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Abstract. An aerodynamic optimization of the train aerodynamic characteristics in term
of front wind action sensitivity is carried out in this paper. In particular, a genetic algo-
rithm (GA) is used to perform a shape optimization study of a high-speed train nose. The
nose is parametrically de�ned via Bèzier Curves, including a wider range of geometries
in the design space as possible optimal solutions. Using a GA, the main disadvantage to
deal with is the large number of evaluations need before �nding such optimal. Here it is
proposed the use of metamodels to replace Navier-Stokes solver. Among all the posibili-
ties Response Surface Models and Arti�cial Neural Networks (ANN) are considered. Best
results of prediction and generalization are obtained with ANN and those are applied in
GA code. The paper shows the feasibility of using GA in combination with ANN for this
problem, and solutions achieved are included.
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1 INTRODUCTION

The increasing importance of trains as an alternative means of transport, which also
complements reducing the tra�c of an already overwhelmed communications network,
justi�es the need to carry out studies related to improve its performance. Even when the
train makes the most economical use of energy form of public transport, reducing energy
consumption is pretended. Consumption is directly related to its aerodynamic. Then, it
is necessary to perform aerodynamic studies of the train in order to improve its e�ciency.
The aim of the research is the de�nition of optimal nose shapes which involve a minimal
drag coe�cient. This is traditionally done by a trial-and-error procedure, but it is very
expensive in terms of machine and designer time, and rely heavily on previous analyses.
Instead, an automatic method of optimization of aerodynamic shapes is proposed here.
This method involves the use of genetic algorithms (GA) as the optimization tool1.

GA are a technique that mimic the mechanics of natural evolution. Once a popula-
tion of potential solutions is de�ned, it combines survival-of-the-�ttest concept to elimi-
nate un�t characteristics and utilizes random information exchange, with exploitation of
knowledge contained in old solutions, to e�ect a search mechanism with power and speed2.
Iteratively, better results are obtained until a solution closer to globally optimal solution
is reached. However, the main drawback when using GA is their need of a large number
of evaluations of the objective function. Furthermore, this problem is considerably more
important when evaluations are computational cost-e�ective.

To remedy this inconvenience, the use of metamodels is proposed here. The basic idea
of metamodels is to construct approximations of the analysis codes or numerical solvers
that are more e�cient to run, enabling a faster evaluation and optimization process.
Metamodeling involves choosing an experimental design for generating data, choosing a
model to represent the data, and then �tting the model to the observed data. Response
Surface Models3 (RSM) and Kriging models4 have been already applied as metamodels in
high-speed train optimization. In this paper, a comparative study of RSM and Arti�cial
Neural Networks is performed.

2 OPTIMIZATION METHODS

As it has been indicated, the objective is to geometrically optimize the nose of a high-
speed train by minimizing its drag coe�cient when it is exposed to a frontal wind. This
single-objective optimization problem can be de�ned by5

Minimize f(~x)

subject to gj(~x) ≤ 0 j = 1...m (1)

hl(~x) = 0 l = 1...n

xl
i ≤ xi ≤ xu

i i = 1...k

being ~x the vector of design variables and f(~x) the objective function. The optimal
design minimize this function. The inequality and equality constraints represent respec-
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tively constraints to be satis�ed by the optimal candidate and relations between its design
variables. The di�erent optimization methods existing are classi�ed depending on the or-
der of derivatives of the objective function used. Zero-order methods, such as random
search, simulated annealing and evolutionary algorithms (among which GA are included)
use only the function values in their search for the minimum, while �rst and second order
methods use respectively the �rst and second derivatives, commonly known as gradient
methods and Newton method. Although the latter are more precise, they require some
gradient information of the objective function, which can be a numerically intensive task,
especially if the number of design variables is large and if one single evaluation is nu-
merically expensive5. Moreover, the reliability and success of gradient methods generally
requires a smooth design space and the existence of only a single global extremum, or an
initial guess close enough to the global extremum that will ensure proper convergence6.
Since in the �eld of aerodynamics, objective functions often have multi-peaks7, it is ex-
pected that non-gradient methods will work more e�ciently. Then, for a multimodal and
high-dimensional design space GA are proposed as optimization method.

2.1 Genetic Algorithm

A GA is a stochastic optimization method based on darwinian natural evolution. It
repeatedly modi�es a set of individuals (population) considered as optimal candidates
by means of three operators, selection, crossover and mutation. At each iteration the
algorithm selects individuals at random from the current population to be parents, and
use them to produce the children for the next generation. Although such operation works
randomly it is driven in such a way that bene�cts the selection of those individuals who
result in the �ttest candidates. Children are produced either by making random changes
to a single parent (mutation operator) or by combining a couple of parents (crossover).
There are a large number of di�erent de�nitions of each operator1. Both operations are
performed with an speci�c probability, mutation probability Pm and crossover probability
Pc respectively. Once new individuals are obtained, the algorithm replaces the current
population with the children to form the next generation, and the population size remains
constant. The optimal values is always searched for within a group of possible solutions,
which is an important di�erence from other one-by-one basis search methods. Figure 1
shows schematically how the GA works. In order to stop the iterative process, a conver-
gence test according to a pre�xed stopping criteria is done after every new population is
evaluated. If this is satis�ed, it ends the cycle. Otherwise, it continues until convergence
is observed.

Each individual is de�ned as a codi�ed structure. The most common way to represent
each one is by binary code, so an individual is a bit string. This string is created by
concatenating a number of genes, being each one the codi�cation of each design variable.
Therefore, it is necessary to represent each possible optimal design (i.e. a high-speed train
nose shape) as a design vector. The design vector consists out of parameters that de�ne
the shape of the geometry. These parameters, and their respective range, must be chosen
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Evaluate objective function
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yes
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Figure 1: How the genetic algorithm works

carefully so that any geometry candidate to optimal is represented by them, while keeping
its number as low as possible in order to reduce the design space and help the optimal
search.

The objective function evaluation is the most crucial task in a GA performance. The
time it takes to carry out all the evaluations the algorithm needs to reach an optimal design
will determine the e�ciency of it. The total number of evaluations is directly related to
the population size and the number of generations. It is obvious that the population size
should be large enough to guarantee a satisfactory genetic diversity, which is essential to
the GA because it allows the algorithm to search a larger region of the design space10.
Thus, to cut down the time cost without a�ecting signi�catively the population size,
surrogate models (metamodels) are constructed from and then used in place of the actual
simulation models.

A schematical representation of the whole optimization scheme applied in this paper
is shown in �gure 2. A more detailed analysis of it is presented in the results section.
Within the GA �ow chart from �gure 1, these two tasks (individual codi�cation and
metamodel working) are included. In the following sections the parametric design of each
individual and a introduction about the metamodels utilized in this study are introduced
and developed deeply.
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Figure 2: Schematical representation of the whole optimization scheme
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3 OPTIMIZATION APPROACH

3.1 Parametric design of a high-speed train nose

In this section we present the parametrization of the nose shape of a high-speed train.
The aim is to represent any possible geometry as a design vector. Some publications
have introduced di�erent alternatives. Guilmineau12 proposes the use of potential �ow
equations combined with classical airfoil parametrization to obtain the geometry of a car
model. Chiu and Squire13, and Krajnovic3, make use of simple ellipical and parabolic
equations to generate a 3-D nose shape, while Vytla4 uses �ve control variables to de�ne a
simple 2-D geometry. Kwon10 and Lee11 give a more complete and so�sticated alternative
by means of the Hicks-Henne function for de�ning the geometry. This function is widely
used in train aerodynamic designs and airfoil shape design. It is de�ned as

G(x) = Gbase +
n∑

i=1

wifi (2)

where Gbase is referred to the baseline shape (typically a parabolic function) and wi

and fi denote the weighting factor and the shape function respectively. fi usually is a
sinusoidal function. Instead, here we propose the application of Bézier curves14 for de�n-
ing the geometry of a 2-D high-speed train nose. Bézier curves are highly suited for the
parametrization of a design. Comparing them with previous Hicks-Henne function, they
have a simpler formulation by means of polynomial functions. Moreover, the character-
istics of the curve are strongly coupled with the underlying polygon of control points,
simplifying the link between parameters and real design variables.

The Bézier curve of degree n equation is given as

C(t) =
n∑

i=0

(
n

i

)
(1 − t)n−iti Pi (3)

where 0 ≤ t ≤ 1 is a parameter control, and Pi are the control points to be weighted.
We have considered two quadratic and two cubic curves to obtain our base geometry.
As result the geometry is somehow divided into four di�erent parts in order to study
the e�ect of the slope of both the front part and window, the relative length of the roof
versus the characteristic nose length L, and the nose underbody. In total eleven control
points are used (from P0 to P10). It means twenty-two design variables. However, it is
possible to relate some of the control points by geometric relationships, and this number
is decreased up to ten. Table 1 presents all the design variables and their range. Figure
3 shows the parametric design.

Values of L and H have been obtained from some references about aerodynamic of high-
speed trains15,16,17,18. Raghunathan include an interesting study about the drag coe�cient
of di�erent nose lengths. This lets us to de�ne the range of variable l1. Both angles are
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Design variable Range
l1 [2.56 , 6.40]
l9 [13.60 , 12.80]
α1 [0.00, π/2]
α6 [0.00, π/2]
k2 [0.20, 0.80]
k3 [0.20, 0.80]
k4 [0.20, 0.80]
k6 [0.20, 1.00]
k7 [0.20, 0.80]
k8 [0.00, 0.80]

Table 1: Example of the construction of one table

Figure 3: Base geometry parametrization

limited from 0 to π/2 to allow a wide variety of designs, and the geometric parameters ki

are de�ned in order to avoid superposition of the relative control points.
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3.2 Metamodels. Response Surface Model and Arti�cial Neural Network

The expensive cost of running complex engineering simulations makes it impractical
to rely exclusively on numerical codes for the purpose of aerodynamic optimization. Al-
though it is possible to perform all the evaluations on a processors cluster18 for a simpli�ed
geometry, it still results in a too long process. By using approximation models, we re-
place the expensive simulation model and speed up the genetic algorithm performance.
A variety of metamodelling techniques exist, and an excelent comparison and review of
these methods can be found in some references19,20. Jin20 points out that there is no best
one, although some works better than others for a speci�c application. To compare them
accuracy, e�ciency, robustness, model transparency and simplicity must be taken into
account. Therefore, the simplest one, Response Surface Model, is compared in this paper
with Arti�cial Neural Networks, which is a well-considered technique for large-scale prob-
lems (ten or more design variables) and low-order nonlinearity (square regression around
0.99 when using �rst or second-order polynomial model).

The classical polynomial response surface model (RSM) is still probably the most
widely used form of surrogate model in engineering design. A second-order polynomial
model can be expressed as

ŷ(~x) = ϕ(~x) = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

∑
i

∑
j

βijxixj (4)

The coe�cients β are determined by least squares regression analysis by �tting the
response surface approximations ϕ(~x) to already evaluated designs y(~x). A more complete
discussion of RSM is found in Myers22. The main drawback is that for a second-order
polynomial, the number of unknowns (coe�cients) is proportional to (k + 1)(k + 2)/2,
so it is clear that it is not the best method to apply when a high-dimensional design space
is considered.

An arti�cial neural network (ANN) is composed of many very simple processing units
(neurons) connected to form a network. Each connection is characterized by the corre-
sponding weight, which speci�es the e�ect of each unit on the overall model. Among
all di�erent types of neural networks, multi-layer percepton (MLP) is considered in this
paper. In an MLP, the network is arranged in layers of processing units: an input layer,
one or more hidden layers, and an output one. In our ANN the input layer, composed of
as many input units as dimensions of the design space, is connected to the unique hidden
layer with nh hidden neurons, which �nally is connected to the output layer of just one
output unit. Then, the approximation function is given as

ϕ(~x) =

nh∑
j=1

wo
jzj(~x) + bo

j (5)

where wo
j is the weight given to the connection of the j-th hidden neuron and the
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output unit, bo
j the error or bias associated to the j-th hidden neuron and zj(~x) is the base

function. While in the case of polynomial models this function is pre�xed, in ANN zj(~x)
is de�ned as

zj(~x) = g(
k∑

i=0

wh
ijxi) (6)

being wh
ij the intensity of the connection between the i-th unit of the input layer and

the j-th one in the hidden layer. Function g(·) is known as the activation function. A wide
variety of activation functions exists. Here sigmoidal function is applied. It is expressed
as g(a) = 1

1+e−a . The composition of both functions gives the relation between inputs and
outputs for a ANN.

ϕ(~x) =

nh∑
j=0

wo
jg

(
k∑

i=0

wh
ijxi

)
(7)

Consequently, the unknowns to be adjusted are the connection weights wo
j and wh

ij,
and the number of hidden neurons nh. The determination of the unknown parameters
is called the training of the ANN. Back-propagation is the most commonly used method
for training of multilayer networks. It is a form of supervised learning method. The
desired output for a given set of input (Ntrn) is known during training. The error at each
neuron is calculated as the di�erence btween the approximated solution and the desired
output. This error is then asigned to each of the hidden neurons according to the output
values of each hidden neuron and its relative connecting weight. In order to minimize such
error, the connecting weights are modi�ed and corrected. Training process continues until
training error is minimal. However, sometimes the network is able to learn the training
data, and laterly it is unable to predict new unobserved data. To avoid it, another set of
data, Nval is considered to compute the validation error and to indicate if over�tting is
observed while training process is running. Finally, a third set of data is used to check
the prediction capability of the metamodel once the training has �nished. In this way, the
existing or evaluated designs to �t the metamodel have to be divided into three di�erent
subsets.

4 RESULTS

Metamodel building involves choosing an `experimental' design for generating a database
and �tting the model to the observed data. The accuracy of the approximation predic-
tions depends on the information contained in the database. To maximize this information
and �t the model by a representative sample of the design space Design of Experiments
(DOE) method is applied. Traditionally, experimental designs like factorial or fractional
factorial designs, developed for e�ective physical experiments, have been used. However,
because of the deterministic nature of the response, no random error exists in a computer
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experiment. So, it is correct to admit that classical DOE are not the best proposal when
dealing with computer analysis codes. As an alternative here it is proposed to use space-
�lling designs. Among all the space-�lling techniques available, we use Latin Hypercube
Sampling (LHS)21. LHS can be con�gured with any number of samples, and is not re-
stricted to sample sizes that are multiples of k. This allow us to test the e�ectiveness of
both metamodels (RSM and ANN) for di�erent database sizes, listed in table 2. Three
di�erent sizes are considered, minimal, small and large data sets.

Database Theoretical size Actual size
minimal set np 66
small set 10k 100
large set 3np 198

Table 2: Sample data set size

np is the number of coe�cients in a second-order polynomial model, given as np = (k
+ 1)(k + 2)/2, where k is the number of design variables.

First, RSM e�ectiveness is studied. According to Myers22, statistical methods like
t-test or F -test are inadequated when deterministic responses are analyzed. Then, to
measure the accuracy of the model three di�erent metrics are used: R-square (R2) and
R-square adjusted (R2

a), and Relative Maximum Absolute Error (RMAE). The equations
for theses three metrics are given as

R2 = 1 − SSE

SST

where SSE is the sum of squared errors, and SST is the total sum of squares, de�ned

as SST =
∑N

i=1 y2
i − 1

N
(

N∑
i=1

yi)
2, being yi the response for sample design i included in the

initial database of size N .

R2
a = 1 − SSE/(N − np)

SST /(N − 1)

RMAE =
max(|y1 − ϕ1|, |y2 − ϕ2|, . . . , |yN − ϕN |)

σ

where σ stands for standard deviation. According to it, the larger the value of R-
square is, the more accurate the metamodel results. The same behaviour presents R-
square adjusted, while small RMAE is preferred. To provide a more complete picture of
metamodel performance, checking their capacity of prediction as well, two more metrics
are de�ned, Prediction Error Sum of Squares (PRESS) and an equivalent prediction R-
squared (R2

p). Their equations are given below.
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PRESS =
N∑

i=1

(yi − ϕ(i))
2

R2
p = 1 − PRESS

SST

(8)

Each data set is obtained by running the number of simulations indicated in table
2. The simulations are performed using the commercial Navier−Stokes solver FLUENT,
considering the �ow as incompressible. A second order upwind method was chosen for
the discretization of the Navier−Stokes equations while the velocity− pressure coupling
was done by a SIMPLEC scheme. The realizable k − ε turbulence model implemented
in FLUENT was considered to solve the equations. Table 3 summarizes the set size e�ect
comparison using a second-order polynomial model.

Database R2 R2
a RMAE PRESS R2

p

minimal set 1 1 0 - -
small set 0.961 0.886 0.411 3.269 0.66
large set 0.951 0.927 0.667 2.095 0.889

Table 3: Summary of accuracy and prediction capabilities for di�erent data set sizes.

Since using PRESS metric implies �tting the model with N − 1 data points, no results
are obtained for the minimal set. It is observed that the larger the data set is, the smaller
R2 becomes, and also larger RMAE is. It is obvious that more data points leads to a
poorer �tting, but this is still high enough to accept such accuracy. Checking prediction
capability, R2

p increases if a larger size value is considered. Therefore, the metamodel
becomes more predictive as a more representative sample of the design space is used.

Now these results are compared with ANN performance. However, when using an ANN
as a metamodel, some questions have to be answered previously. To start, which is the
best architecture for the network in this particular problem, i.e. how many hidden layers
and how many neurons in this layer have to be used. The Kolmogorov Theorem5 speci�es
that any continuous function, from Rn to Rm, can be represented exactly by a one-hidden-
layer network, with n and m elements in the input and output layer respectively. Hence,
this architecture is utilized in this paper. Di�erent authors indicate that there is no yet
an analytical method to determine which is the exact number of hidden neurons nh to be
taken. So, an estimating test must be carried out, trying di�erent networks and choosing
the `best' one. Nevertheless, it is possible to start from a reference value nhm . If N is the
number of data points utilized to �t or train the network, and it is divided into the three
subsets already explained, the maximum number of hidden neurons nhm is given then by

nh << nhm =
Ntrn · nout − nout

nin + nout + 1
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If nin = k, and �xing just one output, this equation is translated to nhm = Ntrn−1
k+2

.
We have concluded that RSM performs best with larger data sets. Thus, here N is
taken as 198, to which 20 extra points are added. Having N = 218, and considering a
proportional distribution of {75,10,15} for training, validation and testing respectively,
nhm = 13 neurons. From this value a parametric study is carried out, decreasing the
number of hidden neurons and analyzing the performance of the neural network. Ten
di�erent networks are taken into account with each nh, choosing the one with the best
R2

trn. Table 4 listes the information about each nh characteristic case.

nh R2
trn R2

val R2
tst

13 0.997 0.958 0.987
12 0.989 0.978 0.971
11 0.993 0.971 0.981
10 0.972 0.944 0.979
9 0.968 0.924 0.944
8 0.953 0.928 0.936

Table 4: Fitting information for ANN with di�erent nh nh.

The lower nh is, the worse �tting becomes, although it still remains extraordinarily
high, even for nh = 8. It is concluded that the optimal value of nh is included in the
interval [11 - 13]. Figures complete this information. The axes represent the training
and testing data. Real response, obtained with FLUENT, is plotted versus approximated
response (output) from the metamodel. The response (Cd) is represented normalized in
the interval [-1, 1]. The dashed line represents the ideal equality true response = output.
The solid line represents the best �t linear regression line between them. Also R2 values is
indicated. The scatter plot helps to see that �tting is increased when more hidden neurons
are utilized. From table 4 it is observed that validation �tting is worse when nh is arised
up to 13, what could mean existence of over�tting. Regarding at the testing �gures, a
considerable data dispersion is presented with 8 and 9 hidden neurons. With 10 neurons,
a better �t is observed graphically than 11-neurons does although its R2 value is lower.
But when training �tting is considered as well, it seems to be more correct considering nh

= 11 as the optimal value. Nevertheless, because of such small di�erences both designs
are used with the GA.

Comparing the response surface model and neural network �tting results, it is con-
cluded that in this case ANN behaves better as an approximation model than RSM.
Therefore, ANN are used instead of RSM in the GA running. Here the MATLAB code
implementation, included in the Optimization Toolbox, is used for running the genetic
algorithm. According to the theory previously introduced, some operation parameters
have to be �xed. Selection, crossover and mutation operators, respective crossover and
mutation probabilities and population size are parameters that can strongly a�ect on
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(a) nh = 8 (b) nh = 9

(c) nh = 10 (d) nh = 11

(e) nh = 12 (f) nh = 13

Figure 4: Training regression plots for neural networks considered in table 4.
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(a) nh = 8 (b) nh = 9

(c) nh = 10 (d) nh = 11

(e) nh = 12 (f) nh = 13

Figure 5: Testing regression plots for neural networks considered in table 4.
14
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the GA e�ciency. Therefore, a parametric study to determine which values allow a best
performance is necessary. Ten di�erent population sizes (from 20 to 200 individuals per
population) are tested. Crossover probability is also studied, varying it from Pc = 0.25
up to 1. Mutation probability is �xed to 0.01. Table 5 summarizes the most important
information from the algorithm applied.

Population size 20 - 200
Elitism Yes
# elite individuals 2
Selection function Tournament (4)
Scaling function Ranking
Crossover function Two-points
Pc 0.25 - 1
Mutation function Uniform
Pm 0.01
# max generations 300

Table 5: GA parameters values.

In this way, 160 tests are performed. The best combination of these parameters is
selected regarding at the optimal found by the algorithm. It is obtained when Pc = 0.45
and the population size is 160. The optimal design results in the following design variables
values

l1 α1 k2 k3 k4 α6 k6 k7 k8 l9 Cd

-0.9993 0.0466 0.9901 -0.7751 0.0611 -0.9989 -0.9981 0.1822 -0.9657 0.8025 1.0013

2.5614 0.8229 0.7970 0.2675 0.5183 0.0009 0.2047 0.5547 0.0137 12.6159 1.0013

Table 6: Design variables and Cd for the optimal design.

Both normalized and absolute values of the design parameters are indicated. Figure 6
represents the optimal geometry, and �gure 7 shows the pressure �eld around the nose.
As it was expected, the optimal geometry is close to a strongly sharp nose with a small
cone angle (α6). Since angles α1 and α6 are almost complementary no in�ection point
is observed and a linear pro�le for the window and front part is obtained. Since k6 is
minimal the nose height is also very small.

The aim of using the ANN for optimization was to avoid using a Navier - Stokes solver
for each individual evaluation in the GA run. As it has been shown, the metamodel,
because of its intrinsic nature of approximation model, has an estimation or prediction
error (in the best case around 9%). The implication of this error is that the optimization
process could lead to the incorrect optimal solution being found. However, the solution
should still be within 9% of the true optimal, assuming that 9% is the maximal ANN error.
Therefore, the optimal geometry obtained might not be the global optimal, although very
close to it.
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Figure 6: Optimal geometry obtained with the GA.

Figure 7: Pressure �eld around the nose for the optimal geometry.
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5 CONCLUSSIONS

In this paper a new optimization approach is proposed. Using a genetic algorithm as
an alternative optimization tool has been tested and good results have been obtained.
To speed it up a metamodel has been used satisfactorily, avoiding in this way to use a
time consuming Navier−Stokes solver. Among all the di�erent techniques available, a
comparative study has been performed, considering the simplest response surface model,
and a more precise neural network method. Both techniques have been developed, and
interesting results have been achieved. However, there are still many other posibilities to
analyze. In particular an extensive study in order to optimize the ANN performance is
proposed, including testing two-hidden-layer architectures. A more complete study about
reducing the database size is also proposed. Other metamodels, like Kriging models, could
also be tested. Only one objective has been considered in this paper, the reduction of
drag coe�cient. This explains that the geometry obtained is so simple. Thanks to the
geometry parametrization proposed here a more complete study could be carried out, and
a multiobjective optimization study becomes of maximum interest. It is expected that
quite di�erent optimal geometries to the one here reached could appear when minimizing
pressure waves inside a tunnel or optimizing crosswind stability are also pursued. Finally,
a transformation from 2-D to a 3-D model is the �nal objective of this research project.
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