7,653 research outputs found

    Change Detection Techniques with Synthetic Aperture Radar Images: Experiments with Random Forests and Sentinel-1 Observations

    Get PDF
    This work aims to clarify the potential of incoherent and coherent change detection (CD) approaches for detecting and monitoring ground surface changes using sequences of synthetic aperture radar (SAR) images. Nowadays, the growing availability of remotely sensed data collected by the twin Sentinel-1A/B sensors of the European (EU) Copernicus constellation allows fast mapping of damage after a disastrous event using radar data. In this research, we address the role of SAR (amplitude) backscattered signal variations for CD analyses when a natural (e.g., a fire, a flash flood, etc.) or a human-induced (disastrous) event occurs. Then, we consider the additional pieces of information that can be recovered by comparing interferometric coherence maps related to couples of SAR images collected between a principal disastrous event date. This work is mainly concerned with investigating the capability of different coherent/incoherent change detection indices (CDIs) and their mutual interactions for the rapid mapping of "changed" areas. In this context, artificial intelligence (AI) algorithms have been demonstrated to be beneficial for handling the different information coming from coherent/incoherent CDIs in a unique corpus. Specifically, we used CDIs that synthetically describe ground surface changes associated with a disaster event (i.e., the pre-, cross-, and post-disaster phases), based on the generation of sigma nought and InSAR coherence maps. Then, we trained a random forest (RF) to produce CD maps and study the impact on the final binary decision (changed/unchanged) of the different layers representing the available synthetic CDIs. The proposed strategy was effective for quickly assessing damage using SAR data and can be applied in several contexts. Experiments were conducted to monitor wildfire's effects in the 2021 summer season in Italy, considering two case studies in Sardinia and Sicily. Another experiment was also carried out on the coastal city of Houston, Texas, the US, which was affected by a large flood in 2017; thus, demonstrating the validity of the proposed integrated method for fast mapping of flooded zones using SAR data

    Sparse + smooth decomposition models for multi-temporal SAR images

    No full text
    International audienceSAR images have distinctive characteristics compared to optical images: speckle phenomenon produces strong fluctuations, and strong scatterers have radar signatures several orders of magnitude larger than others. We propose to use an image decomposition approach to account for these peculiarities. Several methods have been proposed in the field of image processing to decompose an image into components of different nature, such as a geometrical part and a textural part. They are generally stated as an energy minimization problem where specific penalty terms are applied to each component of the sought decomposition. We decompose temporal series of SAR images into three components: speckle, strong scatterers and background. Our decomposition method is based on a discrete optimization technique by graph-cut. We apply it to change detection tasks

    Patch-based adaptive temporal filter and residual evaluation

    Full text link
    In coherent imaging systems, speckle is a signal-dependent noise that visually strongly degrades images' appearance. A huge amount of SAR data has been acquired from different sensors with different wavelengths, resolutions, incidences and polarizations. We extend the nonlocal filtering strategy to the temporal domain and propose a patch-based adaptive temporal filter (PATF) to take advantage of well-registered multi-temporal SAR images. A patch-based generalised likelihood ratio test is processed to suppress the changed object effects on the multitemporal denoising results. Then, the similarities are transformed into corresponding weights with an exponential function. The denoised value is calculated with a temporal weighted average. Spatial adaptive denoising methods can improve the patch-based weighted temporal average image when the time series is limited. The spatial adaptive denoising step is optional when the time series is large enough. Without reference image, we propose using a patch-based auto-covariance residual evaluation method to examine the ratio image between the noisy and denoised images and look for possible remaining structural contents. It can process automatically and does not rely on a supervised selection of homogeneous regions. It also provides a global score for the whole image. Numerous results demonstrate the effectiveness of the proposed time series denoising method and the usefulness of the residual evaluation method

    Determining the Points of Change in Time Series of Polarimetric SAR Data

    Get PDF

    Coherent Change Detection for repeated-pass interferometric SAR images: An application to earthquake damage assessment on buildings

    Get PDF
    During disaster response, the availability of relevant information, delivered in a proper format enabling its use among the different actors involved in response efforts, is key to lessen the impact of the disaster itself. Focusing on the contribution of geospatial information, meaningful advances have been achieved through the adoption of satellite earth observations within emergency management practices. Among these technologies, the Synthetic Aperture Radar (SAR) imaging has been extensively employed for large-scale applications such as flood areas delineation and terrain deformation analysis after earthquakes. However, the emerging availability of higher spatial and temporal resolution data has uncovered the potential contribution of SAR to applications at a finer scale. This paper proposes an approach to enable pixel-wise earthquake damage assessments based on Coherent Change Detection methods applied to a stack of repeated-pass interferometric SAR images. A preliminary performance assessment of the procedure is provided by processing Sentinel-1 data stack related to the 2016 central Italy earthquake for the towns of Amatrice and Accumoli. Damage assessment maps from photo-interpretation of high-resolution airborne imagery, produced in the framework of Copernicus EMS (Emergency Management Service - European Commission) and cross-checked with field survey, is used as ground truth for the performance assessment. Results show the ability of the proposed approach to automatically identify changes at an almost individual building level, thus enabling the possibility to empower traditional damage assessment procedures from optical imagery with the centimetric change detection sensitivity characterizing SAR. The possibility of disseminating outputs in a GIS-like format represents an asset for an effective and cross-cutting information sharing among decision makers and analysts

    Visualization of and Software for Omnibus Test Based Change Detected in a Time Series of Polarimetric SAR Data

    Get PDF
    Based on an omnibus likelihood ratio test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution and a factorization of this test statistic with associated p-values, change analysis in a time series of multilook polarimetric synthetic aperture radar data in the covariance matrix representation is carried out. The omnibus test statistic and its factorization detect if and when change occurs. Using airborne EMISAR and spaceborne RADARSAT-2 data, this article focuses on change detection based on the p-values, on visualization of change at pixel as well as segment level, and on computer software

    Adaptive Multitemporal SAR Image Filtering Based on the Change Detection Matrix

    Get PDF
    5 pagesInternational audienceThis letter presents an adaptive filtering approach of synthetic aperture radar (SAR) image times series based on the analysis of the temporal evolution. First, change detection matrices (CDMs) containing information on changed and unchanged pixels are constructed for each spatial position over the time series by implementing coefficient of variation (CV) cross tests. Afterwards, the CDM provides for each pixel in each image, an adaptive spatiotemporal neighborhood which is used to derive the filtered value. The proposed approach is illustrated on a time series of 25 ascending TerraSAR-X images acquired from November 6, 2009 to September 25, 2011 over the Chamonix-MontBlanc test-site which includes different kinds of change such as parking occupation, glacier surface evolution, etc

    Innovative Techniques for the Retrieval of Earth’s Surface and Atmosphere Geophysical Parameters: Spaceborne Infrared/Microwave Combined Analyses

    Get PDF
    With the advent of the first satellites for Earth Observation: Landsat-1 in July 1972 and ERS-1 in May 1991, the discipline of environmental remote sensing has become, over time, increasingly fundamental for the study of phenomena characterizing the planet Earth. The goal of environmental remote sensing is to perform detailed analyses and to monitor the temporal evolution of different physical phenomena, exploiting the mechanisms of interaction between the objects that are present in an observed scene and the electromagnetic radiation detected by sensors, placed at a distance from the scene, operating at different frequencies. The analyzed physical phenomena are those related to climate change, weather forecasts, global ocean circulation, greenhouse gas profiling, earthquakes, volcanic eruptions, soil subsidence, and the effects of rapid urbanization processes. Generally, remote sensing sensors are of two primary types: active and passive. Active sensors use their own source of electromagnetic radiation to illuminate and analyze an area of interest. An active sensor emits radiation in the direction of the area to be investigated and then detects and measures the radiation that is backscattered from the objects contained in that area. Passive sensors, on the other hand, detect natural electromagnetic radiation (e.g., from the Sun in the visible band and the Earth in the infrared and microwave bands) emitted or reflected by the object contained in the observed scene. The scientific community has dedicated many resources to developing techniques to estimate, study and analyze Earth’s geophysical parameters. These techniques differ for active and passive sensors because they depend strictly on the type of the measured physical quantity. In my P.h.D. work, inversion techniques for estimating Earth’s surface and atmosphere geophysical parameters will be addressed, emphasizing methods based on machine learning (ML). In particular, the study of cloud microphysics and the characterization of Earth’s surface changes phenomenon are the critical points of this work
    • …
    corecore