
Managing Break-The-Glass using Situation-oriented

authorizations

Bashar Kabbani, Romain Laborde, François Barrère, Abdelmalek Benzekri

To cite this version:

Bashar Kabbani, Romain Laborde, François Barrère, Abdelmalek Benzekri. Managing Break-
The-Glass using Situation-oriented authorizations. 9ème Conférence sur la Sécurité des Archi-
tectures Réseaux et Systèmes d’Information - SAR-SSI 2014, May 2014, Saint-Germain-Au-
Mont-d’Or (Lyon), France, France. pp.0, 2014. <hal-01120112>

HAL Id: hal-01120112

https://hal.archives-ouvertes.fr/hal-01120112

Submitted on 24 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50533049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01120112

To link to this article :

URL : http://sarssi14.liris.cnrs.fr/ressources/pdfs/sarssi2014_bkabbani.pdf

To cite this version :

Kabbani, Bashar and Laborde, Romain and Barrère, François and

Benzekri, Abdelmalek Managing Break-The-Glass using Situation-

oriented authorizations. (2014) In: 9ème Conférence sur la Sécurité

des Architectures Réseaux et Systèmes d'Information - SAR-SSI

2014, 13 May 2014 - 16 May 2014 (Saint-Germain-Au-Mont-d'Or

(Lyon), France, France). (Unpublished)

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/

Eprints ID : 13032

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://sarssi14.liris.cnrs.fr/ressources/pdfs/sarssi2014_bkabbani.pdf
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Managing Break-The-Glass using
Situation-Oriented Authorizations

Bashar Kabbani (bashar.kabbani@irit.fr)∗

Romain Laborde (romain.laborde@irit.fr)∗

Francois Barrere (barrere@irit.fr)∗

Abdelmalek Benzekri (abdelmalek.benzekri@irit.fr)∗

Abstract: The patient’s life is a redline in Healthcare environments. Whenever it comes
to danger, such environments reject static authorizations . A common problem "Break The
Glass" is known as the act of breaking the static authorization in order to reach the required
permission. Healthcare environment is full of different contexts and situations that require
the authorizations to be dynamic. Dynamic Authorization is a concept of giving the choice
to E-Health authorization system to choose the most suitable permission by considering
one’s situation. This paper aims at preventing the matter of modifying the policy to make
authorizations dynamic. It introduces a simple solution to provide Dynamic Authorization by
orienting the authorization system decision using situations. Situations, which are calculated
using Complex Event Processing, are integrated to XACML architecture. A Healthcare
example proves the efficiency of our approach.

Keywords: Dynamic Authorization, Access Control, Policy-Based Management, Attribute-
Based, Break The Glass, Situation-Awareness, Complex Event Processing

1 Introduction
Healthcare domain is full of emergency cases. Sometimes doctors are limited to access
their patients’ private information only whereas they can access any other patient private
information when it is a life or death issue. As consequence, doctors’ authorizations must
be dynamic to handle these life or death scenarios. In this domain, dynamic authorization
is the matter of prohibiting access for doctors to access patient’s information (PI) and
giving them rights in exceptional conditions and circumstances, e.g. emergencies. At the
opposite, it is concerned about giving the right for doctors to access patient’s information
and take this right back when conditions and circumstances are no more met. This problem
is known as Break-The-Glass. However, the question is "How to bestow such dynamicity?"

Authorizations are usually expressed within authorization policies. A policy is a set
of rules that are evaluated when a doctor requests an access to a protected information
system. Based on this evaluation, the decision-making process returns an authorization
decision that represents the actual doctors’ authorization. E-health applications can get
exceptional situations once a year; where patient’s life is in danger and no authorized
doctor can save the patient’s life. Two approaches can be applied to setup a solution for the
"Break-The-Glass" problem depending on the capabilities of the decision making process
∗ University of Paul Sabatier (UPS), Institute of Research in Informatics at Toulouse (IRIT), 118
Route de Narbonne, 31062 Toulouse, France

and the expressiveness of the authorization policy language. The first approach deals
with static authorizations policies. We call static authorization policies, policies whose
evaluation will always return the same result (permit or deny) for a given request whenever
this request is made. In this case, making authorization dynamic requires modifying
the policy. For instance, if we want that the eHealth authorization system allows only
responsible doctors to access their concerned patients’ information during working days
(policy1: if Doctor ID = Philippe and he is a non-responsible doctor of the patient Joe then
deny, i.e. the normal authorization is to deny non-responsible doctors). On Emergencies,
non-responsible doctors will use an external system to break this rule by a new rule (e.g.,
policy2: if Doctor ID = Philippe then permit). This new rule will then be replaced
by the first rule when the emergency situation ends. The advantage of this approach is
that it works with existing systems. It gives a real-time activity to break the policy and
save the patient’s life. However, the drawback is the rule management complexity when
considering many circumstances and many rules. Keeping loaded rules free of conflict
is a big challenge. In addition, analyzing such dynamic authorizations is much more
complicated because it requires knowing what rules are loaded. Also, giving doctors over
responsibly to manage his authorizations. As a consequence, employing such an approach
for dynamic authorization seems complicated.

Another approach consists in building authorization decision-making systems aware of
these circumstances in order to evaluate dynamic authorization policies. This approach
requires authorization policy languages be able to express circumstances based authoriza-
tions. In this case, authorization policies do not need to be replaced. For instance, our
“new” eHealth authorization policy may consist of two rules:

Rule1: When patient is in normal situation and Doctor ID = Philippe and a non-responsible
doctor of the patient Joe then deny.

Rule2: When patient is in danger and Doctor ID = Philippe then permit.

In this case, the policy is static as it doesn’t change but authorizations are dynamic.
The drawback of this approach is that it requires the authorization decision-making process
to be aware of emergency situations. However, the benefits are important since policies
are easier to understand and analyze because they are closer to the security requirements
and they do not change.

In this article, we follow the second approach. However, circumstances must not be
limited to patients only. Current systems provide various sensors such as presence detec-
tion, temperature, network events, security events, etc. As a consequence, circumstances
to consider in authorization policies are related to information coming from these sensors.
We propose to formalize circumstances through the concept of situation. Situations are
remarkable conditions and circumstances reflecting abstract semantics to describe past,
present or future behavior of entities. A more technical definition is “A situation is a
relevant time frame calculated based on events generated by available sensors” [AE03].

We propose to implement situations based authorization policies using XACML that
provides a policy language based on attributes and a policy based management architec-
ture. Using XACML, we represent situations as attributes that aggregate rules and give
through their values dynamicity to the policy. By changing the value of situations, the
choice for an appropriate decision will be made after evaluating associated rules. Finally,

we present how to make use of Complex Event Processing (CEP) to realize the identifica-
tion and calculation of situations. In order to prove the efficiency of our architecture, we
develop our idea through an example taken from the healthcare domain known as “break
the glass” that consists in managing authorization of doctors confronting life critical issues.

The remainder of this paper is structured as follow. Section II presents the concept
of “Break The Glass” together with a scenario. In Section III, we present a study on
related works. Section IV is dedicated to present the situation management. Orienting
the authorization policy using situations is presented in Section V. Section VI details our
implementation. Finally, we conclude in Section VII.

2 Break The Glass Scenario
In Healthcare, “Break The Glass” (BTG) is a very good example that treats the dynamic
authorization problem through bypassing traditional authorizations. In emergency cir-
cumstances, unauthorized doctors can break the policy to get rights to access information
that they could never have in an ordinary case. BTG is about giving entities administrative
rights to break in the policy and modify rules when it comes to patients’ life.

Our scenario:
Emma is a doctor in a modern hospital. Patients’ Information is not an Open Access

for doctors. The intervention should be justified by a reason, e.g. treatments. Therefore,
only the treating or the responsible doctors are allowed to access their patients’ information.
One day, sensors connected to a patient, Joe, showed an urgent need for a doctor. The
problem is that his responsible doctor is not available. Emma was the only one available,
ready and able to act. Unfortunately, Joe is not one of her patient that mean she would
not have access to his information. The BTG solution gives Emma the right in emergency
situations to break the general policy to save Joe’s life.

Breaking the general policy is required to change the authorization. To change rules
(break the policy), one should have administrative permissions to do so (In the worst
case Emma can change the current policy). Emma will break the policy and give herself
authorization to access Joe’s files.

It is important to highlight the importance of this example for our paper. The objective
of this contribution is to avoid Emma from having administrative permissions, which does
not belong to her role as a doctor. All what Emma should concern about is Joe’s life.

3 Related Work
Works on dynamic authorization can be divided into mainly two main axes. On the first
hand, modify the policy and considers it as an electronic board where plugs (parts of
the policy) are replaced frequently. Dynamic Access Control (AC) Decisions by Junzhe
HU, extended the RBAC model to keep traditional access control methodology [Eys01],
[HW04]. Adaptive AC Decisions takes in account different states of the subject, e.g. re-
questing and waiting, in the AC decisions, T. SANS [SCCB06]. It is, however, more
oriented towards dynamic enforcement rather than authorization. In access control man-
agement, “Break The Glass” [SSH+ 08] is a common use case to consider when evaluating
policies to provide dynamic authorization. However, related works are oriented towards
breaking the policy and involve doctors in the administration role. We also point out
papers working on leveraging the privacy of healthcare information in case of emergencies

such as: Carminati et al. [CFG11] and Ferreira et al. [FACC10]. To the best of our knowl-
edge, the use of dynamic authorization for the BTG use case has presented only through
modifying the policy in: Schefer-Wenz et al. [SWS13], Marinovic et al. [MCMD11] and
Brucker et al. [BP09].

On the other hand, energizing the decision engine to provide dynamicity in its au-
thorization mechanism and consider the policy as a static holy reference. Laborde et al.
[LKBB07] initiated a work where the dynamicity is presented as changes of permissions
based on a static policy. The changes are made after the assignment of a new role within
the Role Workflow. AC Authorization Oriented has been also studied by a Workflow, Ma
et al. [MWZL12] and Ferreira et al. [FACC10].

In conclusion of this section, dynamic authorization is about energizing the authoriza-
tion mechanism to be changeable according to new factors, i.e. the definition of “dynamic”.
The research trends are focused only on having the “Dynamic Authorization” as an out-
come of modifying the policy (change, add and remove rules). None of them worked on
providing the “Dynamic Authorization” as an income to the policy without changing it.

4 Situation-Oriented Approach
Emma being in charge for a patient who is not under her responsibility is one result
of having the emergency situation generated by the alarming system. Given this way
of reasoning, we see that the situation itself orients the authorization decision towards
giving Emma the right to access the patient’s information, the one under urgency. All
events arriving try to explain the abnormal situation of the patient and that his/her doctor
is not available. The situation to deal with by the eHealth system is the immediate need
for a doctor. It is important then to define situations that orient the system’s behavior
and identify/detect them.

4.1 Situation Definition and Identification
The Collins Dictionary defines situation as “A set of conditions and circumstances in
which one finds oneself”. Pervasive Systems are context-aware systems that concern about
future predictions. In such systems, situation is: “A set of contexts in the application over
a period of time that affects the future system’s behavior”. A context is any instantaneous,
detectable, and relevant property of the environment, system, or user, e.g. location,
available bandwidth and user’s schedule. Pervasive Systems collect data to predict or
anticipate situations [YDM12]. This article is only interested about situations once they
appear. Therefore, we refine the definition to be “a set of contexts detected upon matching
predefined conditions and circumstances within the application and over a timeline that
affects the current and future system’s behavior”.

Giving the BTG example, we can link the provided definition by determining 1) the
conditions, i.e. having no responsible doctor available who can access normally or legally
patients’ information in order for treatment, 2) and circumstances, i.e. having many
readings from sensors telling how bad the status of the patient is, in which the healthcare
authorization system found itself in need of Emma.

Identifying a situation’s occurrence depends on three main elements: Events, Compos-
ite Events and Complex Events. All previous elements should be aware of context in order
to have sense. Events are instantaneous activities or phenomena. For instance, sensors

are events sources that send readings about the instantaneous patient’s pulse. Events
also could be doctors activates like scheduled appointments. Composite events consist
of a collection of events that satisfy some patterns. Patterns are predefined queries that
contain events, composite events and complex events in a query language, i.e. similar
to SQL. Complex events (CEs) are abstraction of events. Composite events and events
are aggregated, filtered and correlated using logical operations to express a meaningful
phenomenon (complex event). CE writers predefine the meaning expected. For instance,
the fact that the patient got symptoms, e.g. a heart attack, is a complex event gen-
erated based on 1) readings about the patient’s heartbeat and 2) composite events (a
worning alarm aggregated with nurses calls). There comes the situation’s starting-point
(SP). “Urgent need for a doctor” is a situation starts with the detection of complex events
like a heart attack, nerves crises and other of what mean that the patient is in danger
and needs a doctor urgently. Plus, another event indicates that the responsible doc-
tor is not available. Figure 1 is a general picture on how to identify a situation, where
“Urgent need for a doctor” is an example of individual situation (the patient).

Once the situation starts, it orients the authorizations decisions towards suitable per-
missions until and the situation ends. The ending-point (EP) of a situation is similar to
its SP in terms of participants. Complex Events ends the situation as well, e.g. the doctor
has sent a notification to validate the end of the treatment and devices confirmed through
reading the status of the patient.

Fig. 1: Identification of Situations

During the situation life (lifespan), it is useful to trace the status of a situation in
terms of Situation Management. Therefore, patterns exist as a mechanism similar to the
“polling” that keeps the system informed about the situation’s status. Once the situation
is identified, the patterns could be used to make sure that the entity still in the same
situation (did not evolve or vanish). For instance, the situation of the emergency room
needs to be traced, as it is a critical and demanded room.

4.2 Situation Management
Complex Event Processing presents tools off-the-shelf that accomplish several operations
to process events: Correlation, Filtering, Aggregation, Monitoring, Generation and so on.
The main objective is to enable on the one hand developers to customize CEP processing
engines to meet business needs and on the other hand users, e.g. managers, to express there
queries, i.e. events, complex events and situations. Nevertheless, Adi et al. demonstrated
in Amit – The Situation Manager [AE03] that CEP engines are able to manage concrete
situations of the system as well.

The Situation Management is concerned about two main operations: determining the
lifespan of a situation and managing the situation during its life (lifecycle). The Lifespan

is the temporal context during which the situation detection is relevant. The lifespan is
an interval bounded by starting and ending point. An occurrence of the SP initiates the
situation life and an occurrence of EP terminates it. Both occurrences should be defined
and initiated previously. SP and EP values are assigned automatically by the detection
of patterns or manually by administrative requests. For instance, the emergency situation
ends when doctors finish the patient treatment. However, the start of a situation could
be automated as the example shows in Section II.

Two situations may have the same starting and/or ending dates (lifespan), but not
necessary the same lifecycle. Moreover, the semantic of each situation is different from
one to another. Each situation is coupled with the elements participating in the situation
creation like: Subjects (Users), Resources, Actions and Location (Environment). Using
the semantic and the elements concerned about a situation we can distinguish it from
others. For instance, two situations could have the same time but could not concern the
same entity, e.g. a patient could not be in normal and abnormal situations in the same
time. However, the system could be in the normal situation regarding the patient Y and
behave in abnormal, e.g. emergency, situation for the patient Joe.

The situations lifecycle is a story that the CEP engine tells while capturing situations’
patterns, i.e. during the lifespan. For instance, the emergency situation of Joe started
after capturing readings telling that he is in danger. Using the CEP engine, E-Health
application recognized that there is no one else in the room. Emma is informed about
the situation. At the same time, the system knows about the need for an unauthorized
doctor. She does not have access, so she asks for breaking the policy. Then, she gets
access to the PI and starts the preparing of a treatment. Emma sends a confirmation to
the eHealth system that the treatment is done and that situation is terminated (Joe is no
more in danger).

Many kinds of situation could be defined and attached with many entities and for
several contexts. The complexity that this term could reach invited us not to mix the
management of situations with the policy itself, but to dedicate a situation man-
agement paradigm apart from the authorization policy one. Situations types could be
degraded in terms of priority, e.g. Emergency, Urgency, Recommended, Demanded, etc.
They could be extended in terms of surface as well, e.g. for a fire in a location: Par-
tial, Minimal, Grand Scale, etc. The context can really play with situations. Finally,
each situation is coupled with a subject concerns and the related behavior, see the defi-
nition. For example, “a patient is in a dangerous situation” here the situation concerns
the patient who is not a user, a resource, an action nor an environment. Therefore, from
the authorization system point of view, situations are decoupled from the access control
requests.

5 Authorization Situation-Oriented Policy

XACML is a generic, flexible and abstract language with an architecture that could ex-
press/enforce our expected policy. In this section, we present how we handle situation
based authorization policies using XACML.

5.1 eXtensible Access Control Markup Language
XACML is an XML-based language for access control that has been standardized by
OASIS. The XACML policy language describes general access control requirements in term
of constraints on attributes, where an attribute could be any characteristic of any Security
Related Object (SRO) on which the access request is made. XACML V3 [XAC13] is not
limited anymore to the version 2 elements (subject, resource, action and environment).
Attributes are manipulated through predefined data types and functions. Considering
attributes makes the language very flexible. Moreover, the XACML language is natively
extensible (new attributes, new functions or new data types). We employ XACML V3 by
orienting the security policy rules using situations attributes. The most two important
features presented by this version are Categories and Aggregation. The main idea of
aggregation is to use abstraction (being close to requirements) to express groups of rules
and situations.

The aggregation is possible using the new fashion of target section in V3, becomes
independent of the four tuples (Subject, Resource, Action and Environment). Thanks to
the XACML V3 category property, it is possible to target the policy to new attribute
categories, such as situations. So, we define the category filled within the target section
of each XACML policy to be attached to situation attribute. Therefore, the value of
situations will target the Policy Decision Point (PDP) towards the correct set of rules to
be evaluated. As a result, rules were aggregated by situations. XACML provides also a
management architecture that describes the different entities and their roles related to the
Decision-Making process (Figure 2).

Fig. 2: Simplified XACML data flow model

Policy Administration Points (PAP) write policies and make them available to the
PDP (step1). An access requester sends an access request to the Policy Enforcement
Point (PEP) (step2), and the PEP forwards it to the context handler (step 3). The
context handler constructs a standard XACML request context and sends it to the PDP
(step 4). The PDP can request any additional subject, resource, action and environment
attributes from the context handler (step 5). The context handler requests attributes
from a Policy Information Point (PIP) (step 6). The PIP obtains requested attributes
and returns them to the context handler (step 7, 8). The context handler sends requested

attributes. The PDP evaluates the policy and returns standard XACML response context
(with an authorization decision) to the context handler (step 9, 10). Finally, the context
handler returns the response to the PEP that enforces the PDP’s decision (step 11).

5.2 XACML Employment
For the next sections, we enhance the previous BTG scenario to be as follows: Patients
are observed through many sensors that send information about: Fever, Pulse, Blood
Pressure, Conscience Status and numerous bio-medical signals. These sensors are linked to
a Symptoms Diagnosis System (SDS). Contextual Sensors (CSs) are connected to capture
physical movements and positions: Room Occupancy, Patient’s Position and Doctors’
Position. SDS and CS are connected to an Alarm System. Once an alarm is launched
expressing an emergency situation, a notification message is sent to the doctor in charge
of such situation for the concerned patient.

Giving the BTG scenario, three situations related to authorization appear (Figure 3).
Initially, the healthcare authorization system evaluates the access requests to PI based
on the static policy oriented by a normal situation, i.e. when all systems elements are
in normal situations. Within these situations, Emma is not permitted to do any of the
following actions: accessing Joe’s PI, BTG request to Joe’s PI and ending the BTG
request. When Joe’s health is in danger and no responsible doctor nearby to save him is
found around, Joe will be in a situation named “Urgent need for a Doctor”. As Emma is
the only available doctor, she will receive a notification to take in charge the treatment
of Joe. Emma cannot access Joe’s PI directly, so she will present a BTG request to Joe’s
PI. Logically, she won’t have permission to end the BTG request, as it is not placed yet.
Once the glass is broken “BTG Requested”, i.e. the situation of the PI, Emma can access
Joe’s PI. However, she cannot place another request to BTG, as it is already broken. Once
Emma finishes treating Joe, she can end the BTG request. Then, the situation of Joe will
be back to normal and the cycle is completed.

By considering these three situations, the policy expressing the dynamic authorization
can be represented by the five rules above. The first rule states: if the doctor requesting
access to Patient Information (PI) is one of the persons responsible of the patient who
owns this information. PRPL is the List of Persons Responsible who has access to the
Patient’s information (with the patient himself). In order for Emma to be able to place a
request to break the glass (BTG Request), the system should be in situation that needs an
external doctor (“Urgent need for a Doctor”). In this case only, she can break the policy
using the second rule. The third rule is to ensure that only doctors who placed a BTG
request can access the Patient Information. The objective of this rule is to avoid other
doctors taking advantage of such situation. The fourth rule is to let Emma end the BTG
process or request on Joe’s PI once she finishes the treatment. Finally, to manage conflicts

Fig. 3: BTG Situation Cycle

we declare a default fifth rule that denies all other access requests.

6 Prototyping Example
We have implemented our BTG example to prove the concept of Dynamic Authorization
using Situation Orientation approach. We required from this prototype to 1) Collect
Events from sources 2) Analyze and Process Events 3) define patterns to detect Complex
Events 4) translate complex events into situations and store them in a database 5) use
situations as values for the XACML situation attribute 6) respond to access requests based
on the provided situations. The solution expects as a result from this prototype to have
different decisions for the same access request, but in different situations, i.e. different
contexts as well.

Players of our prototype are mainly the Complex Event Processor, all the elements of
the XACML Architecture (PAP, PDP, PEP and PIP), the XACML Policy and a database
to store the situations. We have implemented our situation manager using the complex
event processor ESPER [Esp06] and the XACML V3 implementation that we employed
can be found in [Bal12].

The ESPER engine will detect situations and monitor patients and doctors activities.
The engine will react on situations by updating the values in database, notifying the users
and regenerating more meaningful events, e.g. after receiving two events saying that Joe is
complaining, generate an event to the eHealth application informing the non-satisfaction
of the patient.

We have defined a set of ten types of events with ESPER. Events Types are: E1)
Patient’s Fever, E2) Patient’s Status, E3) Patient’s Pulse, E4) Patient’s Position, E5)
Room Occupancy, E6) Doctor’s Position, E7) BTG Request, E8) Alarm Detection, E9)
Access Request, E10) Situation Detection. Each event type should have at least values
describing one element of the system (Subject, Resource, Action and Environment).

The instances of these event types are generated and structured in event streams
using ESPER Events Simulator (ESPER-ES). ESPER-ES is a mechanism of event streams
generation that also keeps trace inside text-like files. Event Sources are simulating sensors
of the Patient Care Monitor (PCM). PCM sends for example readings about the fever

of the patient and his physiological status, etc. An example of event type sent by the
PCM is the Patient’s Fever (E1). The information contains for each reading (i.e. event):
Patient ID, PCM Sensor ID, Sensor Readings and a Timestamp. For instance, an event
occurs saying that Joe has fever degree reading of (40° C) from the PCM sensor PCM2340
at timestamp 130915221345, date followed by hour. The other sensor to simulate is the
Movement Detection (DM) that captures Positions of subjects. So, events represent either
readings of sensors or calculated values from sensors’ readings such as the number of
persons occupying a room. Access and BTG Requests are captured from the network
once they are sent to the PEP.

There are three examples of Complex Event types or patterns that aggregate events
from the ten event types mentioned earlier. In order for the complex event to be triggered,
it should meet the conditions of a query that represent either a pattern, as the sliding
window [MZZ12], or a simple SQL-Like query:

CE1 – Patient In Danger: the Fever should be high, the status of the Patient is
claiming and there is no one responsible near her/his.

CE2 – Responsible Doctor Unavailable: the e-health application should contact the
responsible Doctor or simply check her/his Schedule to see the availability. Also, the
CEP engine can check the position of the doctor if not in the hospital.

CE3 – Urgent need for a Doctor: a threshold is assigned to the number of persons
inside the room, e.g zero. Also, the CE1 and CE2 should have been triggered.

Fig. 4: Prototype Technical Architecture

The prototype’s architecture, illustrated in Figure 4, explains the different elements
participating in the solution and gives an idea on the sequence or the flow of actions to
encounter. First of all, the policy writer should use the PAP to write the mentioned
XACML Policy, see XACML Employment. The PAP will then inject the written policy in
a repository to be used by the PDP. At the same time, the situation manager should write
the CEP rules that should govern the CEP engine behavior. Once configured, the CEP
engine should start monitoring the systems’ behavior and evaluate the activities based on
the provided rules.

The simulation process starts by using ESPER-ES that represents the event sources.
The prototype identifies three scenarios: there is no situation concerning Joe, Joe is ur-
gently needs a doctor and BTG granted on Joe’s PI. First, a doctor places an access
requests to Joe’s PI. The XACML architecture will deal with this request as explained
earlier in Section V (B). We assume that the first scenario is when the PIP gets the value
of the situation attribute as empty (normal situation). Based on the doctor permissions,
the decision will be a traditional authorization loop to permit or deny the access.

We configured the ESPER-ES to generate events from the provided event types.
ESPER-ES creates six streams to be generated with 20 events in each. The 120 events
are from the following six types: Fever, Pulse, Status, Patient Position, Doctor Position
and Room Occupancy. During the detection of events, the CEP engine composes events
and listens to both access and BTG requests going to the PEP. Once the CE1 detected
by the CEP engine, it forwards an alarm to the Situation Manger that understands that a
Patient (Joe) is in Danger. The Situation Manager stores this situation in the Database.
In case of the unavailability of responsible doctors for Joe, the CEP engine generates the
CE2. The CEP engine directly detects the CE3 after ensuring that no one is involved
yet by checking room occupancy. The situation manager stores both situations as well in
the database, i.e. “Urgent need for a Doctor” and “Doctors Unavailability”. Emma was
available to treat Joe and she knows the rules; Joe is not her patient hence she needs a
specific authorization. Therefore, Emma places directly a BTG request to the authoriza-
tion system, i.e. PEP 2. The traditional loop starts, but this time it is “Urgent need for
a Doctor”. Emma will be permitted to break the glass. So, the PDP sends the response
to PEP 2 letting him inform Emma about the decision. At the same time, the PEP 2
enforces the decision by starting the new BTG situation. The CEP engine detects that
and informs the Situation Manager who stores this situation in the database. Emma now
can access to Joe’s PI by a request to the PEP 1. The PDP allows Emma to access and
PEP 1 enforces this decision.

Finally, the CEP engine detects that Joe’s information is now broken by a BTG request.
Once Emma finishes the treatment, she asks PEP 2 to end the BTG situation on Joe’s
information. The PDP allows Emma to do so as she is the one who placed the BTG
request in the first place. As we said earlier, this information is gathered by the PIP
about the identity of Emma and the associated situations related to her person and to
her patients. PEP 2 enforces the decision by sending an event to the CEP engine to
end the BTG situation. The CEP engine informs the Situation Manager who removes
all associated situations (“Urgent need for a Doctor”, Joe in Danger and BTG Situation).
The system goes back to treat Emma and Joe normally.

We demonstrated using a prototype how it is possible and simple to provide dynamic
authorization without modifying the policy. Based on a static policy, the prototype aims
to manage Break-The-Glass using situation-oriented authorizations.

7 Conclusion & Future Work
Modern systems and usages require dynamic authorizations. We have presented in this
article an approach to specifying and enforcing dynamic authorization policies based on
situations. This approach allows simplifying the task of writing and analyzing dynamic
authorizations. Although policies are static, as rules do not change, authorizations are

dynamic. Situations are relevant time frames calculated using complex events processing.
We have chosen XACML because it provides a language where any security information
can be represented by attributes. In addition, the modularity of XACML architecture fa-
cilitates its integration for enforcing situation based authorization policies. We proved that
our approach enforces dynamic authorization by implementing “Break Glass” scenario.

We believe considering situations during authorization policies definition is the appro-
priate approach. Thanks to ITEA2 project PREDYKOT, we have tested our approach on
other use cases.

8 Acknowledgement
This work has been funded by ITEA2, Project PREDYKOT.

References
[AE03] Asaf Adi and Opher Etzion. Amit - the situation manager. The VLDB

Journal The International Journal on Very Large Data Bases, 13(2):177–203,
September 2003.

[Bal12] Balana - The Open-Source Xacml V3.0 Implementation,
http://xacmlinfo.org/, August 2012.

[BP09] Achim D Brucker and Helmut Petritsch. Extending access control models
with break-glass. In SACMAT ’09: Proceedings of the 14th ACM symposium
on Access control models and technologies, pages 197–206, Stresa, Italy, 2009.
ACM Request Permissions.

[CFG11] Barbara Carminati, Elena Ferrari, and Michele Guglielmi. Secure informa-
tion sharing on support of emergency management. Privacy, security, risk
and trust (passat), 2011 ieee third international conference on and 2011 ieee
third international conference on social computing (socialcom), pages 988–995,
2011.

[Esp06] Esper contributors and espertech inc., http://esper.codehaus.org/, 2006.

[Eys01] G Eysenbach. What is e-health? Journal of Medical Internet Research,
3(2):e20, 2001.

[FACC10] Ana Ferreira, Luis Antunes, David W Chadwick, and Ricardo Correia.
Grounding information security in healthcare. International Journal of Med-
ical Informatics, 79(4):268–283, April 2010.

[HW04] Junzhe Hu and Alfred Weaver. A Dynamic, Context-Aware Security Infras-
tructure for Distributed Healthcare Applications. In Proc. 1st Workshop on
Pervasive Privacy Security, Privacy, and Trust (PSPT), Boston, MA, USA,
2004.

[LKBB07] Romain Laborde, Michel Kamel, Francois Barrere, and Abdelmalek Benzekri.
A secure collaborative web based environment for virtual organizations. In

Digital Information Management, 2007. ICDIM ’07. 2nd International Con-
ference on, pages 723–730, 2007.

[MCMD11] Srdjan Marinovic, Robert Craven, Jiefei Ma, and Naranker Dulay. Rumpole:
A Flexible Break-glass Access Control Model. In the 16th ACM symposium,
page 73, New York, New York, USA, 2011. ACM Press.

[MWZL12] G Ma, K Wu, T Zhang, and W Li. A Flexible Policy-Based Access Control
Model for Workflow. Przegląd Elektrotechniczny, 2012.

[MZZ12] Barzan Mozafari, Kai Zeng, and Carlo Zaniolo. High-performance com-
plex event processing over XML streams. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, pages 253–264,
Scottsdale, Arizona, USA, May 2012. ACM Request Permissions.

[SCCB06] Thierry Sans, Fréderic CUPPENS, and Nora Cuppens-Boulahia. A Flex-
ible and Distributed Architecture to Enforce Dynamic Access Control. In
IFIP International Federation for Information Processing, pages 183–195–195.
Springer US, 2006.

[SSH+08] Matthew A Scholl, Kevin M Stine, Joan Hash, Pauline Bowen, L Arnold John-
son, Carla Dancy Smith, and Daniel I Steinberg. An Introductory Resource
Guide for Implementing the Health Insurance Portability and Accountability
Act (HIPAA) Security Rule. An Introductory Resource Guide for Implement-
ing the Health Insurance Portability and Accountability Act (HIPAA) Security
Rule, October 2008.

[SWS13] Sigrid Schefer-Wenzl and Mark Strembeck. Generic support for RBAC break-
glass policies in process-aware information systems. Proceedings of the 28th
Annual ACM Symposium on Applied Computing, pages 1441–1446, 2013.

[XAC13] eXtensible Access Control Markup Language (XACML) Version 3.0. OA-
SIS Standard http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-
en.html, 22January 2013.

[YDM12] Juan Ye, Simon Dobson, and Susan McKeever. Situation identification tech-
niques in pervasive computing: A review. Pervasive and Mobile Computing,
8(1):36–66, February 2012.

