1,320 research outputs found

    Exponential Runge-Kutta methods for stiff kinetic equations

    Full text link
    We introduce a class of exponential Runge-Kutta integration methods for kinetic equations. The methods are based on a decomposition of the collision operator into an equilibrium and a non equilibrium part and are exact for relaxation operators of BGK type. For Boltzmann type kinetic equations they work uniformly for a wide range of relaxation times and avoid the solution of nonlinear systems of equations even in stiff regimes. We give sufficient conditions in order that such methods are unconditionally asymptotically stable and asymptotic preserving. Such stability properties are essential to guarantee the correct asymptotic behavior for small relaxation times. The methods also offer favorable properties such as nonnegativity of the solution and entropy inequality. For this reason, as we will show, the methods are suitable both for deterministic as well as probabilistic numerical techniques

    An Overview of Variational Integrators

    Get PDF
    The purpose of this paper is to survey some recent advances in variational integrators for both finite dimensional mechanical systems as well as continuum mechanics. These advances include the general development of discrete mechanics, applications to dissipative systems, collisions, spacetime integration algorithms, AVI’s (Asynchronous Variational Integrators), as well as reduction for discrete mechanical systems. To keep the article within the set limits, we will only treat each topic briefly and will not attempt to develop any particular topic in any depth. We hope, nonetheless, that this paper serves as a useful guide to the literature as well as to future directions and open problems in the subject

    Effects of discrete energy and helicity conservation in numerical simulations of helical turbulence

    Full text link
    Helicity is the scalar product between velocity and vorticity and, just like energy, its integral is an in-viscid invariant of the three-dimensional incompressible Navier-Stokes equations. However, space-and time-discretization methods typically corrupt this property, leading to violation of the inviscid conservation principles. This work investigates the discrete helicity conservation properties of spectral and finite-differencing methods, in relation to the form employed for the convective term. Effects due to Runge-Kutta time-advancement schemes are also taken into consideration in the analysis. The theoretical results are proved against inviscid numerical simulations, while a scale-dependent analysis of energy, helicity and their non-linear transfers is performed to further characterize the discretization errors of the different forms in forced helical turbulence simulations

    Effects of discrete energy and helicity conservation in numerical simulations of helical turbulence

    Full text link
    Helicity is the scalar product between velocity and vorticity and, just like energy, its integral is an in-viscid invariant of the three-dimensional incompressible Navier-Stokes equations. However, space-and time-discretization methods typically corrupt this property, leading to violation of the inviscid conservation principles. This work investigates the discrete helicity conservation properties of spectral and finite-differencing methods, in relation to the form employed for the convective term. Effects due to Runge-Kutta time-advancement schemes are also taken into consideration in the analysis. The theoretical results are proved against inviscid numerical simulations, while a scale-dependent analysis of energy, helicity and their non-linear transfers is performed to further characterize the discretization errors of the different forms in forced helical turbulence simulations

    A unified error analysis for the numerical solution of nonlinear wave-type equations with application to kinetic boundary conditions

    Get PDF
    In this thesis, a unified error analysis for discretizations of nonlinear first- and second-order wave-type equations is provided. For this, the wave equations as well as their space discretizations are considered as nonlinear evolution equations in Hilbert spaces. The space discretizations are supplemented with Runge-Kutta time discretizations. By employing stability properties of monotone operators, abstract error bounds for the space, time, and full discretizations are derived. Further, for semilinear second-order wave-type equations, an implicit-explicit time integration scheme is presented. This scheme only requires the solution of a linear system of equations in each time step and it is stable under a step size restriction only depending on the nonlinearity. It is proven that the scheme converges with second order in time and in combination with the abstract space discretization of the unified error analysis, corresponding full discretization error bounds are derived. The abstract results are used to derive convergence rates for an isoparametric finite element space discretization of a wave equation with kinetic boundary conditions and nonlinear forcing and damping terms. For the combination of the finite element discretization with Runge-Kutta methods or the implicit-explicit scheme, respectively, error bounds of the resulting fully discrete schemes are proven. The theoretical results are illustrated by numerical experiments

    Spatially partitioned embedded Runge-Kutta Methods

    Get PDF
    We study spatially partitioned embedded Runge–Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in non-embedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to non-physical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted non-oscillatory (WENO) spatial discretizations. Numerical experiments are provided to support the theory

    Discrete mechanics and optimal control: An analysis

    Get PDF
    The optimal control of a mechanical system is of crucial importance in many application areas. Typical examples are the determination of a time-minimal path in vehicle dynamics, a minimal energy trajectory in space mission design, or optimal motion sequences in robotics and biomechanics. In most cases, some sort of discretization of the original, infinite-dimensional optimization problem has to be performed in order to make the problem amenable to computations. The approach proposed in this paper is to directly discretize the variational description of the system's motion. The resulting optimization algorithm lets the discrete solution directly inherit characteristic structural properties from the continuous one like symmetries and integrals of the motion. We show that the DMOC (Discrete Mechanics and Optimal Control) approach is equivalent to a finite difference discretization of Hamilton's equations by a symplectic partitioned Runge-Kutta scheme and employ this fact in order to give a proof of convergence. The numerical performance of DMOC and its relationship to other existing optimal control methods are investigated
    corecore