3,479 research outputs found

    Monitoring with uncertainty

    Full text link
    We discuss the problem of runtime verification of an instrumented program that misses to emit and to monitor some events. These gaps can occur when a monitoring overhead control mechanism is introduced to disable the monitor of an application with real-time constraints. We show how to use statistical models to learn the application behavior and to "fill in" the introduced gaps. Finally, we present and discuss some techniques developed in the last three years to estimate the probability that a property of interest is violated in the presence of an incomplete trace.Comment: In Proceedings HAS 2013, arXiv:1308.490

    Methods of Technical Prognostics Applicable to Embedded Systems

    Get PDF
    Hlavní cílem dizertace je poskytnutí uceleného pohledu na problematiku technické prognostiky, která nachází uplatnění v tzv. prediktivní údržbě založené na trvalém monitorování zařízení a odhadu úrovně degradace systému či jeho zbývající životnosti a to zejména v oblasti komplexních zařízení a strojů. V současnosti je technická diagnostika poměrně dobře zmapovaná a reálně nasazená na rozdíl od technické prognostiky, která je stále rozvíjejícím se oborem, který ovšem postrádá větší množství reálných aplikaci a navíc ne všechny metody jsou dostatečně přesné a aplikovatelné pro embedded systémy. Dizertační práce přináší přehled základních metod použitelných pro účely predikce zbývající užitné životnosti, jsou zde popsány metriky pomocí, kterých je možné jednotlivé přístupy porovnávat ať už z pohledu přesnosti, ale také i z pohledu výpočetní náročnosti. Jedno z dizertačních jader tvoří doporučení a postup pro výběr vhodné prognostické metody s ohledem na prognostická kritéria. Dalším dizertačním jádrem je představení tzv. částicového filtrovaní (particle filtering) vhodné pro model-based prognostiku s ověřením jejich implementace a porovnáním. Hlavní dizertační jádro reprezentuje případovou studii pro velmi aktuální téma prognostiky Li-Ion baterii s ohledem na trvalé monitorování. Případová studie demonstruje proces prognostiky založené na modelu a srovnává možné přístupy jednak pro odhad doby před vybitím baterie, ale také sleduje možné vlivy na degradaci baterie. Součástí práce je základní ověření modelu Li-Ion baterie a návrh prognostického procesu.The main aim of the thesis is to provide a comprehensive overview of technical prognosis, which is applied in the condition based maintenance, based on continuous device monitoring and remaining useful life estimation, especially in the field of complex equipment and machinery. Nowadays technical prognosis is still evolving discipline with limited number of real applications and is not so well developed as technical diagnostics, which is fairly well mapped and deployed in real systems. Thesis provides an overview of basic methods applicable for prediction of remaining useful life, metrics, which can help to compare the different approaches both in terms of accuracy and in terms of computational/deployment cost. One of the research cores consists of recommendations and guide for selecting the appropriate forecasting method with regard to the prognostic criteria. Second thesis research core provides description and applicability of particle filtering framework suitable for model-based forecasting. Verification of their implementation and comparison is provided. The main research topic of the thesis provides a case study for a very actual Li-Ion battery health monitoring and prognostics with respect to continuous monitoring. The case study demonstrates the prognostic process based on the model and compares the possible approaches for estimating both the runtime and capacity fade. Proposed methodology is verified on real measured data.

    Multilevel ensemble Kalman filtering for spatio-temporal processes

    Full text link
    We design and analyse the performance of a multilevel ensemble Kalman filter method (MLEnKF) for filtering settings where the underlying state-space model is an infinite-dimensional spatio-temporal process. We consider underlying models that needs to be simulated by numerical methods, with discretization in both space and time. The multilevel Monte Carlo (MLMC) sampling strategy, achieving variance reduction through pairwise coupling of ensemble particles on neighboring resolutions, is used in the sample-moment step of MLEnKF to produce an efficient hierarchical filtering method for spatio-temporal models. Under sufficient regularity, MLEnKF is proven to be more efficient for weak approximations than EnKF, asymptotically in the large-ensemble and fine-numerical-resolution limit. Numerical examples support our theoretical findings.Comment: Version 1: 39 pages, 4 figures.arXiv admin note: substantial text overlap with arXiv:1608.08558 . Version 2 (this version): 52 pages, 6 figures. Revision primarily of the introduction and the numerical examples sectio

    An algorithm for accurate taillight detection at night

    Get PDF
    Vehicle detection is an important process of many advance driver assistance system (ADAS) such as forward collision avoidance, Time to collision (TTC) and Intelligence headlight control (IHC). This paper presents a new algorithm to detect a vehicle ahead by using taillight pair. First, the proposed method extracts taillight candidate regions by filtering taillight colour regions and applying morphological operations. Second, pairing each candidates and pair symmetry analysis steps are implemented in order to have taillight positions. The aim of this work is to improve the accuracy of taillight detection at night with many bright spot candidates from streetlamps and other factors from complex scenes. Experiments on still images dataset show that the proposed algorithm can improve the taillight detection accuracy rate and robust under limited light images

    Sequential Bayesian inference for static parameters in dynamic state space models

    Full text link
    A method for sequential Bayesian inference of the static parameters of a dynamic state space model is proposed. The method is based on the observation that many dynamic state space models have a relatively small number of static parameters (or hyper-parameters), so that in principle the posterior can be computed and stored on a discrete grid of practical size which can be tracked dynamically. Further to this, this approach is able to use any existing methodology which computes the filtering and prediction distributions of the state process. Kalman filter and its extensions to non-linear/non-Gaussian situations have been used in this paper. This is illustrated using several applications: linear Gaussian model, Binomial model, stochastic volatility model and the extremely non-linear univariate non-stationary growth model. Performance has been compared to both existing on-line method and off-line methods

    No imminent quantum supremacy by boson sampling

    Get PDF
    It is predicted that quantum computers will dramatically outperform their conventional counterparts. However, large-scale universal quantum computers are yet to be built. Boson sampling is a rudimentary quantum algorithm tailored to the platform of photons in linear optics, which has sparked interest as a rapid way to demonstrate this quantum supremacy. Photon statistics are governed by intractable matrix functions known as permanents, which suggests that sampling from the distribution obtained by injecting photons into a linear-optical network could be solved more quickly by a photonic experiment than by a classical computer. The contrast between the apparently awesome challenge faced by any classical sampling algorithm and the apparently near-term experimental resources required for a large boson sampling experiment has raised expectations that quantum supremacy by boson sampling is on the horizon. Here we present classical boson sampling algorithms and theoretical analyses of prospects for scaling boson sampling experiments, showing that near-term quantum supremacy via boson sampling is unlikely. While the largest boson sampling experiments reported so far are with 5 photons, our classical algorithm, based on Metropolised independence sampling (MIS), allowed the boson sampling problem to be solved for 30 photons with standard computing hardware. We argue that the impact of experimental photon losses means that demonstrating quantum supremacy by boson sampling would require a step change in technology.Comment: 25 pages, 9 figures. Comments welcom

    Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model: Conventional Observation

    Full text link
    This paper presents an approach for employing artificial neural networks (NN) to emulate an ensemble Kalman filter (EnKF) as a method of data assimilation. The assimilation methods are tested in the Simplified Parameterizations PrimitivE-Equation Dynamics (SPEEDY) model, an atmospheric general circulation model (AGCM), using synthetic observational data simulating localization of balloon soundings. For the data assimilation scheme, the supervised NN, the multilayer perceptrons (MLP-NN), is applied. The MLP-NN are able to emulate the analysis from the local ensemble transform Kalman filter (LETKF). After the training process, the method using the MLP-NN is seen as a function of data assimilation. The NN were trained with data from first three months of 1982, 1983, and 1984. A hind-casting experiment for the 1985 data assimilation cycle using MLP-NN were performed with synthetic observations for January 1985. The numerical results demonstrate the effectiveness of the NN technique for atmospheric data assimilation. The results of the NN analyses are very close to the results from the LETKF analyses, the differences of the monthly average of absolute temperature analyses is of order 0.02. The simulations show that the major advantage of using the MLP-NN is better computational performance, since the analyses have similar quality. The CPU-time cycle assimilation with MLP-NN is 90 times faster than cycle assimilation with LETKF for the numerical experiment.Comment: 17 pages, 16 figures, monthly weather revie
    corecore