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High-lift devices design is a challenging task as it involves highly complex flow features
while being critical for the overall performance of the aircraft. When part of an optimization
loop, the computational cost of the Computational Fluid Dynamics becomes increasingly
problematic. Methods to reduce the optimization time has been of major interest over the
last 50 years. This paper presents a multiobjective multifidelity optimization framework
that takes advantage of two approximation levels of the flow equations: a rapid method
that provides quick estimates but of relatively low accuracy and a reference method that
provides accurate estimations at the cost of a longer run-time. The method uses a sub-
optimization, under a trust-region scheme, performed on the low-fidelity model corrected
by a surrogate model that is fed by the high-fidelity tool. The size of the trust region is
changed according to the accuracy of the corrected model. The multiobjective optimizer
is used to set the positions of the flap and slat of a two-dimensional geometry with lift and
drag as objectives with an empirical-based method and a Reynolds Averaged Navier-Stokes
equations solver. The multifidelity method shows potential for discovering the complete
Pareto front, yet it remains less optimal than the Pareto front from the high-fidelity-only
optimization.

I. Introduction

Designing multi-element airfoils is a challenging and time-consuming task, however efficiency of the
high-lift systems is primordial1 both for production cost but also during the exploitation of the aircraft.2

High-lift devices allow an increase of the lift generated by an aircraft wing. Their design aims at maximizing
the maximum lift (highest lift generated by the airfoil before stall) for landing while having the highest lift-
over-drag ratio for take-off.3 The complexity of their design promotes the use of optimizer.4–6 Furthermore,
the aerodynamic flow around such geometries is very complex to model: the spatial discretization, known
as meshing, is a complex task, and the physics of the flow intricate.7,8 A couple of decades ago, the
estimation of their performances was mainly performed with wind tunnel, a long and costly process. With
the emergence of computational power, two different fidelity levels of Computational Fluid Dynamic (CFD)
appeared during the last 50 years:9 relatively fast methods, but inaccurate in highly non-linear regions of
the objective space, based on empirical data and very simplified models, and more recently more complex
models, but still simplified, based on the Reynolds Averaged Navier-Stokes3 (RANS) intended to be more
general.

This paper aims at using those different levels of fidelity available in industry to perform optimization
with a reduced running time while conserving the accuracy of the RANS simulation. Such method are
called multifidelity optimization and has been the subject of many papers over the last decades. Most of
the methods are based on the Surrogate Based Optimization (SBO)10 that requires a sampling prior the
optimization. A mathematical model is then fitted on those points and an optimization is performed. New
points can also be evaluated and used to update the surrogate model.11 Evolutionary algorithms are often
used with surrogates to find global optimum while limiting the running time.12 However this does not address
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the use of multiple fidelities available during optimization. The simplest method is similar to the process
used by industries: a quick optimization is first performed on the low-fidelity function and promising points
are fed to the high-fidelity evaluator. However, good points can be discarded by the inaccurate low-fidelity
model.13–15 Nowadays a lot of work is dedicated towards the trust region methods:16,17 the optimization on
the low-fidelity model, corrected by a surrogate model, is performed under a trust region, where the corrected
model is known to be accurate. If a sufficient decrease is achieved by the resolution of the sub-problem, the
optimum is evaluated by the high-fidelity model and its value is used to improve the fidelity of the corrected
model. In Alexandrov et al.’s16 work, the corrected model is constructed so that its value and its gradient
at the sampling points are exact (first-order accurate). The method was then extended so that the gradients
are no-longer required18–23 to build the model (zero-order accurate). All the previous methods are designed
to converge toward the nearest local minimum. Jarett et al.24 extended the work to use Tabu Search, a
step-based meta-heuristic optimizer for global convergence.

Multifidelity applied to multi-element optimization is still uncommon. Alexandrov et al.25 applied their
first-order consistent method to such case. The results were encouraging with a reduction of 5 times of
the number of high-fidelity calls. Finally, Demange et al.26 applied the derivative-free multifidelity method
of Jarett et al. to a two-dimensional multi-element airfoil. This paper is an extension of their work to
multiobjective optimization. Section II presents the multifidelity multiobjective method. The method is then
applied to the multi-element two-dimensional Garteur airfoil27 in section III. Finally section IV presents
conclusion and opens to future work.

II. Multifidelity Optimization Methodology

The method developed in this paper is an extension of the work carried by the authors in Ref. 26. Two
approximations of the aerodynamic physics are used in order to speed up the convergence of the optimizer
while retaining accuracy from the most accurate model. The first model is relatively fast (less than a minute)
but relies more on empirical corrections; it will be called low-fidelity estimator. One can argue that this
model includes many empirical correction that are more physics-accurate, yet the accuracy is arguable when
going away of the applicability range; this is when the higher fidelity predictor, which have a more consistent
response, will come into play. The latter is more accurate but requires more time to run (in the order of 15
minutes for this case, but for industrial applications, time can go up to several hours); it will be referred in
the rest of the document as high-fidelity estimator.

Let’s define the low-fidelity function as flow : Rn 7→ Rl and the high-fidelity function as fhigh : Rn 7→ Rl;
where n is the design space size and l is the objective space size. In addition to the work presented in Ref. 26,
the objective space dimension can be greater than 1: l ≥ 1. The goal is the minimization (or maximization)
of the high-fidelity function as defined in (1), where x is a vector of dimension n and D is a subset of Rn:

min
x∈D

fhigh(x). (1)

The problem (1) is solved by a derivative-free trust region method presented by Conn et al.19 Instead of
directly solving the high-fidelity problem, an approximation model is used, and at iteration k, the problem
(2) is solved under a trust region Tk:

min
x∈Tk

mk(x). (2)

The trust region is usually defined as a ball centered on the initial point of the sub-problem but in Ref. 26, a
second definition based on the number of improvements of the corrected model is used. This paper only uses
the step-based trust region presented in more details in section II.C. The model mk : Tk 7→ Rl is defined
by (3) at iteration k. It is formed by the sum of a surrogate model ek representing the difference between
the low- and the high-fidelity functions (the error in other terms) and of the low-fidelity function.

mk(x) = flow(x) + ek(x) (3)

The single objective framework is presented in Ref. 26. The full diagram of its extension to multiobjective
is shown in figure 1; the next sections follow the diagram and explain each part. Similarly to the previous
work, no sampling is required to start the optimization. A starting point is given and evaluated with both
low- and high-fidelity functions to provide a first correction. The master script then handles the general
progress of the multifidelity optimization.
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II.A. Sub-problem optimizer

The sub-problem optimization solves the problem (2). To do so, a surrogate of the error for each objective
is constructed as described in section II.E. Thereafter for each function call, all surrogates are evaluated at
the current point to obtain ek(x) defined in (2) and the low-fidelity function is evaluated. The corrected
function mk is obtained by adding for each objective the low-fidelity function and the correction model. The
use of Euclidean trust region definition19 does not apply well to multiobjective optimization since solutions
are more scattered. Therefore this work focuses on the step-based trust region defined by the number of
times the Pareto front is improved, specifically, the number of times a dominating or Pareto-equivalent point
is found. Once the required number of Pareto improvements is reached, the sub-problem is considered solved
and the candidate Pareto front is fed back to the master script.

II.B. Computation of the ratio of improvement

The framework is extended to handle the high-fidelity function computation in parallel in order to soften the
computational time overhead introduced by the increased number of points given by the sub-optimizer. This

is used to compute, for each point and for each objective, the ratio of improvement ρk = [ρ
(1)
k , ρ

(2)
k , . . . , ρ

(l)
k ]

defined by

ρ
(i)
k =

f
(i)
high(xk)− f (i)

high(xs)

m
(i)
k (xk)−m(i)

k (xs)
, i ∈ [1, . . . , l]. (4)

Depending on the optimizer used, the candidate Pareto front will have different number of points, sometimes
a relatively high number. Because each point evaluation has a high time cost, and because high-fidelity points
are used to correct the function via a surrogate model, the number of points to evaluate must be limited.
This is achieved by filtering the candidate Pareto front based on the Euclidean distance between each point.
All unsuccessful points (configuration that results in a failed high- or low-fidelity function evaluation) are
discarded. The remaining ones are retained to be compared with the actual Pareto front and to be used at a
later stage to construct the surrogate models. The authors would like to highlight the increased number of
high-fidelity points computed at each sub-optimizer iteration compared to its single-objective counterpart.
It leads to a faster correction of the design space for a similar running time, increasing the accuracy of the
correction.

II.C. Trust region management

In order to handle the increased number of points and the concept of Pareto-equivalence, memories are
implemented: the one coming from the sub-optimizer (called current Pareto set), the one of the overall
optimization (called overall Pareto set) and the current point that is the point from where the sub-optimizer
will start (and also from which the trust region is defined); this point changes only after successful iterations.

Since each point of the current Pareto front is evaluated with the high-fidelity function, the front is
updated accordingly: some points that would be Pareto equivalent using fcorr won’t have the same status
once compared with fhigh. Figure 3 shows, with star markers, the Pareto front obtained from the sub-
optimizer using values of the corrected function fcorr. In the sub-iteration presented, no points are filtered
out. Each candidate point is then updated with its high-fidelity value depicted in figure 3 with arrows joining
fcorr and fhigh. Red markers represent the Pareto-optimal points using the high-fidelity function; only those
points are kept for the determination of the iteration status.

The ratio of improvement’s definition was extended according to equations (4) and (6) in order to be
used with multiple objectives as follow:

• for each candidate point pk = [f
(1)
high(xk), . . . , f

(l)
high(xk)] in the objective space,

– if the number of objectives having their ratio of improvement greater than ρbad is higher or equal
to the trigger nf , the point pk is marked moderate;

– if the number of objectives having their ratio of improvement strictly greater than ρgood is higher
or equal to the trigger nf , the point pk is marked good ;

– otherwise, the point is marked bad.

• If the number of points pk marked:
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– moderate is greater than the trigger np, the overall iteration is considered moderate,

– good is greater than the trigger np, the overall iteration is considered good,

– otherwise the iteration is considered bad.

The trust region is increased or shrank according to the status of the current iteration as in (5):

∆k+1 =


∆k − γs |{pmoderate}| < np (bad prediction)

∆k |{pmoderate}| ≥ np (moderate prediction)

∆k + γe |{pgood}| ≥ np (good prediction).

(5)

II.D. New point selection

The current Pareto front is then merged with the overall one and the number of points improving the Pareto
front is counted. If at least one point improves the Pareto front, a new point xs is randomly chosen from the
overall Pareto front, otherwise the sub-optimization is restarted from the same point, but this time, with a
more accurate corrected function:

xk+1 =


xs if |{pgood}| ≥ np

and ∃p ∈ {pgood} ,∀p0 ∈ {pgood \ p} ∃i ∈ [1, . . . , l], f
(i)
high(xp) < f

(i)
high(xp0

)

xk else,

(6)

with xp and xp0
being the coordinates in the design space of the respective points p and p0.

The random selection is biased towards low-density part of the Pareto front in order to allow its entire
exploration. To do so the Euclidean distances di between each consecutive point from the Pareto front
Pfront = {p1, . . . ,pf}, containing f points, are computed according to (7):

∀i ∈ [1, . . . , f − 1], di = ‖pi+1 − pi‖, (7)

and then used as weight for the random selection.

II.E. Surrogate Model

The method does not require any sampling: it starts from a single point evaluated both with low- and high-
fidelity function during initialization, then once at least two sampling points are available in the database, a
surrogate model is built. This surrogate is then used each time the low-fidelity method is evaluated during
the trust region optimization to provide a correction. Thus the surrogate must be able to be constructed with
sparse data points, and should not require time to evaluate new points or to be constructed. Moreover, data
used to build the surrogate are coming from the CFD solver near maximum lift, a non-steady phenomena;
the convergence achieved is usually lower than for a steady flow, introducing noise in the results. Radial
Basis Function (RBF) are well suited when a limited number of training data is available,28 in addition they
proved to be robust when used with a Gaussian kernel function. More details on its implementation can be
found in Ref. 26.
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Figure 1. Multiobjective multifidelity optimization framework
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III. Multiobjective High-Lift Airfoil Optimization

III.A. Sub-Problem Optimizer

The resolution of the sub-problem (2) requires the use of an optimizer. The aerodynamic optimization of
high-lift devices is inherently multiobjective.4 One way to solve this kind of problem is to use a single
objective optimizer solving a weighted sum (or product29) of the objectives. The selection of the weights
introduces bias in the optimization problem, and therefore the optimum found will be dependent on the
choice of the weights.30 If a point have one of its objective better and one worst than another point, it is
not possible to consider one better than the other; all those points form the Pareto front. This set of points
represent the optima of the function to optimize considering all objectives.

As in the single objective framework,26 the Multiobjective Tabu Search (MOTS) implementation31,32

from Cambridge University is used to solve the sub-problem. The algorithm uses a Hooke and Jeeves33

move for the local search. At each iteration, all the directions are tested, then compared and the best one, if
allowed, is chosen for the next iteration. To prevent being trapped in local minimum, MOTS uses memories:

short term memory records all the visited points. They become Tabu, meaning that already evaluated
points cannot be revisited. This enables to climb away from local minimum.

medium term memory records the best points found during the search. In multiobjective optimization,
those points are Pareto-equivalent and form the Pareto front. They are used to restart local search
once no new optima are found; this move is called intensification

long term memory records the points visited in the design space for exploring under-explored region once
no new optima are found; this move is called diversification.

MOTS presents a good compromise between global exploration and local search while being robust against
noise. It is worth noting that MOTS does not require gradients of the function which are hard to obtain for
such high angle of attack study.

III.B. Optimization Set-up

The test case presented in Ref. 26 is also used in this study. The geometry and the design variables (see
figure 2) are kept identical: the goal of the optimization is to set the slat and flap positions and deflection
angles in order to maximize the two-dimensional performance at take-off. The flow conditions27 (see table 1)
remains also the same. The optimization is performed at fixed angle of attack taken as the angle of attack
at maximum lift αclmax .

y/
c

x/c

Figure 2. GARTEUR airfoil

Multiple objectives are used, therefore the performances measure of the configuration are no longer
restricted to the lift-over-drag ratio. The lift and drag can now be distinguished giving more freedom in the
selection of the best positions. In this way, the objectives are set in (8).34

f (1) = − cl
cldatum

, f (2) =
cd

cddatum

(8)

III.C. Aerodynamic Tools

The same Computational Fluid Dynamics tools are used than in Ref. 26.
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Parameters Notation Value

Reynolds number Re 4.10 · 106

Mach number M 0.20

Fixed Angle Of Attack αclmax
24 [deg]

Trigger for bad prediction ρbad 0.0

Trigger for good prediction ρgood 0.0

Trust region shrink value γs 2

Trust region expansion value γe 2

Number of objectives required nf 1

Number of points required np 2

Initial trust region size τ0 6

Table 1. High-Lift optimization parameters

High-Fidelity The commercial tool Fluent35 is used as the most accurate tool for the study. The mesh
is generated with ICEM36 and a mesh regeneration method is preferred due to the large movement allowed
for the slat and flap. The same reliable and robust meshing method than in Ref. 26 is used.

Reynolds Averaged Navier Stokes (RANS) simulations are the workhorse of the industry37 to obtain
accurate but relatively fast aerodynamic performances. This model along with a Spalart-Allmaras turbulence
model4 is used. Upwind second-order are used for all equations from iteration 500 to reduce divergence at
start. The flow is considered converged when residuals fall below 10−5, or if the number of iterations is
greater than 2000a. Because convergence is not always achieved, the lift and drag coefficients are averaged
over the last 100 iterations.

Validations against wind tunnel data is performed in Ref. 26. A single point evaluation requires between
10 to 20 minutes to run. This will be the expensive function in our study.

Low-Fidelity The MSES software from Professor Drela, MIT is used as the low-fidelity estimator. It is
a coupled viscid/inviscid software: the inviscid Euler equations are coupled with a multiequation integral
formulation, the coupling being performed with a Newton solver. This software handles wakes from each
elements and can predict separation in the cove regions. It allows a good prediction of the lift and drag even
near maximum lift.9

When used in challenging aerodynamic case, such as high-lift conditions, a single point evaluation requires
up to 2 minutes. Massive separation, that can easily appear for bad design generated during optimization,
produces divergence in the coupling procedure. This phenomena is amplified by the quality of the discretiza-
tion used for the Euler solver. Despite the attention given to the selection of the mesh points distribution
on the profile, divergence occurs for bad designs resulting in a restricted design space.

Low-Fidelity To reduce the time needed by the low-fidelity estimator, ESDU methods38–42 were imple-
mented to predict the maximum lift and its associated drag. Although the time required for this estimation
is very small (of the order of 500 ms) leading to large reduction in the sub-problem resolution time, the
method applicability is restrictive. Outside those bounds, the method provides either wrong trends, or no
trends at all.

III.D. Results

Before drawing conclusions on the final solution set, some remarks regarding the sub-optimization are given
in the following section.

III.D.1. Sub-Iteration

Figure 3 presents a result from the third sub-optimization: MOTS returns a Pareto front that contains
points that should improve both objectives when considering the corrected function (shown with stars).

aThis may be not enough to have fully converged flow but is sufficient to capture most of the flow physics
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After evaluation with the high-fidelity function (with gray points, and arrows pointing from the corrected
function to the high-fidelity one), those points reveal their true nature: only 3 points are Pareto equivalent;
the others are discarded but still used to improve the corrected function for the following iterations. Out
of those 3 points, one does not improve the overall Pareto front, depicted in blue in figure 3, but because
the two other points improve the Pareto front, this iteration is considered successful and a new point will
randomly be selected for the next iteration.

The optimization is run using either ESDU or MSES. Table 2 shows the iteration status distribution for
the overall multifidelity optimizations and figure 4 shows their distribution with respect to the iterations.
Considering ESDU optimization, the distribution is well balanced (apart from iteration 40 to 80) which
indicates a good selection of the parameters presented in table 1. The high number of bad designs from
iteration 40 to 80 is the result of the sub-optimizer always sending back a similar fcorr-Pareto front. Therefore,
at each iteration only a small number of points are computed with CFD leading to a slow improvement of the
correction. This is also found on the MSES optimization but no improvement is found during later iterations
leading to an early stop. Finally, for the first 30 iterations, MSES and ESDU multifidelity optimizations
presents the same behavior. Compared to the status good for the ESDU optimization, there are more restart
status, which occurs when the sub-optimizer and the corrected function does a good job of providing well
predicted points, but not good enough when compared with the overall Pareto front. This status appears
mostly when ESDU gets unstuck but is also present on the MSES optimization. Despite the increased
number of sampled points at each iteration, the number of refused points (marked as bad) is still higher than
the number of accepted points: this highlights an issue in the accuracy of the corrected function that could
be coming from either the correction or the low-fidelity function.

−CL

C
D

Datum
Sub-optim start point (iter. 2)
Sub-optim PF (fcorr)

Sub-optim PF (fcorr) filtered

Sub-optim solutions (fhigh)

Sub-optim PF (fhigh)

Overall Pareto Front (fhigh)

Figure 3. Multifidelity sub-optimization results with ESDU model at iteration 3. Datum is the starting point of the
overall optimization. Points coming from the sub-optimizer are marked with a star and use their corrected function
values; points kept after filtering are circled. Each point is evaluated with the high-fidelity function and their new
position is plotted with gray circles; an arrow links the corrected and high-fidelity functions points. High-fidelity points
that are Pareto-equivalent are marked with red circles. Finally, the overall Pareto front at the end of the iteration is
shown in blue. PF stands for Pareto Front.

III.D.2. Final Pareto-front and Convergence

The validation of the method is done by comparing the Pareto front obtained by the fhigh-only optimization
with those obtained with the multifidelity framework. This is shown in figure 5 after the same number
of high-fidelity function calls (CFD calls, as opposed to function evaluations —eval— that contains also
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Bad iteration
Pareto not improved: restart

Start from new point
Bad iteration

Pareto not improved: restart
Start from new point

0 20 40 60 80 100 120 140 160 180
Iteration

MSES

ESDU

Figure 4. Iteration status distribution per iteration during the ESDU and MSES multifidelity optimizations

Total Bad Restart Good iteration

ESDU 170 92 47 31

MSES 76 57 4 15

Table 2. Global iterations status distribution during ESDU and MSES multifidelity optimizations

database recalls). The MSES multifidelity optimization though has a lower number of high-fidelity due to
the early stall. Although the multifidelity optimizations do not reach the same accuracy than the high-fidelity
optimization (similar outcome than for the single objective optimization26), the Pareto front is much more
spread out giving much quicker the upper and lower part of the solution, parts being Pareto-dominant over
the high-fidelity’s one.

The convergence of the optimization is analyzed by plotting in figure 6 the Pareto fronts at 6 stages of the
optimizations. Results observed in ref. 26 cannot be extended for the convergence of this optimization. The
multifidelity optimization’s Pareto front is constantly behind its high-fidelity-only counterpart. However,
from the first iteration, the multifidelity front covers directly a bigger part of the objective space, and it
remains true until the end of the optimization as shown in figure 5. MSES allows a quicker exploration of
the low-drag part of the design space but seems to struggle to find good solutions in the high-lift part. Even
though a smaller number of high-fidelity calls is used by the MSES optimization, the conclusion can hardly
be extended to the elapsed time needed for the optimization. No time comparison is performed between
high- and multifidelity since a different number of cores was allowed for the optimization. However, figure 7
shows the multifidelity time distribution between CFD and sub-optimization for each iteration. Depending
on the low-fidelity tool used, the most time-consuming part changes between the CFD part for the quickest
low-fidelity tool to the sub-optimization part for MSES, the most expensive tool . Therefore the low-fidelity
model will have an impact on the overall time needed for the optimization but will be smeared out if the
CFD time increases, for finer mesh or three-dimensional applications.

Figure 8 presents for each Pareto point the three optimizations’ design variables with a parallel-coordinates
plot:43 each vertical axis represents a variable (first six are design variables and last two are the objective
variables), and each colored line represents a point in the 8-dimensions space. The differences on the Pareto
front are also seen on the design space. However some similar behavior are found between multifidelity and
high-fidelity-only optimizations: although the slat x and y positions are not equal, their relative positioning
is similar (lines between x and y slat positions are nearly parallel). Slat and flap deflections are also similar
but more spread out for the multifidelity ones which explains the greater extent of the their Pareto fronts.
Multifidelity solutions seem to be less advanced that the high-fidelity one: most of design variables are in the
right direction but closer to the starting point, comment even more true for MSES that might have trouble
to converge for design variables far from the starting point. Interestingly, the high-fidelity-only optimization
considers only one positioning on the x-axis of the slat and a reduced number of positioning on its y-axis.
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Figure 5. Pareto front after the same number of high-fidelity calls for the fhigh-only and both multifidelity optimizations
(ESDU and MSES). The number of evaluation (eval) takes into account both CFD runs and the use of already-run
points during the optimization whereas CFD only takes into account the expensive calls. The multifidelity points are
points computed by the high-fidelity function. The bigger markers are the configurations used for the deeper analysis.

III.D.3. Low-Fidelity Effect

To understand the effect of the low-fidelity on the final multifidelity solutions, figure 8 presents as well the
Pareto front and design variables associated with the optimization performed only with the ESDU model as
low-fidelity function. Firstly, none of the Pareto-equivalent points are improving the starting point: the low-
fidelity does not give reliable information in the high-CL and low-CD part of the objective space. Secondly, we
can focus on the design space regions found with the low-fidelity-only optimization. The solutions are much
more spread out compared to the high-fidelity-only and multifidelity optimizations; yet, if only the region
with most of the designs are considered, ESDU gives opposite trends for the slat position and deflection. The
flap positions are however well estimated since ESDU tends to push the flap downstream, behind the main
element, similarly to the high-fidelity position. Thus, ESDU methods is relatively accurate for positioning
the flap, which accounts for most of the lift gain, but fails to position the slat in the required position to
prepare the flow for the aggressive flap positioning; this results in a flow that cannot stay attached, and
therefore results in a loss of lift. This illustrates the complicated objective space resulting from the highly
non-linear behavior of the Navier-Stokes equations. The multifidelity framework is doing a great job at
correcting the low-fidelity estimation, especially seen on the slat positioning, but does not use sufficiently
the good information, particularly on the x-axis flap positioning.

III.D.4. Analysis of 3 Configurations

To further understand these discrepancies, the flow around the optimized geometry is compared for three
positioning shown with bigger markers in figure 5. They are selected to represent: the maximum lift, the
minimum drag and the compromise solution of the high-fidelity-only and multifidelity optimizations. The
two extremes are the approximations of the anchors points and defines the bounds of the solution set. Those
two points also define the utopia point29 Pu, which is the point having as objective space coordinates the
corresponding anchor’s coordinate:

Pu = {P (i)
u , i ∈ [1, . . . , l]} with P (i)

u = min
x∈D

f
(i)
high(x). (9)
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Figure 6. From top left to bottom right: Pareto front after 10, 50, 100, 250, 500 and 1000 CFD calls for both the high-
and multifidelity optimizations.
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multifidelity optimization performed with ESDU and on the right with MSES.
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This point is approximated with the Pareto front obtained: P
(i)
u ≈ P (i)

uapprox = minp∈P p
(i) with P the Pareto

front. Similarly, the nadir Pn point can be approximated with P
(i)
napprox = maxp∈P p

(i).
The compromise point Pc is then estimated by using the closest Pareto-front’s point in the sense of the

Euclidean distance after normalizing each point with the anchors:

Pc = min
p∈P
‖p′ − Pu‖ (10)

with P being the Pareto front and p′ = [p′(1), . . . , p′(l)]:

p′(i) = (p(i) − P (i)
uapprox

)/(P (i)
napprox

− P (i)
uapprox

). (11)

The approximated anchors and compromise points are shown with a parallel-coordinates plot in figure 9
for the three optimizations; the corresponding geometries are shown in figure 10. Table 3 presents the
similar tendencies observed: the slat positioning presents the highest variability since apart from the low-
drag configuration, its position differs for all methods. The flap positions however are more consistent: as
expected the high-lift solutions have a high flap deflection, the low-drag solutions a low-deflection and the
compromise a mid-position. All the high-lift solutions present a smaller overlap (flap more aft). In addition
the multifidelity MSES high-lift solution shows a good agreement with the high-fidelity-only ones for all flap
variables and slat deflection.
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Figure 9. Normalized parallel-coordinates plot of the selected configurations representing the low-drag, compromise
and high-lift configurations for the high- and both multifidelity optimizations.

Figure 11 shows the high-fidelity and multifidelity optimizations’ lift and drag breakdown for each element,
with the values normalized with the baseline configuration. The ESDU multifidelity high-lift solution presents
a higher global lift due to the main element creating more lift whereas the high-fidelity-only optimization is
driven towards an increased of the flap loading. In return the drag is increased for all elements of the ESDU
multifidelity solution as well as the high-fidelity-only, but to a lower extent. This is confirmed by looking at
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Slat Flap

High-lift No tendency Low overlap and high deflection

Compromise No tendency High yflap and mid deflection

Low-drag Mid δθslat High δθflap

Table 3. Similar tendencies on selected points
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the flow wakes in figure 12: the multifidelity slat’s wake is lower compared to the high-fidelity’s one, but in
return the global wake from the high-fidelity is reduced. This could be explained by a better understanding of
the wake interaction by the high-fidelity-only optimization. This interaction is included in the ESDU method
via empirical methods, but apparently not sufficiently to capture all its non-linearities. MSES multifidelity
high-lift solution however increased drastically the slat and flap loading which allows the same production
of lift than the ESDU multifidelity but generates also a lot more drag. Concerning the low drag solutions,
both multifidelity and high-fidelity-only reduce the drag from all elements, the multifidelity ones being the
most improved. The high-fidelity-only is attracted toward a more loaded flap region compared to the datum
and multifidelity solutions. No clear remarks can be deduced from the contour plots in figure 12. Finally,
regarding the compromise solution, again the flow layout is different between the two methods: ESDU
multifidelity solution loads more the slat at the cost of lower loading on main and flap but benefiting the
drag. Still, MSES solution seems closer in the physics sense to the high-fidelity solution compared to the
multifidelity ESDU one. Hence increasing the low-fidelity accuracy seems to bring the multifidelity behavior
closer to the high-fidelity one.

Concluding the results discussion, both methods’ Pareto-front trends are similar, but when focusing on
anchors and compromise solutions, many dissimilarities are observed. Likewise, the effect of the low-fidelity
method cannot be separated from the final solution but an more accurate low-fidelity seem to lead to a
better capture of the physics during the optimization.
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Figure 11. Lift and drag coefficients breakdown for both high- and multifidelity optimizations’ high-lift, compromise
and low-drag solutions. Values are normalized with the baseline configuration.

IV. Conclusions and Future Work

The multifidelity framework for optimization presented in Ref. 26 is extended to be used in a multiobjec-
tive optimization. Two fidelity levels are used: one of moderate accuracy but fast to run and another one,
more accurate and more general but requiring more time to run. The method performs the optimization
on the low-fidelity model corrected by a Gaussian RBF surrogate model. The optimization is done in a
trust region defined by the number of improvements of the corrected function. The method is applied to
the Garteur airfoil26 with two objectives: the lift and the drag coefficients relative to the datum configura-
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Figure 12. Turbulent viscosity contour plots for each selected points, namely high lift, compromise and low drag.
Streamlines are plotted in black and iso-Mach number contour lines are in gray.
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tion. The multifidelity multiobjective optimizer presented here yields to a Pareto front more extended than
the solution from the high-fidelity-only optimizer. Yet, the Pareto-front from the multifidelity optimization
appears to be dominated by the high-fidelity-only’s one. A study of the flow for three points on the Pareto
front is performed without drawing any conclusion as for the effect of the low-fidelity function on the final
solutions. Yet, an increase in the accuracy of the low-fidelity seems to produce optima solutions closer to
the high-fidelity-only ones.

Future work will be focusing on the comparison of different sub-optimizers and a more thorough analysis
on the effect of the low-fidelity method on the final solution. Finally, the use of industrial three-dimensional
test cases will be investigating to take advantage of the higher time ratio between high- and low-fidelity
computations.
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