28,830 research outputs found
Dynamic analysis of road vehicle-bridge systems under turbulent wind by means of Finite Element Models
When an automobile passes over a bridge dynamic effects are produced in vehicle and structure. In addition, the bridge itself moves when exposed to the wind inducing dynamic effects on the vehicle that have to be considered. The main objective of this work is to understand the influence of the different parameters concerning the vehicle, the bridge, the road roughness or the wind in the comfort and safety of the vehicles when crossing bridges. Non linear finite element models are used for structures and multibody dynamic models are employed for vehicles. The interaction between the vehicle and the bridge is considered by contact methods. Road roughness is described by the power spectral density (PSD) proposed by the ISO 8608. To consider that the profiles under right and left wheels are different but not independent, the hypotheses of homogeneity and isotropy are assumed. To generate the wind velocity history along the road the Sandia method is employed. The global problem is solved by means of the finite element method. First the methodology for modelling the interaction is verified in a benchmark. Following, the case of a vehicle running along a rigid road and subjected to the action of the turbulent wind is analyzed and the road roughness is incorporated in a following step. Finally the flexibility of the bridge is added to the model by making the vehicle run over the structure. The application of this methodology will allow to understand the influence of the different parameters in the comfort and safety of road vehicles crossing wind exposed bridges. Those results will help to recommend measures to make the traffic over bridges more reliable without affecting the structural integrity of the viaduc
Kesediaan pelajar dari aspek kemahiran teknikal terhadap pembentukan kebolehkerjaan di Kolej Vokasional Wilayah Selatan
Graduan yang menganggur terus menjadi masalah yang semakin meruncing di Malaysia.
Terdapat majikan yang menganggap kompetensi akademik sahaja tidak mencukupi dan
mula meminta institusi pendidikan tinggi untuk menghasilkan graduan yang dilengkapi
dengan kemahiran teknikal. Kajian ini merupakan satu kajian untuk mengenalpasti
kesediaan pelajar dari aspek kemahiran teknikal terhadap pembentukan kebolehkerjaan
di kolej vokasional wilayah selatan. Seramai 113 responden telah dipilih sebagai sampel
kajian. Instrumen kajian yang digunakan dalam kajian ini ialah borang soal selidik yang
mengandungi 60 item. Kajian rintis dijalankan untuk mendapatkan nilai alpha bagi
instrument kajian di mana nilai alpha bagi aspek kemahiran teknikal adalah α = 0.962
dan bagi aspek kebolehkerjaan adalah α = 0.954 . Data yang diperoleh dianalisis dengan
menggunakan Statistical Package for Social Science Version 20 (SPSS 20). Analisis
deskriptif dalam bentuk skor min digunakan untuk melihat kesediaan pelajar. Hasil
kajian mendapati bahawa tahap kesediaan pelajar dari aspek kemahiran teknikal
terhadap pembentukan kebolehkerjaan di Kolej Vokasional Kluang, Kolej Vokasional
Batu Pahat dan Kolej Vokasional Muar berada pada tahap tinggi. Hasil kajian juga
menunjukkan terdapat perbezaan antara jantina pelajar dari aspek kemahiran teknikal
yang mempengaruhi kesediaan pelajar terhadap pembentukan kebolehkerjaa
Paradoxical popups: Why are they hard to catch?
Even professional baseball players occasionally find it difficult to
gracefully approach seemingly routine pop-ups. This paper describes a set of
towering pop-ups with trajectories that exhibit cusps and loops near the apex.
For a normal fly ball, the horizontal velocity is continuously decreasing due
to drag caused by air resistance. But for pop-ups, the Magnus force (the force
due to the ball spinning in a moving airflow) is larger than the drag force. In
these cases the horizontal velocity decreases in the beginning, like a normal
fly ball, but after the apex, the Magnus force accelerates the horizontal
motion. We refer to this class of pop-ups as paradoxical because they appear to
misinform the typically robust optical control strategies used by fielders and
lead to systematic vacillation in running paths, especially when a trajectory
terminates near the fielder. In short, some of the dancing around when
infielders pursue pop-ups can be well explained as a combination of bizarre
trajectories and misguidance by the normally reliable optical control strategy,
rather than apparent fielder error. Former major league infielders confirm that
our model agrees with their experiences.Comment: 28 pages, 10 figures, sumitted to American Journal of Physic
Integrated system to perform surrogate based aerodynamic optimisation for high-lift airfoil
This work deals with the aerodynamics optimisation of a generic two-dimensional three element high-lift configuration. Although the high-lift system is applied only during take-off and landing in the low speed phase of the flight the cost efficiency of the airplane is strongly influenced by it [1]. The ultimate goal of an aircraft high lift system design team is to define the simplest configuration which, for prescribed constraints, will meet the take-off, climb, and landing requirements usually expressed in terms of maximum L/D and/or maximum CL. The ability of the calculation method to accurately predict changes in objective function value when gaps, overlaps and element deflections are varied is therefore critical. Despite advances in computer capacity, the enormous computational cost of running complex engineering simulations makes it impractical to rely exclusively on simulation for the purpose of design optimisation. To cut down the cost, surrogate models, also known as metamodels, are constructed from and then used in place of the actual simulation models. This work outlines the development of integrated systems to perform aerodynamics multi-objective optimisation for a three-element airfoil test case in high lift configuration, making use of surrogate models available in MACROS Generic Tools, which has been integrated in our design tool. Different metamodeling techniques have been compared based on multiple performance criteria. With MACROS is possible performing either optimisation of the model built with predefined training sample (GSO) or Iterative Surrogate-Based Optimization (SBO). In this first case the model is build independent from the optimisation and then use it as a black box in the optimisation process. In the second case is needed to provide the possibility to call CFD code from the optimisation process, and there is no need to build any model, it is being built internally during the optimisation process. Both approaches have been applied. A detailed analysis of the integrated design system, the methods as well as th
Towards Urban Air Mobility: NASAs Quadcopter Air Taxi Concept
Urban Air Mobility (UAM) is envisioned to be the future air transportation system over populated areas, where everything from small package delivery drones to passenger-carrying air taxis are able to interact safely and efficiently. The capacity of multi-rotor vehicles to perform vertical takeoff and landing (VTOL), together with their great maneuverability, make them an excellent choice for UAM aircraft. The accurate prediction of multirotor vehicles performance and acoustics is very challenging due to the unsteady and complex flows, as well as the aerodynamic interactions. By running high-fidelity computational fluid dynamics simulations on NASA supercomputers, researchers model the complex aerodynamics of multi-rotor flows, getting us closer to making UAM a reality
Aerodynamic Optimization of High-Speed Trains Nose using a Genetic Algorithm and Artificial Neural Network
An aerodynamic optimization of the train aerodynamic characteristics in term of front wind action sensitivity is carried out in this paper. In particular, a genetic algorithm (GA) is used to perform a shape optimization study of a high-speed train nose. The nose is parametrically defined via Bézier Curves, including a wider range of geometries in the design space as possible optimal solutions. Using a GA, the main disadvantage to deal with is the large number of evaluations need before finding such optimal. Here it is proposed the use of metamodels to replace Navier-Stokes solver. Among all the posibilities, Rsponse Surface Models and Artificial Neural Networks (ANN) are considered. Best results of prediction and generalization are obtained with ANN and those are applied in GA code. The paper shows the feasibility of using GA in combination with ANN for this problem, and solutions achieved are included
A linear systems analysis of the yaw dynamics of a dynamically scaled insect model
Recent studies suggest that fruit flies use subtle changes to their wing motion to actively generate forces during aerial maneuvers. In addition, it has been estimated that the passive rotational damping caused by the flapping wings of an insect is around two orders of magnitude greater than that for the body alone. At present, however, the relationships between the active regulation of wing kinematics, passive damping produced by the flapping wings and the overall trajectory of the animal are still poorly understood. In this study, we use a dynamically scaled robotic model equipped with a torque feedback mechanism to study the dynamics of yaw turns in the fruit fly Drosophila melanogaster. Four plausible mechanisms for the active generation of yaw torque are examined. The mechanisms deform the wing kinematics of hovering in order to introduce asymmetry that results in the active production of yaw torque by the flapping wings. The results demonstrate that the stroke-averaged yaw torque is well approximated by a model that is linear with respect to both the yaw velocity and the magnitude of the kinematic deformations. Dynamic measurements, in which the yaw torque produced by the flapping wings was used in real-time to determine the rotation of the robot, suggest that a first-order linear model with stroke-average coefficients accurately captures the yaw dynamics of the system. Finally, an analysis of the stroke-average dynamics suggests that both damping and inertia will be important factors during rapid body saccades of a fruit fly
Army-NASA aircrew/aircraft integration program. Phase 5: A3I Man-Machine Integration Design and Analysis System (MIDAS) software concept document
This is the Software Concept Document for the Man-machine Integration Design and Analysis System (MIDAS) being developed as part of Phase V of the Army-NASA Aircrew/Aircraft Integration (A3I) Progam. The approach taken in this program since its inception in 1984 is that of incremental development with clearly defined phases. Phase 1 began in 1984 and subsequent phases have progressed at approximately 10-16 month intervals. Each phase of development consists of planning, setting requirements, preliminary design, detailed design, implementation, testing, demonstration and documentation. Phase 5 began with an off-site planning meeting in November, 1990. It is expected that Phase 5 development will be complete and ready for demonstration to invited visitors from industry, government and academia in May, 1992. This document, produced during the preliminary design period of Phase 5, is intended to record the top level design concept for MIDAS as it is currently conceived. This document has two main objectives: (1) to inform interested readers of the goals of the MIDAS Phase 5 development period, and (2) to serve as the initial version of the MIDAS design document which will be continuously updated as the design evolves. Since this document is written fairly early in the design period, many design issues still remain unresolved. Some of the unresolved issues are mentioned later in this document in the sections on specific components. Readers are cautioned that this is not a final design document and that, as the design of MIDAS matures, some of the design ideas recorded in this document will change. The final design will be documented in a detailed design document published after the demonstrations
A multifidelity multiobjective optimization framework for high-lift airfoils
High-lift devices design is a challenging task as it involves highly complex flow features while being critical for the overall performance of the aircraft. When part of an optimization loop, the computational cost of the Computational Fluid Dynamics becomes increasingly problematic. Methods to reduce the optimization time has been of major interest over the last 50 years. This paper presents a multiobjective multifidelity optimization framework that takes advantage of two approximation levels of the flow equations: a rapid method that provides quick estimates but of relatively low accuracy and a reference method that provides accurate estimations at the cost of a longer run-time. The method uses a sub-optimization, under a trust-region scheme, performed on the low-fidelity model corrected by a surrogate model that is fed by the high-fidelity tool. The size of the trust region is changed according to the accuracy of the corrected model. The multiobjective optimizer is used to set the positions of the ap and slat of a two-dimensional geometry with lift and drag as objectives with an empirical-based method and a Reynolds Averaged Navier-Stokes equations solver. The multifidelity method shows potential for discovering the complete Pareto front, yet it remains less optimal than the Pareto front from the high-fidelity-only optimization
Collaborative Engineering Environments. Two Examples of Process Improvement
Companies are recognising that innovative processes are determining factors in competitiveness. Two examples from projects in aircraft development describe the introduction of collaborative engineering environments as a way to improve engineering processes. A multi-disciplinary simulation environment integrates models from all disciplines involved in a common functional structure. Quick configuration for specific design problems and powerful feedback / visualisation capabilities enable engineering teams to concentrate on the integrated behaviour of the design. An engineering process management system allows engineering teams to work concurrently in tasks, following a defined flow of activities, applying tools on a shared database. Automated management of workspaces including data consistency enables engineering teams to concentrate on the design activities. The huge amount of experience in companies must be transformed for effective application in engineering processes. Compatible concepts, notations and implementation platforms make tangible knowledge like models and algorithms accessible. Computer-based design management makes knowledge on engineering processes and methods explicit
- …
