3 set.seed(1234)
4 ###########################################################################################
5 ###########################################################################################
6 ################################### Author: Wenjun Zheng ##################################
7 ################################### Date: 09-04-2018 ######################################
8 ##################### Title: A simulation study of Spatial Adjustment #####################
9 ###########################################################################################

10 ###########################################################################################
11 # use Gaussian copula, due to the property of copula, it may change correlation
12 # if (!is.loaded("mpi_initialize")) {
13 # library("Rmpi")
14 # }
15
16 library(snow)
17 # suppressPackageStartupMessages(library(gmailr))
18 # generate cluster in MPI type
19 ncs <- parallel::detectCores()
20 avilable_mpi_ncs <- ncs
21 cl <- makeCluster(avilable_mpi_ncs, type = "SOCK")
22
23 # pass necessary packages to load in clusters
24 clusterEvalQ(cl, library(psych))
25 clusterEvalQ(cl, library(MASS))
26
27 #############################################################################################
28 ##################################### Preparing functions ###################################
29 ########################################### Two-Sample ######################################
30 #############################################################################################
31 Spa_DP_Gen <- function(weights.dis, dist_p = ’Normal’, N_sam,
32 para1 = 0, para2 = 1, mult_p = C(0.5, 0.5)){
33
34 # spatially correlated errors
35 # could be directly used as observations in locations if necessary
36 if (dist_p == ’Normal’){
37 sim_points <- para1 + weights.dis %*% rnorm(N_sam, mean = 0, sd = 1)
38 }else if(dist_p == ’Weibull’){
39 sim_points <- weights.dis %*% rweibull(N_sam, shape = para1, scale = para2)
40 }else if(dist_p == ’Multinomial’){
41 sim_points_cont <- weights.dis %*% rnorm(N_sam)
42 mult_p_cum <- sapply(1:length(mult_p), function(l) sum(mult_p[1:l]))
43 multi_P <- c(-Inf, qnorm(mult_p_cum))
44 # cut points into interval
45 sim_points <- as.numeric(cut(sim_points_cont, breaks = multi_P, include.lowest = T))
46 }
47 # sim_points <- 1 + errors
48 # Moran.I(as.numeric(sim_points), dists.inv)
49 return(sim_points)
50 }
51
52 # function to compute the global and local Moran’s I
53 lisa_Moran <- function(x, w, scaled = T, na.rm = F){
54 # remove missing values
55 N <- length(x)
56 if(na.rm == T){
57 x <- as.numeric(na.omit(x))}
58 # create standard weighting matrix/vector
59 if(scaled == T){
60 ROWSUM <- rowSums(w)
61 ROWSUM[ROWSUM == 0] <- 1
62 w <- w/ROWSUM
63 }
64
65 # compute the deviations
66 deviation_mean <- x - mean(x)
67
68 # compute the local Moran’s I, lisa_M
69 # to speed up the procedure, we use matrix form
70 lisa_M <- c((deviation_mean/(sum(deviation_meanˆ2)/N))*(w%*%deviation_mean))

151



71
72 # compute the global Moran’s I, M.I
73 # to speed up the procedure, we use matrix form
74 M.I <- as.numeric((N/sum(w))*(t(deviation_mean)%*%w%*%deviation_mean)/sum(deviation_meanˆ2))
75
76 return(list(’Anselin Local Moran I’ = lisa_M, ’Moran I’ = M.I))
77 }
78
79 MI.adj.ks.test <- function(x, y, alternative = "two.sided", G_Moran_I = c(NULL, NULL),
80 L_Moran_I = list(NULL, NULL), adj_method = NULL){
81 x <- x[!is.na(x)]
82 y <- y[!is.na(y)]
83 n.x <- length(x)
84 n.y <- length(y)
85
86 # stop the process if data is not enough
87 if (n.x < 1L)
88 stop("not enough ’x’ data")
89 if (isTRUE(adj_method == "Global") || isTRUE(adj_method == "Local")){
90 if (is.null(G_Moran_I) && is.null(L_Moran_I[[1]]) && is.null(L_Moran_I[[2]]))
91 stop("please insert valid global Moran’s I and local Moran’s I")}
92 w <- c(x, y)
93 # compute the superemum distance between tested ecdf/cdf
94 z <- cumsum(ifelse(order(w) <= n.x, 1/n.x, -1/n.y))
95 z <- z[c(which(diff(sort(w)) != 0), n.x + n.y)]
96 STAT_VAL <- switch(alternative, two.sided = max(abs(z)),
97 greater = max(z), less = -min(z))
98 PVAL <- NULL
99 adj_MI <- G_Moran_I + c(1/(n.x - 1), 1/(n.y - 1))

100 if (is.null(adj_method))
101 PVAL <- 1 - .Call(stats:::C_pSmirnov2x, STAT_VAL, n.x, n.y)
102 else if (adj_method == "Global"){
103 G_n.x <- ceiling((2/(1+exp(4.018401*adj_MI[1] + 3.881034*adj_MI[1]ˆ3)))*n.x)
104 G_n.y <- ceiling((2/(1+exp(4.018401*adj_MI[2] + 3.881034*adj_MI[2]ˆ3)))*n.y)
105 PVAL <- 1 - .Call(stats:::C_pSmirnov2x, STAT_VAL, G_n.x, G_n.y)}
106 else if (adj_method == "Local"){
107 # adjust sample sizes by local Moran’s I
108 L_n.x <- ceiling((2/(1+exp(1.894057*adj_MI[1] + 5.932520*adj_MI[2]ˆ2)))*n.x)
109 L_n.y <- ceiling((2/(1+exp(1.894057*adj_MI[2] + 5.932520*adj_MI[2]ˆ2)))*n.y)
110 PVAL <- 1 - .Call(stats:::C_pSmirnov2x, STAT_VAL, L_n.x, L_n.y)}
111 else if (adj_method == "ICC"){
112 # adjusted sample size by ICC
113 ICC.xy <- psych::ICC(as.data.frame(matrix(c(x,y), ncol = 2)))$results[2][[1]][3]
114 ICC.n.x <- (1-ICC.xy)*n.x
115 ICC.n.y <- (1-ICC.xy)*n.y
116 PVAL <- 1 - .Call(stats:::C_pSmirnov2x, STAT_VAL, ICC.n.x, ICC.n.y)}
117
118 output <- list(’statistic’ = STAT_VAL, "p.value" = PVAL)
119 return(output)
120 }
121 #########################################################################################
122 ################################# wrapper for tests #####################################
123 #########################################################################################
124 Spa.Comp1err.2s <- function(itn = 1000, sh1 = 1,
125 sc1 = 0.5, probm = c(0.1, 0.9), dist = ’Weibull’,
126 spa_mat, corstr = 0.1, dists_inv = dists.inv){
127 options(warn=-1)
128 test.results <- lapply(vector("list", itn), function(x) vector("list", 4))
129 N_mat <- nrow(spa_mat)
130 # here p is the strength of autocorrelation
131 # if |p| is large then the autocorrelation is weak
132 p <- corstr
133 # distance matrix between points
134 # already have it as dist_sph
135 # weights matrix
136 # compute the cholesky decomposition
137 if (dist == "Weibull"){
138 Omega <- exp(-(pˆ2)*spa_mat)}
139 else if (dist == "Normal"){
140 Omega <- (sc1ˆ2)*exp(-(pˆ2)*spa_mat)}
141 weights_sph <- chol(Omega)
142 weights_inv <- t(weights_sph)
143 if (dist == "Weibull"){
144
145 test.results <- lapply(1:itn, function(q){
146 # simulate data by Cholesky
147 Sim_sph1 <- Spa_DP_Gen(weights.dis = weights_inv, N_sam = N_mat,
148 para1 = sh1, para2 = sc1, dist_p = dist)
149 Sim_sph2 <- Spa_DP_Gen(weights.dis = weights_inv, N_sam = N_mat,
150 para1 = sh1, para2 = sc1, dist_p = dist)
151
152 # to compute the Moran’s I therefore to adjust
153 MoranI_1_bug <- lisa_Moran(Sim_sph1, dists_inv, scaled = T, na.rm = T)
154 MoranI_2_bug <- lisa_Moran(Sim_sph2, dists_inv, scaled = T, na.rm = T)
155
156 GM1 <- MoranI_1_bug[[2]]
157 GM2 <- MoranI_2_bug[[2]]
158
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159
160 LM1 <- MoranI_1_bug[[1]]
161 LM2 <- MoranI_2_bug[[1]]
162
163 ks_2sam <- stats::ks.test(Sim_sph1, Sim_sph2)$p.value
164 ks_GM_2sam <- MI.adj.ks.test(Sim_sph1, Sim_sph2,
165 G_Moran_I = c(GM1, GM2), adj_method = ’Global’)$p.value
166 ks_LM_2sam <- MI.adj.ks.test(Sim_sph1, Sim_sph2, G_Moran_I = c(GM1, GM2),
167 L_Moran_I = list(LM1, LM2), adj_method = ’Local’)$p.value
168 ks_ICC_2sam <- MI.adj.ks.test(Sim_sph1, Sim_sph2, adj_method = ’ICC’)$p.value
169
170 test.results.temp <- list(list("Global Moran’s I" = list(GM1, GM2)),
171 list("Original Two-sample Kolmogorov-Smirnov Test"= ks_2sam,
172 "Global Moran’s I adjusted Two-sample Kolmogorov-Smirnov Test"= ks_GM_2sam,
173 "Local Moran’s I adjusted Two-sample Kolmogorov-Smirnov Test"= ks_LM_2sam,
174 "ICC adjusted Two-sample Kolmogorov-Smirnov Test"= ks_ICC_2sam))
175 })
176 }else if (dist == "Normal"){
177
178 test.results <- lapply(1:itn, function(q){
179
180 # simulate data by Cholesky
181 Sim_sph1 <- Spa_DP_Gen(weights.dis = weights_inv, N_sam = N_mat,
182 para1 = sh1, para2 = sc1, dist_p = dist)
183 Sim_sph2 <- Spa_DP_Gen(weights.dis = weights_inv, N_sam = N_mat,
184 para1 = sh1, para2 = sc1, dist_p = dist)
185
186 # to compute the Moran’s I therefore to adjust
187 MoranI_1_bug <- lisa_Moran(Sim_sph1, dists_inv, scaled = T, na.rm = T)
188 MoranI_2_bug <- lisa_Moran(Sim_sph2, dists_inv, scaled = T, na.rm = T)
189
190 GM1 <- MoranI_1_bug[[2]]
191 GM2 <- MoranI_2_bug[[2]]
192
193 LM1 <- MoranI_1_bug[[1]]
194 LM2 <- MoranI_2_bug[[1]]
195
196 ks_2sam <- stats::ks.test(Sim_sph1, Sim_sph2)$p.value
197 ks_GM_2sam <- MI.adj.ks.test(Sim_sph1, Sim_sph2,
198 G_Moran_I = c(GM1, GM2), adj_method = ’Global’)$p.value
199 ks_LM_2sam <- MI.adj.ks.test(Sim_sph1, Sim_sph2, G_Moran_I = c(GM1, GM2),
200 L_Moran_I = list(LM1, LM2), adj_method = ’Local’)$p.value
201 ks_ICC_2sam <- MI.adj.ks.test(Sim_sph1, Sim_sph2, adj_method = ’ICC’)$p.value
202
203 test.results.temp <- list(list("Global Moran’s I" = list(GM1, GM2)),
204 list("Original Two-sample Kolmogorov-Smirnov Test"= ks_2sam,
205 "Global Moran’s I adjusted Two-sample Kolmogorov-Smirnov Test"= ks_GM_2sam,
206 "Local Moran’s I adjusted Two-sample Kolmogorov-Smirnov Test"= ks_LM_2sam,
207 "ICC adjusted Two-sample Kolmogorov-Smirnov Test"= ks_ICC_2sam))
208 })
209
210 }#else if (dist == "Multinomial"){
211 #
212 err_list <- lapply(test.results, function(c) c[[2]] < 0.05)
213 ks_err <- mean(sapply(err_list, function(l) l[[1]]), na.rm = T)
214 ks_G_err <- mean(sapply(err_list, function(l) l[[2]]), na.rm = T)
215 ks_L_err <- mean(sapply(err_list, function(l) l[[3]]), na.rm = T)
216 ks_ICC_err <- mean(sapply(err_list, function(l) l[[4]]), na.rm = T)
217
218 type1err <- list("Type I error of Original Kolmogorov-Smirnov Test"=ks_err,
219 "Type I error of Global Moran’s I adjusted Kolmogorov-Smirnov Test"=ks_G_err,
220 "Type I error of Local Moran’s I adjusted Kolmogorov-Smirnov Test"=ks_L_err,
221 "Type I error of ICC adjusted Kolmogorov-Smirnov Test"=ks_ICC_err)
222 options(warn=0)
223 if(dist == "Multinomial"){
224 outlist<-c(probm)}else{ outlist<- c(sh1, sc1)}
225 return(list(’Parameters’ = outlist,
226 ’Correlation Strength’ = corstr, ’Iteration times’ = itn, ’distribution’ = dist,
227 ’Type I error’= type1err,
228 ’Results List’ = test.results))
229 }
230
231 #################################### Power Calculation #######################################
232 Spa.ComPower.2s <- function(itn = 1000, sh1 = 1, sc1 = 0.5,
233 sh2 = 1, sc2 = 0.5, probm = c(0.1, 0.9),
234 probm2 = c(0.1, 0.9), dist = ’Weibull’,
235 spa_mat, corstr = 0.1, dists_inv = dists.inv){
236 options(warn=-1)
237 test.results <- lapply(vector("list", itn), function(x) vector("list", 4))
238 N_mat <- nrow(spa_mat)
239 # here p is the strength of autocorrelation
240 # if |p| is large then the autocorrelation is weak
241 p <- corstr
242 # distance matrix between points
243 # already have it as dist_sph
244 # weights matrix
245 # compute the cholesky decomposition
246 if (dist == "Weibull"){
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247 Omega <- exp(-(pˆ2)*spa_mat)
248 weights_sph <- chol(Omega)
249 weights_inv <- t(weights_sph)}
250 else if (dist == "Normal"){
251 Omega1 <- (sc1ˆ2)*exp(-(pˆ2)*spa_mat)
252 Omega2 <- (sc2ˆ2)*exp(-(pˆ2)*spa_mat)
253 weights_sph1 <- chol(Omega1)
254 weights_inv1 <- t(weights_sph1)
255 weights_sph2 <- chol(Omega2)
256 weights_inv2 <- t(weights_sph2)}
257
258
259 if (dist == "Weibull"){
260
261 test.results <- lapply(1:itn, function(q){
262 Sim_sph1 <- Spa_DP_Gen(weights.dis = weights_inv, N_sam = N_mat,
263 para1 = sh1, para2 = sc1, dist_p = dist)
264 Sim_sph2 <- Spa_DP_Gen(weights.dis = weights_inv, N_sam = N_mat,
265 para1 = sh2, para2 = sc2, dist_p = dist)
266
267 # to compute the Moran’s I therefore to adjust
268 MoranI_1_bug <- lisa_Moran(Sim_sph1, dists_inv, scaled = T, na.rm = T)
269 MoranI_2_bug <- lisa_Moran(Sim_sph2, dists_inv, scaled = T, na.rm = T)
270
271 GM1 <- MoranI_1_bug[[2]]
272 GM2 <- MoranI_2_bug[[2]]
273
274 LM1 <- MoranI_1_bug[[1]]
275 LM2 <- MoranI_2_bug[[1]]
276
277 ks_2sam <- stats::ks.test(Sim_sph1, Sim_sph2)$p.value
278 ks_GM_2sam <- MI.adj.ks.test(Sim_sph1, Sim_sph2,
279 G_Moran_I = c(GM1, GM2), adj_method = ’Global’)$p.value
280 ks_LM_2sam <- MI.adj.ks.test(Sim_sph1, Sim_sph2, G_Moran_I = c(GM1, GM2),
281 L_Moran_I = list(LM1, LM2), adj_method = ’Local’)$p.value
282 ks_ICC_2sam <- MI.adj.ks.test(Sim_sph1, Sim_sph2, adj_method = ’ICC’)$p.value
283
284 test.results.temp <- list(list("Global Moran’s I" = list(GM1, GM2)),
285 list("Original Two-sample Kolmogorov-Smirnov Test"= ks_2sam,
286 "Global Moran’s I adjusted Two-sample Kolmogorov-Smirnov Test"= ks_GM_2sam,
287 "Local Moran’s I adjusted Two-sample Kolmogorov-Smirnov Test"= ks_LM_2sam,
288 "ICC adjusted Two-sample Kolmogorov-Smirnov Test"= ks_ICC_2sam))
289 })
290
291 }
292 else if (dist == "Normal"){
293
294 test.results <- lapply(1:itn, function(q){
295 Sim_sph1 <- Spa_DP_Gen(weights.dis = weights_inv1, N_sam = N_mat,
296 para1 = sh1, para2 = sc1, dist_p = dist)
297 Sim_sph2 <- Spa_DP_Gen(weights.dis = weights_inv2, N_sam = N_mat,
298 para1 = sh2, para2 = sc2, dist_p = dist)
299
300 # to compute the Moran’s I therefore to adjust
301 MoranI_1_bug <- lisa_Moran(Sim_sph1, dists_inv, scaled = T, na.rm = T)
302 MoranI_2_bug <- lisa_Moran(Sim_sph2, dists_inv, scaled = T, na.rm = T)
303
304 GM1 <- MoranI_1_bug[[2]]
305 GM2 <- MoranI_2_bug[[2]]
306
307 LM1 <- MoranI_1_bug[[1]]
308 LM2 <- MoranI_2_bug[[1]]
309
310 ks_2sam <- stats::ks.test(Sim_sph1, Sim_sph2)$p.value
311 ks_GM_2sam <- MI.adj.ks.test(Sim_sph1, Sim_sph2,
312 G_Moran_I = c(GM1, GM2), adj_method = ’Global’)$p.value
313 ks_LM_2sam <- MI.adj.ks.test(Sim_sph1, Sim_sph2, G_Moran_I = c(GM1, GM2),
314 L_Moran_I = list(LM1, LM2), adj_method = ’Local’)$p.value
315 ks_ICC_2sam <- MI.adj.ks.test(Sim_sph1, Sim_sph2, adj_method = ’ICC’)$p.value
316
317 test.results.temp <- list(list("Global Moran’s I" = list(GM1, GM2)),
318 list("Original Two-sample Kolmogorov-Smirnov Test"= ks_2sam,
319 "Global Moran’s I adjusted Two-sample Kolmogorov-Smirnov Test"= ks_GM_2sam,
320 "Local Moran’s I adjusted Two-sample Kolmogorov-Smirnov Test"= ks_LM_2sam,
321 "ICC adjusted Two-sample Kolmogorov-Smirnov Test"= ks_ICC_2sam))
322 })
323
324 }else if (dist == "Multinomial"){
325
326 test.results <- lapply(1:itn, function(q){
327 x1 <- rmultinom(n=1, 1344, prob = probm)
328 # categorize data
329 x2 <- rmultinom(n=1, 1344, prob = probm2)
330
331 x1_dt <- unlist(apply(as.data.frame(1:length(x1)), 1, function(l){rep(l, x1[l])}))
332 x2_dt <- unlist(apply(as.data.frame(1:length(x2)), 1, function(l){rep(l, x2[l])}))
333 x2_ecdf <- ecdf(unlist(apply(as.data.frame(1:length(x2)), 1, function(l){rep(l, x2[l])})))
334
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335
336 ks_2sam <- tryCatch({KSgeneral::disc_ks_test(x1_dt, x2_ecdf, exact = T)$p.value},
337 error = function(e){ return(NA)} )
338
339
340 test.results.temp <- list("Two-sample Kolmogorov-Smirnov Test"=ks_2sam)
341 })
342
343 }
344
345 power_list <- lapply(test.results, function(c) c[[2]] < 0.05)
346
347 ks_power <- mean(sapply(power_list, function(l) l[[1]]), na.rm = T)
348 ks_G_power <- mean(sapply(power_list, function(l) l[[2]]), na.rm = T)
349 ks_L_power <- mean(sapply(power_list, function(l) l[[3]]), na.rm = T)
350 ks_ICC_power <- mean(sapply(power_list, function(l) l[[4]]), na.rm = T)
351
352 powerlist <- list("Power of Kolmogorov-Smirnov Test"=ks_power,
353 "Power of Global Moran’s I adjusted Kolmogorov-Smirnov Test"=ks_G_power,
354 "Power of Local Moran’s I adjusted Kolmogorov-Smirnov Test"=ks_L_power,
355 "Power of ICC adjusted Kolmogorov-Smirnov Test"=ks_ICC_power)
356 options(warn=0)
357 if(dist == "Multinomial"){
358 outlist<-c(’null’=probm, ’alternative’=probm2)}else{ outlist<- c(sh1, sc1)}
359 return(list(’Parameters’ = outlist, ’Iteration times’ = itn, ’distribution’ = dist,
360 ’MC power’ = powerlist, ’P-value List’ = test.results))
361 }
362
363 # pass function to clusters
364
365 clusterExport(cl, list(’Spa_DP_Gen’))
366 clusterExport(cl, list(’lisa_Moran’, ’MI.adj.ks.test’))
367 clusterExport(cl, list(’Spa.Comp1err.2s’))
368 clusterExport(cl, list(’Spa.ComPower.2s’))
369
370
371 parallel::clusterSetRNGStream(cl, iseed = 1234)
372
373
374 # decide the total number of iterations needed
375 tot_itn <- 10000
376 # calculate iterations needed for each computing core
377 it_n <- ceiling(tot_itn/(avilable_mpi_ncs))
378
379 # generate parameter list for normal distribution
380 # mu_para <- c(0.5, 2)
381 # sigma_para <- c(0.9, 1.5, 3)
382
383 mu_para <- c(0)
384 sigma_para <- c(1)
385 # generate normality distribution parameter list
386 norm_para_list <- t(expand.grid(mu_para, sigma_para))
387 # generate normality distritbuion list for power analysis
388 para_dlt <- c(0.05, 0.1, 0.2, 0.5, 1)
389 norm_dlt_list <- t(expand.grid(para_dlt, mu_para, sigma_para))
390 norm_dlt_list <- rbind(norm_dlt_list, norm_dlt_list[1,]*norm_dlt_list[2,],
391 norm_dlt_list[1,]*norm_dlt_list[3,] )
392 norm_dlt_list[4,] <- norm_dlt_list[2,] + norm_dlt_list[4,]
393 norm_dlt_list[5,] <- norm_dlt_list[3,] + norm_dlt_list[5,]
394 rownames(norm_dlt_list) <- c(’dlt’, ’nul_mu’, ’nul_sd’, ’al_mu’, ’al_sd’)
395 norm_dlt_list <- norm_dlt_list[-1,]
396
397 # Spatial coordinates
398 spher_to_cart <- function(r, theta, phi) {
399 list(r_sph = r,
400 theta_sph = theta,
401 phi_sph = phi,
402 x_car=r*sin(phi)*cos(theta),
403 y_car=r*sin(phi)*sin(theta),
404 z_car=r*cos(phi))
405 }
406
407 arcL <- function(p1, p2, r){
408 cos_prod <- as.numeric(cos(p1[3])*cos(p2[3]) + sin(p1[3])*sin(p2[3])*cos(p1[2] - p2[2]))
409 if (cos_prod > 1 ){
410 arclength <- r*(acos(1))
411 }else if( cos_prod < -1){
412 arclength <- r*(acos(-1))
413 }else{
414 arclength <- r*(acos(cos_prod))
415 }
416 names(arclength) <- ’Arclength’
417 return(arclength)
418 }
419 # this will generate a matrix of 64 columns and 21 rows.
420 # deleting the first and last observation of phi as phi = 0 or phi =pi was not what we want
421 coord <- list(phi=c(seq(pi/2, pi, length =23)[-c(1,23)]),
422 theta = seq(0,2*pi,length=65)[-c(1)])
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423
424 scan_matrix <- expand.grid(coord$theta, coord$phi)
425 # label scan matrix
426 names(scan_matrix) <- c(’theta’, ’phi’)
427 # generate spherical coordinates
428 # first we assign the radius we want as r
429 radius_t <- 1
430 spher_coord <- spher_to_cart(radius_t, scan_matrix$theta, scan_matrix$phi)
431
432 # distance calculated from xy locations
433 # dist_sph <- as.matrix(dist(xy))
434 sph_coords <- as.data.frame(spher_coord)
435 # compute the arclength for each pair of the locations
436 # the greatest distance between points is pi(3.141593)
437 dist_sph <- apply(sph_coords[,1:3], 1, function(i){
438 apply(sph_coords[,1:3], 1, function(j){
439 arcL(i, j , radius_t)
440 })
441 })
442
443 # inverse distance
444 dists.inv <- 1/dist_sph
445 # making the inverse distance matrix
446 diag(dists.inv) <- 0
447 # inverse distance to the second power
448 weight.matrix <- exp(dists.inv)
449 diag(weight.matrix) <- 0
450
451 # Moran’s I: 1.00 0.90 0.85 0.80 0.75 0.70 0.65 0.60
452 # 0.55 0.50 0.45 0.40 0.35 0.30 0.25
453 # 0.20 0.15 0.10 0.05 0.00
454 cor_list <- c(0.01, 1, 1.5, 1.9, 2.25, 2.5, 2.8, 3.05,
455 3.36, 3.64, 3.93, 4.25, 4.58, 4.96, 5.4,
456 5.95, 6.65, 7.7, 9.8, 30)
457 # Moran’s I: 0.90 0.70 0.50 0.30 0.10 0.00
458 cor_list <- c(1, 2.5, 3.64, 4.96, 7.7, 30)
459 # plot the coordinates
460 clusterExport(cl, "dist_sph")
461 clusterExport(cl, "weight.matrix")
462 clusterExport(cl, "sph_coords")
463 clusterExport(cl, "cor_list")
464
465 # a function for simulation, note itn is the simulation numbers, sh is shape parameter
466 # sc is the scale parameter, sig is the correlation matrix, make sure it’s 2*2 if two sample
467 # Two-sample simulation, weibull
468 # perform the simulation on all parameters # shape = (0.5, 1, 2, 3, 5), scale = (1, 2, 3)
469
470 err1_spatial_2s <- lapply(1:ncol(norm_para_list), function(l) {
471 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
472 err1_spatial_list_2s <- lapply(1:length(cor_list), function(j){
473 lapply(1:ncol(norm_para_list), function(l) {
474 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
475 })
476
477 start_t <- Sys.time()
478 for (q in 1:length(cor_list)){
479 err1_spatial_2s <- apply(norm_para_list, 2, function(l) {
480 clusterCall(cl, Spa.Comp1err.2s, itn = it_n, corstr = cor_list[q],
481 sh1 = l[1], sc1 = l[2], dist = ’Normal’, spa_mat = dist_sph, dists_inv = weight.matrix)})
482 err1_spatial_list_2s[[q]] <- err1_spatial_2s
483 }
484 # save(err1_spatial_2s, file = ’T1E_Wei.RData’)
485 save(err1_spatial_list_2s, file = ’T1E_Spa_size_2s_test_NOV08.RData’)
486
487 end_t <- Sys.time()
488 jobtime <-difftime(end_t, start_t, unit = "hours")
489 outline <- paste(end_t, ": Tests for spatial distributed samples"," is finished. Time difference is ", jobtime,sep="")
490 # finish_mail <- mime(
491 # To = "wenjun.zheng@aol.com",
492 # From = "van0604@gmail.com",
493 # Subject = "Simulation Job Finished",
494 # body = outline)
495 # send_message(finish_mail)
496 print(outline)
497 flush.console()
498 # remove unecessary things causing system slowing down
499 rm(err1_spatial_2s, err1_spatial_list_2s)
500
501 ##############################################################################################
502 ##################################### Power study ############################################
503 ##############################################################################################
504 # Nul shape while alternative scale
505 pow_spatial_2s <- lapply(1:ncol(norm_dlt_list), function(l) {
506 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
507 pow_spatial_list_2s <- lapply(1:length(cor_list), function(j){
508 lapply(1:ncol(norm_dlt_list), function(l) {
509 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
510 })
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511
512 start_t <- Sys.time()
513 for (q in 1:length(cor_list)){
514 pow_spatial_2s <- apply(norm_dlt_list, 2, function(l) {
515 clusterCall(cl,Spa.ComPower.2s, itn = it_n, corstr = cor_list[q],
516 sh1 = l[1], sc1 = l[2], sh2 <- l[3], sc2 <- l[2],
517 dist = ’Normal’, spa_mat = dist_sph, dists_inv = weight.matrix)})
518 pow_spatial_list_2s[[q]] <- pow_spatial_2s
519 }
520 # save(err1_spatial_2s, file = ’T1E_Wei.RData’)
521 Pow_Spa_2s_Nullmu <- pow_spatial_list_2s
522 save(Pow_Spa_2s_Nullmu, file = ’Pow_Spa_2s_Nullmu.RData’)
523
524 end_t <- Sys.time()
525 jobtime <-difftime(end_t, start_t, unit = "hours")
526 outline <- paste(end_t, ": Tests for spatial distributed samples"," is finished. Time difference is ", jobtime,sep="")
527 print(outline)
528 flush.console()
529 # finish_mail <- mime(
530 # To = "wenjun.zheng@aol.com",
531 # From = "van0604@gmail.com",
532 # Subject = "Simulation Job Finished",
533 # body = outline)
534 # send_message(finish_mail)
535 # remove unecessary things causing system slowing down
536 rm(pow_spatial_2s, pow_spatial_list_2s, Pow_Spa_2s_Nullmu)
537
538 # Nul scale while alternative shape
539 pow_spatial_2s <- lapply(1:ncol(norm_para_list), function(l) {
540 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
541 pow_spatial_list_2s <- lapply(1:length(cor_list), function(j){
542 lapply(1:ncol(norm_para_list), function(l) {
543 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
544 })
545
546 start_t <- Sys.time()
547 for (q in 1:length(cor_list)){
548 pow_spatial_2s <- apply(norm_dlt_list, 2, function(l) {
549 clusterCall(cl,Spa.ComPower.2s, itn = it_n, corstr = cor_list[q],
550 sh1 = l[1], sc1 = l[2], sh2 <- l[1], sc2 <- l[4],
551 dist = ’Normal’, spa_mat = dist_sph, dists_inv = weight.matrix)})
552 pow_spatial_list_2s[[q]] <- pow_spatial_2s
553 }
554 # save(err1_spatial_2s, file = ’T1E_Wei.RData’)
555 Pow_Spa_2s_Nullvar <- pow_spatial_list_2s
556 save(Pow_Spa_2s_Nullvar, file = ’Pow_Spa_2s_Nullvar.RData’)
557
558 end_t <- Sys.time()
559 jobtime <-difftime(end_t, start_t, unit = "hours")
560 outline <- paste(end_t, ": Tests for spatial distributed samples"," is finished. Time difference is ", jobtime,sep="")
561 print(outline)
562 flush.console()
563 # finish_mail <- mime(
564 # To = "wenjun.zheng@aol.com",
565 # From = "van0604@gmail.com",
566 # Subject = "Simulation Job Finished",
567 # body = outline)
568 # send_message(finish_mail)
569 # remove unecessary things causing system slowing down
570 rm(pow_spatial_2s, pow_spatial_list_2s, Pow_Spa_2s_Nullvar)
571
572 # Alternative scale, alternative shape
573 pow_spatial_2s <- lapply(1:ncol(norm_para_list), function(l) {
574 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
575 pow_spatial_list_2s <- lapply(1:length(cor_list), function(j){
576 lapply(1:ncol(norm_para_list), function(l) {
577 list(vector("list", 4), lapply(1:it_n, function(k){vector("list", 4)}))})
578 })
579
580 start_t <- Sys.time()
581 for (q in 1:length(cor_list)){
582 pow_spatial_2s <- apply(norm_dlt_list, 2, function(l) {
583 clusterCall(cl,Spa.ComPower.2s, itn = it_n, corstr = cor_list[q],
584 sh1 = l[1], sc1 = l[2], sh2 <- l[3], sc2 <- l[4],
585 dist = ’Normal’, spa_mat = dist_sph, dists_inv = weight.matrix)})
586 pow_spatial_list_2s[[q]] <- pow_spatial_2s
587 }
588 # save(err1_spatial_2s, file = ’T1E_Wei.RData’)
589 Pow_Spa_2s_alt <- pow_spatial_list_2s
590 save(Pow_Spa_2s_alt, file = ’Pow_Spa_2s_alt.RData’)
591
592 end_t <- Sys.time()
593 jobtime <-difftime(end_t, start_t, unit = "hours")
594 outline <- paste(end_t, ": Tests for spatial distributed samples"," is finished. Time difference is ", jobtime,sep="")
595 print(outline)
596 flush.console()
597 # finish_mail <- mime(
598 # To = "wenjun.zheng@aol.com",
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599 # From = "van0604@gmail.com",
600 # Subject = "Simulation Job Finished",
601 # body = outline)
602 # send_message(finish_mail)
603
604 # remove unecessary things causing system slowing down
605 rm(pow_spatial_2s, pow_spatial_list_2s, Pow_Spa_2s_alt)
606 #
607 # close cluster
608 stopCluster(cl)

B.3 Comparison of IA vs. Moran’s I

1 library(ggplot2)
2
3 w <- weight.matrix
4 ROWSUM <- rowSums(w)
5 ROWSUM[ROWSUM == 0] <- 1
6 w <- w/ROWSUM
7
8 out_temp <- matrix(ncol = 2)
9 for (i in seq(0.01, 10, by = 0.01)){

10 Omega <- exp(-(iˆ2)*dist_sph)
11 # calculate expected Moran’s I in respect to given strength of autocorrelation
12 weighted.cov.matrix <- w * Omega
13 M.I <- sum(weighted.cov.matrix)/1344
14 out_temp <- rbind(out_temp, t(as.matrix(c(i, M.I), ncol = 1)))
15 }
16 out_plot <- as.data.frame(out_temp[-1,])
17 ggplot(out_plot, aes(x = V1, y = V2)) +
18 geom_point() +
19 labs( x = ’Strength’, y = "Moran’s I") +
20 xlim(0, 5) +
21 ylim(0, 1) +
22 theme_classic()
23
24 simulateM <- as.data.frame(cbind(cor_list, unique(moranS)))
25 colnames(simulateM)<- c("V1", "V2")
26 ggplot(simulateM, aes(x = cor_list, y = simulated_M)) +
27 geom_point() +
28 labs( x = ’Strength’, y = "Simulated Moran’s I") +
29 xlim(0, 5) +
30 ylim(0, 1) +
31 theme_classic()
32
33 #Moran’s I plot
34 out_plot$grp <- ’Calculated’
35 simulateM$grp <- "Simulated"
36 MIP <- rbind(out_plot, simulateM)
37 ggplot(MIP, aes(x = V1, y = V2, group = grp, col = as.factor(grp))) +
38 geom_point() +
39 labs( x = ’Strength’, y = "Moran’s I", col = "Moran’s I") +
40 xlim(1.5, 10) +
41 ylim(0, 1) +
42 theme_classic()
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C Comparing Heart PET Scans: A Revision of Komogorov-

Smirnov Test: R Codes

C.1 Pre-Defined Functions

1 # library to attach and load
2 library(ape)
3 library(rgl)
4 # first we write a function to generate spherical coordinates
5 # formula reference: https://mathinsight.org/spherical_coordinates
6 spher_to_cart <- function(r, theta, phi) {
7 list(r_sph = r,
8 theta_sph = theta,
9 phi_sph = phi,

10 x_car=r*sin(phi)*cos(theta),
11 y_car=r*sin(phi)*sin(theta),
12 z_car=r*cos(phi))
13 }
14
15 arcL <- function(p1, p2, r){
16 cos_prod <- as.numeric(cos(p1[3])*cos(p2[3]) + sin(p1[3])*sin(p2[3])*cos(p1[2] - p2[2]))
17 if (cos_prod > 1 ){
18 arclength <- r*(acos(1))
19 }else if( cos_prod < -1){
20 arclength <- r*(acos(-1))
21 }else{
22 arclength <- r*(acos(cos_prod))
23 }
24 names(arclength) <- ’Arclength’
25 return(arclength)
26 }
27 # this will generate a matrix of 64 columns and 21 rows.
28 # deleting the first and last observation of phi as phi = 0 or phi =pi was not what we want
29 coord <- list(phi=c(seq(pi/2, pi, length =23)[-c(1,23)]),
30 theta = seq(0,2*pi,length=65)[-c(1)])
31
32 scan_matrix <- expand.grid(coord$theta, coord$phi)
33 # label scan matrix
34 names(scan_matrix) <- c(’theta’, ’phi’)
35 scan_matrix$row <- rep(c(1:21), each = 64)
36 scan_matrix$radial <- rep(c(1:64), 21)
37
38 # generate spherical coordinates
39 # first we assign the radius we want as r
40 radius_t <- 1
41
42 spher_coord <- spher_to_cart(radius_t, scan_matrix$theta, scan_matrix$phi)
43
44 # plot the coordinates, unmark if not necessary
45 heart_plot <- rgl::plot3d(spher_coord$x_car,spher_coord$y_car,spher_coord$z_car, xlab = "x", ylab = "y", zlab = "z")
46
47 # dist_sph <- as.matrix(dist(xy))
48 sph_coords <- as.data.frame(spher_coord)
49 # compute the arclength for each pair of the locations
50 start.time <- Sys.time()
51 # the greatest distance between points is pi(3.141593)
52 dist_sph <- apply(sph_coords[,1:3], 1, function(i){
53 apply(sph_coords[,1:3], 1, function(j){
54 arcL(i, j , radius_t)
55 })
56 })
57 end.time <- Sys.time()
58 jobtime <-difftime(end.time, start.time, unit = "auto")
59 jobtime
60 # inverse distance
61 dists.inv <- 1/dist_sph
62 # making the inverse distance matrix
63 diag(dists.inv) <- 0
64
65 # inverse distance to the alpha’s power, dists,invˆa
66 weight_Matrix <- dists.invˆ2
67 diag(weight_Matrix) <- 0
68
69 ROWSUM <- rowSums(weight_Matrix)
70 ROWSUM[ROWSUM == 0] <- 1
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71 w <- weight_Matrix/ROWSUM
72
73 # function to compute the global and local Moran’s I
74 lisa_Moran <- function(x, w, scaled = T, na.rm = F){
75 # remove missing values
76 N <- length(x)
77 if(na.rm == T){
78 x <- as.numeric(na.omit(x))}
79 # create standard weighting matrix/vector
80 if(scaled == T){
81 ROWSUM <- rowSums(w)
82 ROWSUM[ROWSUM == 0] <- 1
83 w <- w/ROWSUM
84 }
85
86 # compute the deviations
87 deviation_mean <- x - mean(x)
88
89 # compute the local Moran’s I, lisa_M
90 # to speed up the procedure, we use matrix form
91 lisa_M <- c((deviation_mean/(sum(deviation_meanˆ2)/N))*(w%*%deviation_mean))
92
93 # compute the global Moran’s I, M.I
94 # to speed up the procedure, we use matrix form
95 M.I <- as.numeric((N/sum(w))*(t(deviation_mean)%*%w%*%deviation_mean)/sum(deviation_meanˆ2))
96
97 return(list(’Anselin Local Moran I’ = lisa_M, ’Moran I’ = M.I))
98 }
99

100 MI.adj.ks.test <- function(x, y, alternative = "two.sided", G_Moran_I = c(NULL, NULL),
101 L_Moran_I = list(NULL, NULL), adj_method = NULL){
102 x <- x[!is.na(x)]
103 y <- y[!is.na(y)]
104 n.x <- length(x)
105 n.y <- length(y)
106
107 # stop the process if data is not enough
108 if (n.x < 1L)
109 stop("not enough ’x’ data")
110 if (isTRUE(adj_method == "Global") || isTRUE(adj_method == "Local")){
111 if (is.null(G_Moran_I) && is.null(L_Moran_I[[1]]) && is.null(L_Moran_I[[2]]))
112 stop("please insert valid global Moran’s I and local Moran’s I")}
113 w <- c(x, y)
114 # compute the superemum distance between tested ecdf/cdf
115 z <- cumsum(ifelse(order(w) <= n.x, 1/n.x, -1/n.y))
116 z <- z[c(which(diff(sort(w)) != 0), n.x + n.y)]
117 STAT_VAL <- switch(alternative, two.sided = max(abs(z)),
118 greater = max(z), less = -min(z))
119 PVAL <- NULL
120 adj_MI <- G_Moran_I + c(1/(n.x - 1), 1/(n.y - 1))
121 if (is.null(adj_method))
122 PVAL <- 1 - .Call(stats:::C_pSmirnov2x, STAT_VAL, n.x, n.y)
123 else if (adj_method == "Global"){
124 # adjusted sample size by global Moran’s I
125 # 1-(1/(1-exp(-1.92369)))*(1343/1344)*(1-exp(-2.12373*0.2+0.20024*sqrt(0.2)))
126 # G_n.x <- (1-(1/(1-exp(-1.92369)))*(1343/1344)*(1-exp(-2.12373*G_Moran_I[1]+0.20024*sqrt(G_Moran_I[1]))))*n.x
127 # G_n.y <- (1-(1/(1-exp(-1.92369)))*(1343/1344)*(1-exp(-2.12373*G_Moran_I[2]+0.20024*sqrt(G_Moran_I[2]))))*n.y
128 G_n.x <- ceiling((2/(1+exp(3.934*adj_MI[1] + 3.172*adj_MI[1]ˆ3)))*n.x)
129 G_n.y <- ceiling((2/(1+exp(3.934*adj_MI[2] + 3.172*adj_MI[2]ˆ3)))*n.y)
130 PVAL <- 1 - .Call(stats:::C_pSmirnov2x, STAT_VAL, G_n.x, G_n.y)}
131 else if (adj_method == "Local"){
132 # adjust sample sizes by local Moran’s I
133 adj_MI2 <- ifelse(adj_MI < 0, 0, adj_MI)
134 L_n.x <- ceiling((1-(1/(1-exp(-1.92369)))*((n.x -1)/n.x)*(1-exp(-2.124*adj_MI2[1] + 0.2*sqrt(adj_MI2[1]))))*n.x)
135 L_n.y <- ceiling((1-(1/(1-exp(-1.92369)))*((n.x -1)/n.x)*(1-exp(-2.124*adj_MI2[2] + 0.2*sqrt(adj_MI2[2]))))*n.y)
136 PVAL <- 1 - .Call(stats:::C_pSmirnov2x, STAT_VAL, L_n.x, L_n.y)}
137 else if (adj_method == "ICC"){
138 # adjusted sample size by ICC
139 ICC.xy <- 0.5
140 ICC.n.x <- (1-ICC.xy)*n.x
141 ICC.n.y <- (1-ICC.xy)*n.y
142 PVAL <- 1 - .Call(stats:::C_pSmirnov2x, STAT_VAL, ICC.n.x, ICC.n.y)}
143
144 output <- list(’statistic’ = STAT_VAL, "p.value" = PVAL)
145 return(output)
146 }
147
148 MI.adj.ks.test.discret <- function(x, y, alternative = "two.sided", G_Moran_I = c(NULL, NULL),
149 L_Moran_I = list(NULL, NULL), adj_method = NULL){
150 x <- x[!is.na(x)]
151 y <- y[!is.na(y)]
152 n.x <- sum(x)
153 n.y <- sum(y)
154
155 # stop the process if data is not enough
156 if (n.x < 1L)
157 stop("not enough ’x’ data")
158 if (isTRUE(adj_method == "Global") || isTRUE(adj_method == "Local")){

160



159 if (is.null(G_Moran_I) && is.null(L_Moran_I[[1]]) && is.null(L_Moran_I[[2]]))
160 stop("please insert valid global Moran’s I and local Moran’s I")}
161 w <- c(x, y)
162 # compute the superemum distance between tested ecdf/cdf
163 z <- cumsum(x)/sum(x) - cumsum(y)/sum(y)
164 STAT_VAL <- switch(alternative, two.sided = max(abs(z)),
165 greater = max(z), less = -min(z))
166 PVAL <- NULL
167 adj_MI <- G_Moran_I + c(1/(n.x - 1), 1/(n.y - 1))
168 if (is.null(adj_method))
169 PVAL <- 1 - .Call(stats:::C_pSmirnov2x, STAT_VAL, n.x, n.y)
170 else if (adj_method == "Global"){
171 # adjusted sample size by global Moran’s I
172 # 1-(1/(1-exp(-1.92369)))*(1343/1344)*(1-exp(-2.12373*0.2+0.20024*sqrt(0.2)))
173 # G_n.x <- (1-(1/(1-exp(-1.92369)))*(1343/1344)*(1-exp(-2.12373*G_Moran_I[1]+0.20024*sqrt(G_Moran_I[1]))))*n.x
174 # G_n.y <- (1-(1/(1-exp(-1.92369)))*(1343/1344)*(1-exp(-2.12373*G_Moran_I[2]+0.20024*sqrt(G_Moran_I[2]))))*n.y
175 G_n.x <- ceiling((2/(1+exp(3.934*adj_MI[1] + 3.172*adj_MI[1]ˆ3)))*n.x)
176 G_n.y <- ceiling((2/(1+exp(3.934*adj_MI[2] + 3.172*adj_MI[2]ˆ3)))*n.y)
177 PVAL <- 1 - .Call(stats:::C_pSmirnov2x, STAT_VAL, G_n.x, G_n.y)}
178 else if (adj_method == "Local"){
179 # adjust sample sizes by local Moran’s I
180 adj_MI2 <- ifelse(adj_MI < 0, 0, adj_MI)
181 L_n.x <- ceiling((1-(1/(1-exp(-1.92369)))*((n.x -1)/n.x)*(1-exp(-2.124*adj_MI2[1] + 0.2*sqrt(adj_MI2[1]))))*n.x)
182 L_n.y <- ceiling((1-(1/(1-exp(-1.92369)))*((n.x -1)/n.x)*(1-exp(-2.124*adj_MI2[2] + 0.2*sqrt(adj_MI2[2]))))*n.y)
183 PVAL <- 1 - .Call(stats:::C_pSmirnov2x, STAT_VAL, L_n.x, L_n.y)}
184 else if (adj_method == "ICC"){
185 # adjusted sample size by ICC
186 ICC.xy <- 0.5
187 ICC.n.x <- (1-ICC.xy)*n.x
188 ICC.n.y <- (1-ICC.xy)*n.y
189 PVAL <- 1 - .Call(stats:::C_pSmirnov2x, STAT_VAL, ICC.n.x, ICC.n.y)}
190
191 output <- list(’statistic’ = STAT_VAL, "p.value" = PVAL)
192 return(output)
193 }
194 # lisa_Moran(datapoints, weight_Matrix, scaled = T, na.rm = T)

C.2 Main Analysis

1 library(tidyverse)
2 library(readxl)
3 library(dplyr)
4 library(sqldf)
5 # read general patient info
6 patient_info <- read_excel("C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\PET Research Records-Sept

2018.xlsx", guess_max = 7000)
7 # select patient participated in the study
8 study_Pat_info <- subset(patient_info, rprotocol_sub %in% c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’))
9 # pat protocol info

10 pat_protocol_info <- study_Pat_info %>% select(pet_no, pat_id, pet_date, rprotocol, rprotocol_sub, pet_stressor)
11 # get the scan counts
12 pet_time <- tally(group_by(study_Pat_info, pat_id))
13 # table the scan counts
14 table(pet_time$n)
15 # select those who only took 1 PET scan
16 exclude_pat <- subset(pet_time, n == 1)
17 # select those taking two scans
18 interest_Pat_info <- subset(study_Pat_info, !(pat_id %in% exclude_pat$pat_id))
19 # sort by patient ID
20 interest_Pat_info_srt <- interest_Pat_info[order(interest_Pat_info$pat_id),]
21 # remove caffine
22 interest_Pat_final <- subset(interest_Pat_info_srt, !(pat_id == ’pat_08170’) )
23 # table(interest_Pat_no_caf$rprotocol_sub)
24 # DD L-15 L+10 L+40 L+55 L+80
25 # 100 30 100 30 62 30
26 # create pet id and protocol
27 # get the baseline scan and mark it as count: 1
28 pat_protocol_info <- interest_Pat_final %>%
29 group_by(pat_id) %>%
30 mutate(ct = ifelse(pet_date < max(pet_date), 1, 2))
31 # table(pat_protocol_info$ct, pat_protocol_info$pat_id)
32 pet_protocol <- pat_protocol_info[,c(5, 2, 17, 22, 24, 202)]
33 pet_protocol <- pet_protocol %>% group_by(pat_id) %>% arrange(rprotocol_sub, pet_stressor)
34 pet_protocol <- pet_protocol %>% mutate(baseline = ifelse(rprotocol_sub == ’DD’,
35 ifelse(ct == 2, 0, 1),
36 ifelse(pet_stressor == ’Dipyridamole’, 1, 0)))
37 tt <- pet_protocol %>% select(pat_id, pet_no, rprotocol_sub, pet_stressor, baseline, pet_date)
38 # get the scan number
39 scan_num <- pet_protocol$pet_no
40
41 # create matrix for Moran’s I
42 pet_scan_moran_matrix <- as.data.frame(matrix(data = NA, nrow = 352, ncol = 6))
43 colnames(pet_scan_moran_matrix) <- c("Pet_ID", "value0_M", "value1_M", "cfr_M", "capacity_M", "AVG_M")
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44
45 # patient scan location
46 pat_loc <- c("C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Scan_Pixels\\Pooled\\")
47
48 for (i in 1:length(scan_num)){
49 # read patients imaging scan
50 infile <- paste(pat_loc,
51 scan_num[i], ’.csv’, sep="" )
52 Pat_data <- read.csv(file = infile, header = T)
53
54 # subset data into before(pat_data_B) and after(pat_data_A) treatment
55 pat_data_B <- subset(Pat_data, state == 0)
56 pat_data_A <- subset(Pat_data, state == 1)
57
58 # merge patients data into coordinates
59 pat_coor_B <- merge(pat_data_B, scan_matrix, by = c(’row’, ’radial’))
60 pat_coor_A <- merge(pat_data_A, scan_matrix, by = c(’row’, ’radial’))
61
62 # sorting data
63 attach(pat_coor_B)
64 pat_coor_B_srt <- pat_coor_B[order(row, radial),]
65 detach(pat_coor_B)
66 attach(pat_coor_A)
67 pat_coor_A_srt <- pat_coor_A[order(row, radial),]
68 detach(pat_coor_A)
69
70 # calculate Moran’s I for patients imaging data
71 # weight matrix is calculated by the inverse distance matrix of our spherical distance
72 # correlating strength could be adjusted by different p.
73 # before treatment
74
75 M_cfr_1 <- lisa_Moran(pat_coor_B_srt$cfr, weight_Matrix, scaled = T, na.rm = T)[2][[1]]
76
77 M_value_1 <- lisa_Moran(pat_coor_B_srt$value, weight_Matrix, scaled = T, na.rm = T)[2][[1]]
78 # capacity is a character variable with normal and minimal, translate it into numerical form
79 # table(pat_coor_B_srt$capacity)
80 M_Capacity_1 <- lisa_Moran(as.numeric(pat_data_A$capacity), weight_Matrix, scaled = T, na.rm = T)[2][[1]]
81
82 # after treatment
83 M_value_2 <- lisa_Moran(pat_coor_A_srt$value, weight_Matrix, scaled = T, na.rm = T)[2][[1]]
84
85 # average M of CFR, Value 0 & 1
86 avg_M <- mean(c(M_value_1, M_value_2, M_cfr_1), na.rm = T)
87 pet_scan_moran_matrix[i,] <- c(scan_num[i], M_value_1, M_value_2, M_cfr_1, M_Capacity_1, avg_M)
88
89
90 }
91
92 # save the Morans’ I matrix
93 saveRDS(pet_scan_moran_matrix, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pet_m.rds’)
94 pet_scan_moran_matrix <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pet_m.rds’)
95 # average Moran’s I for ks test
96 pet_scan_moran_matrix_protocol <- sqldf(
97 "SELECT T.rprotocol_sub, T.pet_stressor, T.pat_id, T.baseline, R.*
98 FROM pet_scan_moran_matrix AS R
99 LEFT JOIN pet_protocol AS T

100 ON R.Pet_ID = T.pet_no
101 "
102 )
103 # save the Morans’ I matrix with protocol and stressor used
104 saveRDS(pet_scan_moran_matrix, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pet_m.rds’)
105 saveRDS(pet_scan_moran_matrix_protocol, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pet_

scan_moran_matrix_protocol.rds’)
106 pet_scan_moran_matrix_protocol <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pet_

scan_moran_matrix_protocol.rds’)
107 pet_scan_moran_matrix <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pet_m.rds’)
108
109 # creae average
110 avg_M_ks <- pet_scan_moran_matrix_protocol %>%
111 group_by(rprotocol_sub, baseline) %>%
112 summarise(value0_M = mean(value0_M),
113 value1_M = mean(value1_M),
114 cfr_M = mean(cfr_M),
115 capacity_M = mean(capacity_M, na.rm = T))
116
117 # after having the Moran’s I, deal with the average frequency pet scan
118 p <- 1
119 protocol_pet_list <- vector("list", 6)
120 # protocol: ’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’
121 for (i in c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)){
122 for (k in c(0, 1)){
123 pet_value0 <- as.data.frame(matrix(data = NA, nrow = 1344, ncol = 1))
124 pet_value1 <- as.data.frame(matrix(data = NA, nrow = 1344, ncol = 1))
125 pet_cfr <- as.data.frame(matrix(data = NA, nrow = 1344, ncol = 1))
126 pet_capacity <- as.data.frame(matrix(data = NA, nrow = 1344, ncol = 1))
127 q <- 2
128 for (j in subset(pet_protocol, rprotocol_sub == i & baseline == k)$pet_no){
129 infile <- paste(pat_loc,
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130 j, ’.csv’, sep="" )
131 Pat_data <- read.csv(file = infile, header = T)
132 # subset data into before(pat_data_B) and after(pat_data_A) treatment
133 pat_data_B <- subset(Pat_data, state == 0)
134 pat_data_A <- subset(Pat_data, state == 1)
135
136 pet_value0 <- cbind(pet_value0, pat_data_B$value)
137 colnames(pet_value0)[q] <- j
138 pet_value1 <- cbind(pet_value1, pat_data_A$value)
139 colnames(pet_value1)[q] <- j
140 pet_cfr <- cbind(pet_cfr, pat_data_B$cfr)
141 colnames(pet_cfr)[q] <- j
142 pat_data_B <- pat_data_B %>% mutate(capacity1 = ifelse(capacity == ’severe’, 1,
143 ifelse(capacity == ’moderate’, 2,
144 ifelse(capacity == ’mild’, 3,
145 ifelse(capacity == ’minimal’, 4, 5)))))
146 pet_capacity <- cbind(pet_capacity, pat_data_B$capacity1)
147 colnames(pet_capacity)[q] <- j
148 q <- q + 1
149 }
150 pet_value0 <- cbind(pet_value0, rowMeans(pet_value0[,-1]))
151 colnames(pet_value0)[q] <- ’avg_value0’
152 pet_value1 <- cbind(pet_value1, rowMeans(pet_value1[,-1]))
153 colnames(pet_value1)[q] <- ’avg_value1’
154 pet_cfr <- cbind(pet_cfr, rowMeans(pet_cfr[,-1]))
155 colnames(pet_cfr)[q] <- ’avg_cfr’
156 pet_capacity <- cbind(pet_capacity, rowMeans(pet_capacity[,-1]))
157 colnames(pet_capacity)[q] <- ’avg_capacity’
158 protocol_pet_list[[p]][[(k+1)]] <- list(pet_value0[,-1], pet_value1[,-1], pet_cfr[,-1], pet_capacity[,-1])
159 }
160
161 p <- p + 1
162 }
163 saveRDS(protocol_pet_list, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\protocol_pet_list.

rds’)
164 protocol_pet_list <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\protocol_pet_list.

rds’)
165
166 # get the PET capacity info
167 p <- 1
168 protocol_pet_capacity_list <- vector("list", 6)
169 for (i in c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)){
170
171 for (k in c(0, 1)){
172 protocol_pet_capacity <- as.data.frame(matrix(data = as.factor(c(1, 2, 3, 4, 5)), nrow = 5, ncol = 1))
173 colnames(protocol_pet_capacity) <- c(’capacity’)
174 protocol_pet_capacity_temp <- protocol_pet_list[[p]][[(k+1)]][[4]][,1:(length(protocol_pet_list[[p]][[(k+1)]][[4]])-1)]
175 q <- 2
176 for (j in colnames(protocol_pet_capacity_temp)){
177
178 pet_capacity_frq <- as.data.frame(table(protocol_pet_capacity_temp %>% select(j)))
179 colnames(pet_capacity_frq) <- c(’capacity’, j)
180 pet_capacity_frq[,1] <- as.character(pet_capacity_frq[,1])
181 protocol_pet_capacity <- left_join(x = protocol_pet_capacity, y = pet_capacity_frq)
182 q <- q + 1
183
184 }
185 pet_capacity_avg <- cbind(protocol_pet_capacity, rowSums(protocol_pet_capacity[,-1], na.rm = T)/length(protocol_pet_

capacity_temp))
186 colnames(pet_capacity_avg)[q] <- ’avg_capacity’
187
188 protocol_pet_capacity_list[[p]][[(k+1)]] <- list(pet_capacity_avg)
189 }
190
191 p <- p + 1
192 }
193 saveRDS(protocol_pet_capacity_list, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\protocol_

pet_capacity_list.rds’)
194 protocol_pet_capacity_list <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\protocol_

pet_capacity_list.rds’)
195
196 # go ahead to create ks test
197 # value 0
198 for (i in c(1:2)){
199 pet_value0_ks_t <- data.frame(matrix(data = c(unlist(protocol_pet_list[[1]][[i]][[1]][length(protocol_pet_list[[1]][[i

]][[1]])]),
200 unlist(protocol_pet_list[[2]][[i]][[1]][length(protocol_pet_list[[2]][[i

]][[1]])]),
201 unlist(protocol_pet_list[[3]][[i]][[1]][length(protocol_pet_list[[3]][[i

]][[1]])]),
202 unlist(protocol_pet_list[[4]][[i]][[1]][length(protocol_pet_list[[4]][[i

]][[1]])]),
203 unlist(protocol_pet_list[[5]][[i]][[1]][length(protocol_pet_list[[5]][[i

]][[1]])]),
204 unlist(protocol_pet_list[[6]][[i]][[1]][length(protocol_pet_list[[6]][[i

]][[1]])])),
205 nrow = 1344, ncol = 6))
206 pet_value0_ks_t <- pet_value0_ks_t %>% mutate(baseline = i - 1)
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207 colnames(pet_value0_ks_t)[1:(ncol(pet_value0_ks_t)-1)] <- c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)
208 if (i == 1){
209 pet_value0_ks <- pet_value0_ks_t
210 }else{
211 pet_value0_ks <- rbind(pet_value0_ks, pet_value0_ks_t)
212 }
213 }
214 saveRDS(pet_value0_ks, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pet_value0_ks.rds’)
215 pet_value0_ks <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pet_value0_ks.rds’)
216 # value 1
217 for (i in c(1:2)){
218 pet_value1_ks_t <- data.frame(matrix(data = c(unlist(protocol_pet_list[[1]][[i]][[2]][length(protocol_pet_list[[1]][[i

]][[1]])]),
219 unlist(protocol_pet_list[[2]][[i]][[2]][length(protocol_pet_list[[2]][[i]][[1]])]),
220 unlist(protocol_pet_list[[3]][[i]][[2]][length(protocol_pet_list[[3]][[i]][[1]])]),
221 unlist(protocol_pet_list[[4]][[i]][[2]][length(protocol_pet_list[[4]][[i]][[1]])]),
222 unlist(protocol_pet_list[[5]][[i]][[2]][length(protocol_pet_list[[5]][[i]][[1]])]),
223 unlist(protocol_pet_list[[6]][[i]][[2]][length(protocol_pet_list[[6]][[i]][[1]])])),
224 nrow = 1344, ncol = 6))
225 pet_value1_ks_t <- pet_value1_ks_t %>% mutate(baseline = i - 1)
226 colnames(pet_value1_ks_t)[1:(ncol(pet_value1_ks_t)-1)] <- c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)
227 if (i == 1){
228 pet_value1_ks <- pet_value1_ks_t
229 }else{
230 pet_value1_ks <- rbind(pet_value1_ks, pet_value1_ks_t)
231 }
232 }
233 saveRDS(pet_value1_ks, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pet_value1_ks.rds’)
234 pet_value1_ks <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pet_value1_ks.rds’)
235 # cfr
236 for (i in c(1:2)){
237 pet_cfr_ks_t <- data.frame(matrix(data = c(unlist(protocol_pet_list[[1]][[i]][[3]][length(protocol_pet_list[[1]][[i]][[1]])

]),
238 unlist(protocol_pet_list[[2]][[i]][[3]][length(protocol_pet_list[[2]][[i]][[1]])]),
239 unlist(protocol_pet_list[[3]][[i]][[3]][length(protocol_pet_list[[3]][[i]][[1]])]),
240 unlist(protocol_pet_list[[4]][[i]][[3]][length(protocol_pet_list[[4]][[i]][[1]])]),
241 unlist(protocol_pet_list[[5]][[i]][[3]][length(protocol_pet_list[[5]][[i]][[1]])]),
242 unlist(protocol_pet_list[[6]][[i]][[3]][length(protocol_pet_list[[6]][[i]][[1]])])),
243 nrow = 1344, ncol = 6))
244 pet_cfr_ks_t <- pet_cfr_ks_t %>% mutate(baseline = i - 1)
245 colnames(pet_cfr_ks_t)[1:(ncol(pet_cfr_ks_t)-1)] <- c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)
246 if (i == 1){
247 pet_cfr_ks <- pet_cfr_ks_t
248 }else{
249 pet_cfr_ks <- rbind(pet_cfr_ks, pet_cfr_ks_t)
250 }
251 }
252 saveRDS(pet_cfr_ks, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pet_cfr_ks.rds’)
253 pet_cfr_ks <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pet_cfr_ks.rds’)
254
255 # capacity in Dr. Lai’s
256 for (i in c(1:2)){
257 pet_capacity_ks_t <- data.frame(matrix(data = c(unlist(protocol_pet_capacity_list[[1]][[i]][[1]][length(protocol_pet_

capacity_list[[1]][[i]][[1]])]),
258 unlist(protocol_pet_capacity_list[[2]][[i]][[1]][length(protocol_pet_capacity_list[[2]][[i

]][[1]])]),
259 unlist(protocol_pet_capacity_list[[3]][[i]][[1]][length(protocol_pet_capacity_list[[3]][[i

]][[1]])]),
260 unlist(protocol_pet_capacity_list[[4]][[i]][[1]][length(protocol_pet_capacity_list[[4]][[i

]][[1]])]),
261 unlist(protocol_pet_capacity_list[[5]][[i]][[1]][length(protocol_pet_capacity_list[[5]][[i

]][[1]])]),
262 unlist(protocol_pet_capacity_list[[6]][[i]][[1]][length(protocol_pet_capacity_list[[6]][[i

]][[1]])])),
263 nrow = 5, ncol = 6))
264 pet_capacity_ks_t <- pet_capacity_ks_t %>% mutate(baseline = i - 1)
265 colnames(pet_capacity_ks_t)[1:(ncol(pet_capacity_ks_t)-1)] <- c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)
266 if (i == 1){
267 pet_capacity_ks <- pet_capacity_ks_t
268 }else{
269 pet_capacity_ks <- rbind(pet_capacity_ks, pet_capacity_ks_t)
270 }
271 }
272 saveRDS(pet_capacity_ks, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pet_capacity_ks.rds’)
273 pet_capacity_ks <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pet_capacity_ks.rds’

)
274
275
276 for (i in 1:6){
277 test1 <- c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)[i]
278 KS_P <- data.frame(MI.adj.ks.test.discret(unlist(subset(pet_capacity_ks %>% select(test1, baseline), baseline == 0)[1]),
279 unlist(subset(pet_capacity_ks %>% select(test1, baseline), baseline == 1)[1]),
280 G_Moran_I = c(mean(subset(avg_M_ks, rprotocol_sub == test1)$value0_M[1],
281 subset(avg_M_ks, rprotocol_sub == test1)$value1_M[1],
282 subset(avg_M_ks, rprotocol_sub == test1)$cfr_M[1]),
283 mean(subset(avg_M_ks, rprotocol_sub == test1)$value0_M[2],
284 subset(avg_M_ks, rprotocol_sub == test1)$value1_M[2],
285 subset(avg_M_ks, rprotocol_sub == test1)$cfr_M[2])),

164



286 adj_method = ’Global’))
287
288 KS_P <- KS_P %>% mutate(original_ks = MI.adj.ks.test.discret(unlist(subset(pet_capacity_ks %>% select(test1, baseline),

baseline == 0)[1]),
289 unlist(subset(pet_capacity_ks %>% select(test1, baseline),

baseline == 1)[1]),
290 G_Moran_I = c(0, 0),
291 adj_method = ’Global’)$p.value)
292
293 KS_P <- KS_P %>% mutate(ICC_ks = MI.adj.ks.test.discret(unlist(subset(pet_capacity_ks %>% select(test1, baseline),

baseline == 0)[1]),
294 unlist(subset(pet_capacity_ks %>% select(test1, baseline),

baseline == 1)[1]),
295 adj_method = ’ICC’)$p.value)
296
297 KS_P <- KS_P %>% mutate(test_grp = paste(test1))
298
299 if (i == 1){
300 pooled_KS_P_ap1 <- KS_P
301 }else{
302 pooled_KS_P_ap1 <- rbind(pooled_KS_P_ap1, KS_P)
303 }
304 }
305 pooled_KS_P_ap1 <- pooled_KS_P_ap1 %>% mutate(sig = ifelse(p.value < 0.05, 1, 0))
306 pooled_KS_P_ap1 <- pooled_KS_P_ap1[,c(5, 1:4, 6)]
307 saveRDS(pooled_KS_P_ap1, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pooled_KS_P_ap1.rds’)
308 pooled_KS_P_ap1 <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pooled_KS_P_ap1.rds’

)
309 pooled_KS_P_ap1[,2] <- round(pooled_KS_P_ap1[,2], digits = 2)
310 pooled_KS_P_ap1[,3:5] <- round(pooled_KS_P_ap1[,3:5], digits = 4)
311
312 # KS on CFR
313 for (i in 1:6){
314 test1 <- c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)[i]
315 KS_cfr_P <- data.frame(MI.adj.ks.test(unlist(subset(pet_cfr_ks %>% select(test1, baseline), baseline == 0)[1]),
316 unlist(subset(pet_cfr_ks %>% select(test1, baseline), baseline == 1)[1]),
317 G_Moran_I = c(subset(avg_M_ks, rprotocol_sub == test1)$cfr_M),
318 adj_method = ’Global’))
319 KS_cfr_P <- KS_cfr_P %>% mutate(test_grp = paste(test1))
320 if (i == 1){
321 pooled_KS_cfr_P_ap1 <- KS_cfr_P
322 }else{
323 pooled_KS_cfr_P_ap1 <- rbind(pooled_KS_cfr_P_ap1, KS_cfr_P)
324 }
325 }
326 pooled_KS_cfr_P_ap1 <- pooled_KS_cfr_P_ap1 %>% mutate(sig = ifelse(p.value < 0.05, 1, 0))
327 saveRDS(pooled_KS_cfr_P_ap1, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pooled_KS_cfr_P_

ap1.rds’)
328 pooled_KS_cfr_P_ap1 <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pooled_KS_cfr_P_

ap1.rds’)
329
330 for (i in 1:6){
331 test1 <- c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)[i]
332 KS_value0_P <- data.frame(MI.adj.ks.test(unlist(subset(pet_value0_ks %>% select(test1, baseline), baseline == 0)[1]),
333 unlist(subset(pet_value0_ks %>% select(test1, baseline), baseline == 1)[1]),
334 G_Moran_I = c(subset(avg_M_ks, rprotocol_sub == test1)$value0_M),
335 adj_method = ’Global’))
336
337 KS_value0_P <- KS_value0_P %>% mutate(original_ks = ks.test(unlist(subset(pet_value0_ks %>% select(test1, baseline),

baseline == 0)[1]),
338 unlist(subset(pet_value0_ks %>% select(test1, baseline))))$p.

value)
339
340 KS_value0_P <- KS_value0_P %>% mutate(ICC_ks = MI.adj.ks.test(unlist(subset(pet_value0_ks %>% select(test1, baseline),

baseline == 0)[1]),
341 unlist(subset(pet_value0_ks %>% select(test1, baseline),

baseline == 1)[1]),
342 adj_method = ’ICC’)$p.value)
343
344 KS_value0_P <- KS_value0_P %>% mutate(test_grp = paste(test1))
345 if (i == 1){
346 pooled_KS_value0_P_ap1 <- KS_value0_P
347 }else{
348 pooled_KS_value0_P_ap1 <- rbind(pooled_KS_value0_P_ap1, KS_value0_P)
349 }
350 }
351 pooled_KS_value0_P_ap1 <- pooled_KS_value0_P_ap1 %>% mutate(sig = ifelse(p.value < 0.05, 1, 0))
352 pooled_KS_value0_P_ap1 <- pooled_KS_value0_P_ap1[,c(5, 1:4, 6)]
353 saveRDS(pooled_KS_value0_P_ap1, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pooled_KS_

value0_P_ap1.rds’)
354 pooled_KS_value0_P_ap1 <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pooled_KS_

value0_P_ap1.rds’)
355
356 for (i in 1:6){
357 test1 <- c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)[i]
358 KS_value1_P <- data.frame(MI.adj.ks.test(unlist(subset(pet_value1_ks %>% select(test1, baseline), baseline == 0)[1]),
359 unlist(subset(pet_value1_ks %>% select(test1, baseline), baseline == 1)[1]),
360 G_Moran_I = c(subset(avg_M_ks, rprotocol_sub == test1)$value1_M),
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361 adj_method = ’Global’))
362 KS_value1_P <- KS_value1_P %>% mutate(test_grp = paste(test1))
363 if (i == 1){
364 pooled_KS_value1_P_ap1 <- KS_value1_P
365 }else{
366 pooled_KS_value1_P_ap1 <- rbind(pooled_KS_value1_P_ap1, KS_value1_P)
367 }
368 }
369 pooled_KS_value1_P_ap1 <- pooled_KS_value1_P_ap1 %>% mutate(sig = ifelse(p.value < 0.05, 1, 0))
370 saveRDS(pooled_KS_value1_P_ap1, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pooled_KS_

value1_P_ap1.rds’)
371 pooled_KS_value1_P_ap1 <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pooled_KS_

value1_P_ap1.rds’)
372 # statistic p.value test_grp sig
373 # 1 0.1979167 4.457124e-03 DD 1
374 # 2 0.8214286 3.330669e-16 L-15 1
375 # 3 0.7016369 -6.661338e-16 L+10 1
376 # 4 0.4724702 6.661338e-16 L+40 1
377 # 5 0.3824405 1.604372e-10 L+55 1
378 # 6 0.4538690 3.641532e-14 L+80 1
379 ########################################################################################################
380 ########################################################################################################
381 ############################################ an alternative approach ###################################
382 ########################################################################################################
383 ########################################################################################################
384 # begin ks test, the moran’s I average is avg_M_ks
385 # My thought: instead of taking the average of capacity directly.
386 # take average of value and cfr to calculate the average capacity
387 # now the problem is transferred to more calculation
388 j <- 1
389 for (i in c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)){
390 pooled_pet_ks_temp <- data.frame(cbind(pet_value0_ks[,j], pet_value1_ks[,j], pet_cfr_ks[,j]))
391 colnames(pooled_pet_ks_temp) <- c(’avg_value0’, ’avg_value1’, ’avg_cfr’)
392 pooled_pet_ks_temp <- pooled_pet_ks_temp %>% mutate(sub_protocol = i)
393 if (j == 1){
394 pooled_pet_ks <- pooled_pet_ks_temp
395 }else{
396 pooled_pet_ks <- rbind(pooled_pet_ks, pooled_pet_ks_temp)
397 }
398 j <- j + 1
399 }
400 # manipulate data
401 pooled_pet_ks_md <- pooled_pet_ks %>%
402 mutate(pet_avg_cap = ifelse(avg_value1 >= 2.17 | avg_cfr >= 2.9, 5,
403 ifelse(avg_value1 >= 1.82 | avg_cfr >= 2.38, 4,
404 ifelse(avg_value1 >= 1.09 | avg_cfr >= 1.6, 3,
405 ifelse(avg_value1 >= 0.83 | avg_cfr >= 1.27, 2, 1)))))
406 # do the ks test, an alternative approach
407 # Note this approach is the average of capacity defined different than Dr. Lai’s version
408 for (i in 1:5){
409 for(j in (i+1):6){
410 test1 <- c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)[i]
411 test2 <- c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)[j]
412 KS_P <- data.frame(MI.adj.ks.test(subset(pooled_pet_ks_md, sub_protocol == test1)$pet_avg_cap,
413 subset(pooled_pet_ks_md, sub_protocol == test2)$pet_avg_cap,
414 G_Moran_I = c(subset(avg_M_ks, rprotocol_sub == test1)$cfr_M,
415 subset(avg_M_ks, rprotocol_sub == test2)$cfr_M),
416 adj_method = ’Global’))
417 KS_P <- KS_P %>% mutate(test_grp = paste(test1, ’vs’, test2))
418 if (i == 1 & j == 2){
419 pooled_KS_P_ap2 <- KS_P
420 }else{
421 pooled_KS_P_ap2 <- rbind(pooled_KS_P_ap2, KS_P)
422 }
423
424 }
425 }
426 saveRDS(pooled_KS_P_ap2, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pooled_KS_P_ap2.rds’)
427 pooled_KS_P_ap2 <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pooled_KS_P_ap2.rds’

)
428
429 # descriptive
430 for (i in 1:6){
431 test1 <- c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)[i]
432 temp_data <- unlist(subset(pet_value0_ks %>% select(test1, baseline), baseline == 0)[1])
433 temp_data2 <- unlist(subset(pet_value0_ks %>% select(test1, baseline), baseline == 1)[1])
434
435 print(round(c(mean(temp_data)), 2))
436 #print(round(c(mean(temp_data) - mean(temp_data2)), 2))
437 }
438 for (i in 1:6){
439 test1 <- c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)[i]
440 temp_data <- unlist(subset(pet_value1_ks %>% select(test1, baseline), baseline == 0)[1])
441 temp_data2 <- unlist(subset(pet_value1_ks %>% select(test1, baseline), baseline == 1)[1])
442
443 #print(round(c(mean(temp_data)), 2))
444 print(round(c(mean(temp_data) - mean(temp_data2)), 2))
445 }
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446 for (i in 1:6){
447 test1 <- c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)[i]
448 temp_data <- unlist(subset(pet_cfr_ks %>% select(test1, baseline), baseline == 0)[1])
449 temp_data2 <- unlist(subset(pet_cfr_ks %>% select(test1, baseline), baseline == 1)[1])
450
451 #print(round(c(mean(temp_data)), 2))
452 print(round(c(mean(temp_data) - mean(temp_data2)), 2))
453 }
454 # few plots
455 # resting flow
456 for (i in 1:6){
457 test1 <- c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)[i]
458 temp_data <- ecdf(unlist(subset(pet_value0_ks %>% select(test1, baseline), baseline == 1)[1]))
459 if (i == 1){
460 plot(temp_data, xlim = c(0.4, 1.5))
461 }else{
462 plot(temp_data, verticals=TRUE, do.points=FALSE, add=TRUE, col=i)
463 }
464 }
465
466 for (i in 1:6){
467 test1 <- c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)[i]
468 temp_data <- ecdf(unlist(subset(pet_cfr_ks %>% select(test1, baseline), baseline == 0)[1]))
469 if (i == 1){
470 plot(temp_data, xlim = c(2, 3.5))
471 }else{
472 plot(temp_data, verticals=TRUE, do.points=FALSE, add=TRUE, col=i)
473 }
474 }
475
476 library(knitr)
477 library(kableExtra)
478 library(dplyr)
479 # descriptive tables
480 # interested population dataset: pat_protocol_info
481
482 # table 1, baseline characteristics
483 # interested variables: (note: checked variable with * sign)
484 # clinical characteristics;
485 # age*, sex*, bmi&, CAD: prior (bypass surgery(CABG)*, percutaneous intervention(hx_PCI)*,
486 # myocardial infarction(hx_MI_recent?)*)
487 # Dyslipidemia*, diabetes mellitus*, hypertension(hx_htn)*, current smoking(pet_stressor?)*
488 # Current medications;
489 # Statins*, ACEI or ARB*, antiplatelet use*, beta blocker*, calcium channel blockers(med_ccb)*, diuretics*, nitrate*
490 # Extened clinical characteristics:
491 # total cholesterol*, LDL*, HDL*, resting (sbp*, dbp*, heart rate, pressure-rate product)
492 # stress (sbp, dbp, heart rate, pressure-rate product), rest and stress homogeneity index
493 tb1_data <- pat_protocol_info %>% select(pet_no, pat_id, pet_date, rprotocol, rprotocol_sub, pet_stressor,
494 age, male, BMI, rest_sbp, rest_dbp, rest_hr, stress_sbp, pet_cotinine, pet_nicotine,
495 stress_dbp, stress_hr, Cholest, LDL, HDL, med_statin, med_ACEIorARB, med_nitrate,
496 med_antiplatelet, med_betablocker, med_diuretic, med_ccb, hx_dyslipidemia,
497 hx_smoking, hx_diabetes, hx_MI_recent, hx_MI_distant, hx_PCI, hx_CABG, hx_htn,
498 hx_prior_cath, pet_angina)
499 # with baseline indication variable added
500 tb1_data_ba <- sqldf(
501 "SELECT T.baseline, R.*
502 FROM tb1_data AS R
503 LEFT JOIN pet_protocol AS T
504 ON R.pet_no = T.pet_no
505 ")
506 # first part
507 desc_table_pt1.1.1 <- tb1_data_ba %>%
508 summarise(age_avg = mean(age), age_sd = sd(age),
509 BMI_avg = mean(BMI), BMI_sd = sd(BMI))
510
511 desc_table_pt1.1.2 <- tb1_data_ba %>% group_by(baseline) %>%
512 summarise(rest_sbp_avg = mean(rest_sbp), rest_sbp_sd = sd(rest_sbp),
513 rest_dbp_avg = mean(rest_dbp), rest_dbp_sd = sd(rest_dbp),
514 rest_hr_avg = mean(rest_hr), rest_hr_sd = sd(rest_hr),
515 stress_sbp_avg = mean(stress_sbp), stress_sbp_sd = sd(stress_sbp),
516 stress_dbp_avg = mean(stress_dbp), stress_dbp_sd = sd(stress_dbp),
517 stress_hr_avg = mean(stress_hr), stress_hr_sd = sd(stress_hr),
518 Cholest_avg = mean( as.numeric(Cholest), na.rm = T), Cholest_sd = sd( as.numeric(Cholest), na.rm = T),
519 LDL_avg = mean( as.numeric(LDL), na.rm = T), LDL_sd = sd( as.numeric(LDL), na.rm = T),
520 HDL_avg = mean( as.numeric(HDL), na.rm = T), HDL_sd = sd( as.numeric(HDL), na.rm = T))
521
522 desc_table_pt1.2.1 <- tb1_data_ba %>% group_by(rprotocol_sub) %>%
523 summarise(age_avg = mean(age), age_sd = sd(age),
524 BMI_avg = mean(BMI), BMI_sd = sd(BMI))
525
526 desc_table_pt1.2.2 <- tb1_data_ba %>% group_by(rprotocol_sub, baseline) %>%
527 summarise(rest_sbp_avg = mean(rest_sbp), rest_sbp_sd = sd(rest_sbp),
528 rest_dbp_avg = mean(rest_dbp), rest_dbp_sd = sd(rest_dbp),
529 rest_hr_avg = mean(rest_hr), rest_hr_sd = sd(rest_hr),
530 stress_sbp_avg = mean(stress_sbp), stress_sbp_sd = sd(stress_sbp),
531 stress_dbp_avg = mean(stress_dbp), stress_dbp_sd = sd(stress_dbp),
532 stress_hr_avg = mean(stress_hr), stress_hr_sd = sd(stress_hr),
533 Cholest_avg = mean( as.numeric(Cholest), na.rm = T), Cholest_sd = sd( as.numeric(Cholest), na.rm = T),
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534 LDL_avg = mean( as.numeric(LDL), na.rm = T), LDL_sd = sd( as.numeric(LDL), na.rm = T),
535 HDL_avg = mean( as.numeric(HDL), na.rm = T), HDL_sd = sd( as.numeric(HDL), na.rm = T)) %>%
536 arrange(baseline, rprotocol_sub)
537
538 saveRDS(desc_table_pt1.1.1, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\desc_table_

pt1_1_1.rds’)
539 saveRDS(desc_table_pt1.1.2, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\desc_table_

pt1_1_2.rds’)
540 saveRDS(desc_table_pt1.2.1, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\desc_table_

pt1_2_1.rds’)
541 saveRDS(desc_table_pt1.2.2, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\desc_table_

pt1_2_2.rds’)
542 desc_table_pt1.1.1 <- round(readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\

desc_table_pt1_1_1.rds’)
543 , digits = 0)
544 desc_table_pt1.1.2 <- round(readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\

desc_table_pt1_1_2.rds’)
545 , digits = 0)
546 desc_table_pt1.2.1 <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\desc_

table_pt1_2_1.rds’)
547
548 desc_table_pt1.2.2 <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\desc_

table_pt1_2_2.rds’)
549
550 desc_table_pt1.2.1[,-1] <- round(readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables

\\desc_table_pt1_2_1.rds’)[,-1]
551 , digits = 0)
552 desc_table_pt1.2.2[,-1] <- round(readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables

\\desc_table_pt1_2_2.rds’)[,-1]
553 , digits = 0)
554 # desc_table_pt1H_l: descriptive table first half(1H) latex file
555 desc_table_pt1_1H_l <- data.frame(matrix(nrow = 2, ncol = 7))
556 colnames(desc_table_pt1_1H_l) <- c(’population’, unlist(desc_table_pt1.2.1 %>% distinct(rprotocol_sub)))
557 for (i in 1:7){
558 for (j in 1:2){
559 if (i == 1){
560 desc_table_pt1_1H_l[j, i] <- paste(desc_table_pt1.1.1[i, (j)*2-1], ’+’, desc_table_pt1.1.1[i, ((j)*2)], sep = ’’)
561 }else{
562 desc_table_pt1_1H_l[j, i] <- paste(desc_table_pt1.2.1[i-1, (j)*2], ’+’, desc_table_pt1.2.1[i-1, ((j)*2 + 1)], sep = ’’)
563 }
564 }
565 }
566
567 # reordered table variables
568 desc_table_pt1.1.2_srt <- desc_table_pt1.1.2[,c(1, 14:19, 2:13)]
569 desc_table_pt1.2.2_srt <- desc_table_pt1.2.2[,c(1, 2, 15:20, 3:14)]
570 # desc_table_pt2H_l: descriptive table second half(1H) latex file
571 desc_table_pt2H_l <- data.frame(matrix(nrow = 18, ncol = 7))
572 colnames(desc_table_pt2H_l) <- c(’population’, unlist(desc_table_pt1.2.1 %>% distinct(rprotocol_sub)))
573 for (i in 1:7){
574 for (j in 1:18){
575 if (j <= 9){
576 if (i == 1){
577 desc_table_pt2H_l_temp <- subset(desc_table_pt1.1.2_srt, baseline == 1)
578 desc_table_pt2H_l[j, i] <- paste(desc_table_pt2H_l_temp[i, (j)*2], ’+’, desc_table_pt2H_l_temp[i, ((j)*2+1)], sep = ’

’)
579 }else{
580 desc_table_pt2H_l_temp <- subset(desc_table_pt1.2.2_srt, baseline == 1)
581 desc_table_pt2H_l[j, i] <- paste(desc_table_pt2H_l_temp[i-1, (j)*2 + 1], ’+’, desc_table_pt2H_l_temp[i-1, ((j)*2 + 2)

], sep = ’’)
582 }
583 }else{
584 k <- j - 9
585 if (i == 1){
586 desc_table_pt2H_l_temp <- subset(desc_table_pt1.1.2_srt, baseline == 0)
587 desc_table_pt2H_l[j, i] <- paste(desc_table_pt2H_l_temp[i, (k)*2], ’+’, desc_table_pt2H_l_temp[i, ((k)*2+1)], sep = ’

’)
588 }else{
589 desc_table_pt2H_l_temp <- subset(desc_table_pt1.2.2_srt, baseline == 0)
590 desc_table_pt2H_l[j, i] <- paste(desc_table_pt2H_l_temp[i-1, (k)*2+1], ’+’, desc_table_pt2H_l_temp[i-1, ((k)*2 + 2)],

sep = ’’)
591 }
592 }
593 }
594 }
595
596 desc_table_1 <- rbind(desc_table_pt1_1H_l, desc_table_pt2H_l)
597 desc_table_1$cha <- c(’Age’, ’BMI’,
598 ’Cholesteral’, ’LDL’, ’HDL’,
599 ’Rest Systolic blood pressure’, ’Rest Diastolic blood pressure’, ’Rest Heart Rate’,
600 ’Stress Systolic blood pressure’, ’Stress Diastolic blood pressure’, ’Stress Heart Rate’,
601 ’Cholesteral’, ’LDL’, ’HDL’,
602 ’Rest Systolic blood pressure’, ’Rest Diastolic blood pressure’, ’Rest Heart Rate’,
603 ’Stress Systolic blood pressure’, ’Stress Diastolic blood pressure’, ’Stress Heart Rate’)
604 desc_table_1 <- desc_table_1[, c(ncol(desc_table_1), 1:(ncol(desc_table_1)-1))]
605 desc_table_1_kable <- kable(desc_table_1, "latex", booktabs = T, align = "c",
606 caption = "Type I Error for Two sample tests of Spatial Normal Distributed Samples",
607 digits = 0, longtable = T)
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608
609 cat(desc_table_1_kable, file = paste(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\’,

"desc_table_1_kable.txt", sep=’’)
610 , sep = "n", append = T)
611
612
613 # list categorical variable
614 desc_table_pt1.3 <- tb1_data_ba %>% distinct(rprotocol_sub)
615
616 for (i in c(’hx_htn’, ’hx_dyslipidemia’, ’hx_diabetes’, ’hx_prior_cath’, ’hx_PCI’, ’hx_CABG’,
617 ’med_statin’, ’med_ACEIorARB’, ’med_antiplatelet’, ’med_betablocker’, ’med_diuretic’, ’med_ccb’, ’med_nitrate’,
618 ’hx_smoking’, ’hx_MI_recent’)){
619 # set intersted table
620 if ( i == ’hx_smoking’){
621 desc_table_pt_int <- tb1_data_ba %>% mutate(smk = ifelse(as.numeric(eval(as.symbol(i))) > 0 , 1, 0)) %>%
622 group_by(rprotocol_sub, smk) %>% summarise(n = ceiling(n()/2)) %>%
623 ungroup %>% group_by(rprotocol_sub) %>% mutate(total = sum(n), rel.prob = n/total)
624 } else if ( i == ’hx_MI_recent’){
625 desc_table_pt_int <- tb1_data_ba %>% mutate(MI = ifelse(as.numeric(hx_MI_recent) > 0 | hx_MI_distant >0 , 1, 0)) %>%
626 group_by(rprotocol_sub, MI) %>% summarise(n = ceiling(n()/2)) %>%
627 ungroup %>% group_by(rprotocol_sub) %>% mutate(total = sum(n), rel.prob = n/total)
628 }else{
629 desc_table_pt_int <- tb1_data_ba %>% group_by(rprotocol_sub, eval(as.symbol(i))) %>% summarise(n = ceiling(n()/2)) %>%
630 ungroup %>% group_by(rprotocol_sub) %>% mutate(total = sum(n), rel.prob = n/(total))
631 }
632
633 colnames(desc_table_pt_int)[2] <- i
634 desc_table_pt_int2 <- subset(desc_table_pt_int, eval(as.symbol(i)) == 1)
635 desc_table_pt_int_temp <- desc_table_pt_int2[,c(1, 3, 5)]
636 colnames(desc_table_pt_int_temp)[2:3] <- c(paste(i, ’.n’), paste(i, ’.pct’))
637
638 desc_table_pt1.3 <- merge(desc_table_pt1.3, desc_table_pt_int_temp, by = ’rprotocol_sub’, all = T)
639 }
640 saveRDS(desc_table_pt1.3, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\desc_table_

pt1_3.rds’)
641 desc_table_pt1.3 <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\desc_table_

pt1_3.rds’)
642 desc_table_pt1.3[, -1] <- round(desc_table_pt1.3[, -1], digits = 2)
643 desc_table_pt1.3_srt <- desc_table_pt1.3[, c(1, 28:31, 2:27)]
644 desc_table_pt1.3_srt[is.na(desc_table_pt1.3_srt)] <- 0
645
646 desc_table_pt1.3_srt_t <- colSums(desc_table_pt1.3_srt[,-1])
647 desc_table_pt1.3_srt_t <- c(’Population’, desc_table_pt1.3_srt_t)
648 for (i in 1:15){
649 desc_table_pt1.3_srt_t[2*i+1] <- round(as.numeric(desc_table_pt1.3_srt_t[2*i])/176, digits = 2)
650 }
651 desc_table_pt1.3_srt <- rbind(desc_table_pt1.3_srt_t, desc_table_pt1.3_srt)
652
653 desc_table_pt1.3_l <- data.frame(matrix(nrow = 15, ncol = 7))
654
655 colnames(desc_table_pt1.3_l) <- unlist(desc_table_pt1.3_srt %>% distinct(rprotocol_sub))
656 for (i in 1:15){
657 for (j in 1:7){
658 desc_table_pt1.3_l[i, j] <- paste(desc_table_pt1.3_srt[j, (i)*2], ’(’, desc_table_pt1.3_srt[j, ((i)*2 + 1)], ’)’, sep = ’

’)
659 }
660 }
661
662 desc_table_pt1.3_l$cha <- c(’Smoking’, ’MI’, ’Hypertension’, ’Dyslipidemia’, ’Diabetes’, ’prior_cath’, ’PCI’, ’CABG’,
663 ’Statin’, ’ACEI/ARB’, ’Antiplatelet’, ’Beta Blocker’, ’Diuretic’, ’Calcium blockers’, ’Nitrate’)
664 desc_table_pt1.3_l <- desc_table_pt1.3_l[, c(ncol(desc_table_pt1.3_l), 1:(ncol(desc_table_pt1.3_l)-1))]
665 desc_table_1_3_kable <- kable(desc_table_pt1.3_l, "latex", booktabs = T, align = "c",
666 caption = "Type I Error for Two sample tests of Spatial Normal Distributed Samples",
667 digits = 2, longtable = F)
668
669 cat(desc_table_1_3_kable, file = paste(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\

’, "desc_table_1_3_kable.txt", sep=’’)
670 , sep = "n", append = T)
671
672
673 # p values for table 1
674 # continuous: age bmi desc_table_pt1.2.1,
675 p1.1 <- c(summary(aov( BMI ˜ factor(rprotocol_sub), data = tb1_data_ba))[[1]][[5]][[1]],
676 summary(aov( age ˜ factor(rprotocol_sub), data = tb1_data_ba))[[1]][[5]][[1]])
677 names(p1.1) <- c(’age’, ’bmi’)
678 round(p1.1, digits = 2)
679 # continuous pet uptake: desc_table_pt1.2.2,
680 p1.2.1 <- sapply(c(’Cholest’, ’LDL’, ’HDL’, ’rest_sbp’, ’rest_dbp’,
681 ’rest_hr’, ’stress_sbp’, ’stress_dbp’, ’stress_hr’), function(k)
682 summary(aov( as.numeric(eval(parse(text = k))) ˜ factor(rprotocol_sub),
683 data = subset(tb1_data_ba, baseline == 1)))[[1]][[5]][[1]])
684 p1.2.2 <- sapply(c(’Cholest’, ’LDL’, ’HDL’, ’rest_sbp’, ’rest_dbp’,
685 ’rest_hr’, ’stress_sbp’, ’stress_dbp’, ’stress_hr’), function(k)
686 summary(aov( as.numeric(eval(parse(text = k))) ˜ factor(rprotocol_sub),
687 data = subset(tb1_data_ba, baseline == 0)))[[1]][[5]][[1]])
688 p1.2 <- c(p1.2.1, p1.2.2)
689 names(p1.2) <- c(’Cholesteral’, ’LDL’, ’HDL’,
690 ’Rest Systolic blood pressure’, ’Rest Diastolic blood pressure’, ’Rest Heart Rate’,
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691 ’Stress Systolic blood pressure’, ’Stress Diastolic blood pressure’, ’Stress Heart Rate’,
692 ’Cholesteral’, ’LDL’, ’HDL’,
693 ’Rest Systolic blood pressure’, ’Rest Diastolic blood pressure’, ’Rest Heart Rate’,
694 ’Stress Systolic blood pressure’, ’Stress Diastolic blood pressure’, ’Stress Heart Rate’)
695 round(p1.2, digits = 2)
696 # categorical count: desc_table_pt1.3
697 p1.3_temp <- desc_table_pt1.3[,c(1, 2*(1:15))]
698 p1.3_temp[is.na(p1.3_temp)] <- 0
699 p1.3_temp <- p1.3_temp %>% mutate(size = c(50, 15, 50, 15, 31, 15))
700 p1.3_temp <- p1.3_temp[,c(1, 17, 15, 16, 2:14)]
701 p1.3 <- sapply(3:17, function(k)
702 chisq.test(cbind(p1.3_temp[,2] - p1.3_temp[,k], p1.3_temp[,k]))$p.value)
703 names(p1.3) <- c(’Smoking’, ’MI’, ’Hypertension’, ’Dyslipidemia’, ’Diabetes’, ’prior_cath’, ’PCI’, ’CABG’,
704 ’Statin’, ’ACEI/ARB’, ’Antiplatelet’, ’Beta Blocker’, ’Diuretic’, ’Calcium blockers’, ’Nitrate’)
705 round(p1.3, digits = 3)
706 # table 2, myocardial absolute flow and CFR, break into whole, anterior, septal, lateral, inferior.
707 # Use both P-value from t-test (the traditional approach) and spatially adjusted KS (My new approach)
708 for (i in 1:6){
709 test1 <- c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)[i]
710 nsize <- c(50, 15, 50, 15, 31, 15)[i]
711 desc_table_pt2_1_temp <- data.frame(rprotocol_sub = test1)
712 for (j in 1:3){
713 name_j <- c(’rest’, ’stress’, ’cfr’)[j]
714 value_nonbase <- protocol_pet_list[[i]][[1]][[j]][,1:nsize]
715 value_base <- protocol_pet_list[[i]][[2]][[j]][,1:nsize]
716
717 #print(round(c(mean(temp_data)), 2))
718 desc_table_pt2_2_temp <- data.frame(rprotocol_sub = test1,
719 nonbase_temp_mean = mean(unlist(value_nonbase)),
720 nonbase_temp_sd = sd(unlist(value_nonbase)),
721 base_temp_mean = mean(unlist(value_base)),
722 base_temp_sd = sd(unlist(value_base)),
723 diff_temp_mean <- mean(unlist(value_nonbase - value_base)),
724 diff_temp_sd <- sd(unlist(value_nonbase - value_base)))
725 colnames(desc_table_pt2_2_temp)[2:7] <- c(paste(name_j,’_test_mean’), paste(name_j, ’_test_sd’),
726 paste(name_j,’_base_mean’), paste(name_j, ’_base_sd’),
727 paste(name_j,’_diff_mean’), paste(name_j, ’_diff_sd’))
728 desc_table_pt2_1_temp <- merge(desc_table_pt2_1_temp, desc_table_pt2_2_temp,
729 by = ’rprotocol_sub’, all = T)
730 }
731 if (i ==1 ){
732 desc_table_pt2 <- desc_table_pt2_1_temp
733 }else{
734 desc_table_pt2 <- rbind(desc_table_pt2, desc_table_pt2_1_temp)
735 }
736 }
737 saveRDS(desc_table_pt2, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\desc_table_pt2.

rds’)
738 desc_table_pt2 <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\desc_table_

pt2.rds’)
739
740 desc_table_pt2_l <- data.frame(matrix(nrow = 6, ncol = 9))
741 colnames(desc_table_pt2_l) <- unlist(desc_table_pt2 %>% distinct(rprotocol_sub))
742 for (i in 1:9){
743 for (j in 1:6){
744 desc_table_pt2_l[j, i] <- paste(desc_table_pt2[j, (i)*2], ’+’, desc_table_pt2[j, ((i)*2 + 1)], sep = ’’)
745 }
746 }
747 test1 <- as.data.frame((c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)))
748 colnames(test1) <- NULLs
749 desc_table_pt2_l <- cbind(test1, desc_table_pt2_l)
750 desc_table_pt2_kable <- kable(desc_table_pt2_l, "latex", booktabs = T, align = "c",
751 caption = "Type I Error for Two sample tests of Spatial Normal Distributed Samples",
752 digits = 2, longtable = F)
753
754 cat(desc_table_pt2_kable, file = paste(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\

’, "desc_table_pt2_kable.txt", sep=’’)
755 , sep = "n", append = T)
756
757 # p-values for table 2
758 tb2_pvalues <- cbind(pooled_KS_value0_P_ap1[,1:3], pooled_KS_value1_P_ap1[,1:2], pooled_KS_cfr_P_ap1[,1:2])
759 colnames(tb2_pvalues)[2:7] <- c(’rest_statistic’, ’rest_p’,
760 ’stress_statistic’, ’stress_p’,
761 ’cfr_statistic’, ’cfr_p’)
762 saveRDS(tb2_pvalues, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\tb2_pvalues.rds’)
763 tb2_pvalues <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\tb2_pvalues.rds’

)
764 for (i in 1:6){
765 test1 <- c(’DD’, ’L-15’, ’L+10’, ’L+40’, ’L+55’, ’L+80’)[i]
766 nsize <- c(50, 15, 50, 15, 31, 15)[i]
767 desc_table_pt2_1_temp <- data.frame(rprotocol_sub = test1,
768 rest = NA,
769 stress = NA,
770 cfr = NA)
771 for (j in 1:3){
772 name_j <- c(’rest’, ’stress’, ’cfr’)[j]
773 value_nonbase <- protocol_pet_list[[i]][[1]][[j]][,1:nsize]
774 value_base <- protocol_pet_list[[i]][[2]][[j]][,1:nsize]
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775
776 #print(round(c(mean(temp_data)), 2))
777 p <- t.test(colMeans(value_nonbase), colMeans(value_base), paired = T)$p.value
778 desc_table_pt2_1_temp[1,(j+1)] <- p
779 }
780 if (i ==1 ){
781 desc_table_pt2 <- desc_table_pt2_1_temp
782 }else{
783 desc_table_pt2 <- rbind(desc_table_pt2, desc_table_pt2_1_temp)
784 }
785 }
786
787 # combine tb2_pvalues into
788 tb2_pvalues[,c(2, 4, 6)] <- desc_table_pt2[,2:4]
789 tb2_pvalues[, 2:7] <- round(tb2_pvalues[, 2:7], digits = 3)
790 colnames(tb2_pvalues)[2:7] <- c(’ks_rest_p’, ’rest_p’,
791 ’ks_stress_p’, ’stress_p’,
792 ’ks_cfr_p’, ’cfr_p’)
793 saveRDS(tb2_pvalues, ’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\tb2_pvalues.rds’)
794 tb2_pvalues <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\tb2_pvalues.rds’

)
795 tb2_pvalues_l <- kable(tb2_pvalues, "latex", booktabs = T, align = "c",
796 caption = "Type I Error for Two sample tests of Spatial Normal Distributed Samples",
797 digits = 3, longtable = F)
798
799 cat(tb2_pvalues_l, file = paste(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\Tables\\’, "tb2

_pvalues_kable.txt", sep=’’)
800 , sep = "n", append = T)
801 # table 3, capacity and KS tests
802 pooled_KS_P_ap1 <- readRDS(’C:\\Users\\wzheng1\\Dropbox\\Dissertation\\Simulation\\Aim3\\Patients\\Data\\pooled_KS_P_ap1.rds’

)
803 desc_table_pt3_kable <- kable(pooled_KS_P_ap1, "latex", booktabs = T, align = "c",
804 caption = "Type I Error for Two sample tests of Spatial Normal Distributed Samples",
805 digits = 2, longtable = F)
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