104 research outputs found

    Aggregated Deep Local Features for Remote Sensing Image Retrieval

    Get PDF
    Remote Sensing Image Retrieval remains a challenging topic due to the special nature of Remote Sensing Imagery. Such images contain various different semantic objects, which clearly complicates the retrieval task. In this paper, we present an image retrieval pipeline that uses attentive, local convolutional features and aggregates them using the Vector of Locally Aggregated Descriptors (VLAD) to produce a global descriptor. We study various system parameters such as the multiplicative and additive attention mechanisms and descriptor dimensionality. We propose a query expansion method that requires no external inputs. Experiments demonstrate that even without training, the local convolutional features and global representation outperform other systems. After system tuning, we can achieve state-of-the-art or competitive results. Furthermore, we observe that our query expansion method increases overall system performance by about 3%, using only the top-three retrieved images. Finally, we show how dimensionality reduction produces compact descriptors with increased retrieval performance and fast retrieval computation times, e.g. 50% faster than the current systems.Comment: Published in Remote Sensing. The first two authors have equal contributio

    Binary Patterns Encoded Convolutional Neural Networks for Texture Recognition and Remote Sensing Scene Classification

    Full text link
    Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The d facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Binary Patterns encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Our final combination outperforms the state-of-the-art without employing fine-tuning or ensemble of RGB network architectures.Comment: To appear in ISPRS Journal of Photogrammetry and Remote Sensin

    Remote Sensing Image Scene Classification: Benchmark and State of the Art

    Full text link
    Remote sensing image scene classification plays an important role in a wide range of applications and hence has been receiving remarkable attention. During the past years, significant efforts have been made to develop various datasets or present a variety of approaches for scene classification from remote sensing images. However, a systematic review of the literature concerning datasets and methods for scene classification is still lacking. In addition, almost all existing datasets have a number of limitations, including the small scale of scene classes and the image numbers, the lack of image variations and diversity, and the saturation of accuracy. These limitations severely limit the development of new approaches especially deep learning-based methods. This paper first provides a comprehensive review of the recent progress. Then, we propose a large-scale dataset, termed "NWPU-RESISC45", which is a publicly available benchmark for REmote Sensing Image Scene Classification (RESISC), created by Northwestern Polytechnical University (NWPU). This dataset contains 31,500 images, covering 45 scene classes with 700 images in each class. The proposed NWPU-RESISC45 (i) is large-scale on the scene classes and the total image number, (ii) holds big variations in translation, spatial resolution, viewpoint, object pose, illumination, background, and occlusion, and (iii) has high within-class diversity and between-class similarity. The creation of this dataset will enable the community to develop and evaluate various data-driven algorithms. Finally, several representative methods are evaluated using the proposed dataset and the results are reported as a useful baseline for future research.Comment: This manuscript is the accepted version for Proceedings of the IEE

    Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?

    Get PDF
    In this paper, we evaluate the generalization power of deep features (ConvNets) in two new scenarios: aerial and remote sensing image classification. We evaluate experimentally ConvNets trained for recognizing everyday objects for the classification of aerial and remote sensing images. ConvNets obtained the best results for aerial images, while for remote sensing, they performed well but were outperformed by low-level color descriptors, such as BIC. We also present a correlation analysis, showing the potential for combining/fusing different ConvNets with other descriptors or even for combining multiple ConvNets. A preliminary set of experiments fusing ConvNets obtains state-of-the-art results for the well-known UCMerced dataset

    Remote Sensing Scene Classification Based on Convolutional Neural Networks Pre-Trained Using Attention-Guided Sparse Filters

    Get PDF
    Open access articleSemantic-level land-use scene classification is a challenging problem, in which deep learning methods, e.g., convolutional neural networks (CNNs), have shown remarkable capacity. However, a lack of sufficient labeled images has proved a hindrance to increasing the land-use scene classification accuracy of CNNs. Aiming at this problem, this paper proposes a CNN pre-training method under the guidance of a human visual attention mechanism. Specifically, a computational visual attention model is used to automatically extract salient regions in unlabeled images. Then, sparse filters are adopted to learn features from these salient regions, with the learnt parameters used to initialize the convolutional layers of the CNN. Finally, the CNN is further fine-tuned on labeled images. Experiments are performed on the UCMerced and AID datasets, which show that when combined with a demonstrative CNN, our method can achieve 2.24% higher accuracy than a plain CNN and can obtain an overall accuracy of 92.43% when combined with AlexNet. The results indicate that the proposed method can effectively improve CNN performance using easy-to-access unlabeled images and thus will enhance the performance of land-use scene classification especially when a large-scale labeled dataset is unavailable

    RRNet: Relational Reasoning Network with Parallel Multi-scale Attention for Salient Object Detection in Optical Remote Sensing Images

    Full text link
    Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs. Despite some saliency models were proposed to solve the intrinsic problem of optical RSIs (such as complex background and scale-variant objects), the accuracy and completeness are still unsatisfactory. To this end, we propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs in this paper. The relational reasoning module that integrates the spatial and the channel dimensions is designed to infer the semantic relationship by utilizing high-level encoder features, thereby promoting the generation of more complete detection results. The parallel multi-scale attention module is proposed to effectively restore the detail information and address the scale variation of salient objects by using the low-level features refined by multi-scale attention. Extensive experiments on two datasets demonstrate that our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.Comment: 11 pages, 9 figures, Accepted by IEEE Transactions on Geoscience and Remote Sensing 2021, project: https://rmcong.github.io/proj_RRNet.htm

    High-Rankness Regularized Semi-Supervised Deep Metric Learning for Remote Sensing Imagery

    Get PDF
    Deep metric learning has recently received special attention in the field of remote sensing (RS) scene characterization, owing to its prominent capabilities for modeling distances among RS images based on their semantic information. Most of the existing deep metric learning methods exploit pairwise and triplet losses to learn the feature embeddings with the preservation of semantic-similarity, which requires the construction of image pairs and triplets based on the supervised information (e.g., class labels). However, generating such semantic annotations becomes a completely unaffordable task in large-scale RS archives, which may eventually constrain the availability of sufficient training data for this kind of models. To address this issue, we reformulate the deep metric learning scheme in a semi-supervised manner to effectively characterize RS scenes. Specifically, we aim at learning metric spaces by utilizing the supervised information from a small number of labeled RS images and exploring the potential decision boundaries for massive sets of unlabeled aerial scenes. In order to reach this goal, a joint loss function, composed of a normalized softmax loss with margin and a high-rankness regularization term, is proposed, as well as its corresponding optimization algorithm. The conducted experiments (including different state-of-the-art methods and two benchmark RS archives) validate the effectiveness of the proposed approach for RS image classification, clustering and retrieval tasks. The codes of this paper are publicly available.EC/H2020/734541/EU/TOOLS FOR MAPPING HUMAN EXPOSURE TO RISKY ENVIRONMENTAL CONDITIONS BY MEANS OF GROUND AND EARTH OBSERVATION DATA/EOXPOSUR
    corecore