29 research outputs found

    Guest editorial SACMAT 2009 and 2010

    Get PDF

    An Accurate and Scalable Role Mining Algorithm based on Graph Embedding and Unsupervised Feature Learning

    Get PDF
    Role-based access control (RBAC) is one of the most widely authorization models used by organizations. In RBAC, accesses are controlled based on the roles of users within the organization. The flexibility and usability of RBAC have encouraged organizations to migrate from traditional discretionary access control (DAC) models to RBAC. The most challenging step in this migration is role mining, which is the process of extracting meaningful roles from existing access control lists. Although various approaches have been proposed to address this NP-complete role mining problem in the literature, they either suffer from low scalability or present heuristics that suffer from low accuracy. In this paper, we propose an accurate and scalable approach to the role mining problem. To this aim, we represent user-permission assignments as a bipartite graph where nodes are users and permissions, and edges are user-permission assignments. Next, we introduce an efficient deep learning algorithm based on random walk sampling to learn low-dimensional representations of the graph, such that permissions that are assigned to similar users are closer in this new space. Then, we use k-means and GMM clustering techniques to cluster permission nodes into roles. We show the effectiveness of our proposed approach by testing it on different datasets. Experimental results show that our approach performs accurate role mining, even for large datasets

    Towards Better Understanding of User Authorization Query Problem via Multi-variable Complexity Analysis

    Get PDF
    User authorization queries in the context of role-based access control have attracted considerable interest in the last 15 years. Such queries are used to determine whether it is possible to allocate a set of roles to a user that enables the user to complete a task, in the sense that all the permissions required to complete the task are assigned to the roles in that set. Answering such a query, in general, must take into account a number of factors, including, but not limited to, the roles to which the user is assigned and constraints on the sets of roles that can be activated. Answering such a query is known to be NP-hard. The presence of multiple parameters and the need to find efficient and exact solutions to the problem suggest that a multi-variate approach will enable us to better understand the complexity of the user authorization query problem (UAQ). In this paper, we establish a number of complexity results for UAQ. Specifically, we show the problem remains hard even when quite restrictive conditions are imposed on the structure of the problem. Our FPT results show that we have to use either a parameter with potentially quite large values or quite a restricted version of UAQ. Moreover, our second FPT algorithm is complex and requires sophisticated, state-of-the-art techniques. In short, our results show that it is unlikely that all variants of UAQ that arise in practice can be solved reasonably quickly in general.Comment: Accepted for publication in ACM Transactions on Privacy and Security (TOPS

    Canonical Completeness in Lattice-Based Languages for Attribute-Based Access Control

    Get PDF
    The study of canonically complete attribute-based access control (ABAC) languages is relatively new. A canonically complete language is useful as it is functionally complete and provides a "normal form" for policies. However, previous work on canonically complete ABAC languages requires that the set of authorization decisions is totally ordered, which does not accurately reflect the intuition behind the use of the allow, deny and not-applicable decisions in access control. A number of recent ABAC languages use a fourth value and the set of authorization decisions is partially ordered. In this paper, we show how canonical completeness in multi-valued logics can be extended to the case where the set of truth values forms a lattice. This enables us to investigate the canonical completeness of logics having a partially ordered set of truth values, such as Belnap logic, and show that ABAC languages based on Belnap logic, such as PBel, are not canonically complete. We then construct a canonically complete four-valued logic using connections between the generators of the symmetric group (defined over the set of decisions) and unary operators in a canonically suitable logic. Finally, we propose a new authorization language PTaCL4⩜\text{PTaCL}_{\sf 4}^{\leqslant}, an extension of PTaCL, which incorporates a lattice-ordered decision set and is canonically complete. We then discuss how the advantages of PTaCL4⩜\text{PTaCL}_{\sf 4}^{\leqslant} can be leveraged within the framework of XACML

    Role Explosion: Acknowledging the Problem

    Get PDF
    Abstrac

    Managing Break-The-Glass using Situation-oriented authorizations

    Get PDF
    National audienceThe patient's life is a redline in Healthcare environments. Whenever it comes to danger, such environments reject static authorizations . A common problem "Break The Glass" is known as the act of breaking the static authorization in order to reach the required permission. Healthcare environment is full of different contexts and situations that require the authorizations to be dynamic. Dynamic Authorization is a concept of giving the choice to E-Health authorization system to choose the most suitable permission by considering one's situation. This paper aims at preventing the matter of modifying the policy to make authorizations dynamic. It introduces a simple solution to provide Dynamic Authorization by orienting the authorization system decision using situations. Situations, which are calculated using Complex Event Processing, are integrated to XACML architecture. A Healthcare example proves the efficiency of our approach
    corecore