6,378 research outputs found

    Data mining in manufacturing: a review based on the kind of knowledge

    Get PDF
    In modern manufacturing environments, vast amounts of data are collected in database management systems and data warehouses from all involved areas, including product and process design, assembly, materials planning, quality control, scheduling, maintenance, fault detection etc. Data mining has emerged as an important tool for knowledge acquisition from the manufacturing databases. This paper reviews the literature dealing with knowledge discovery and data mining applications in the broad domain of manufacturing with a special emphasis on the type of functions to be performed on the data. The major data mining functions to be performed include characterization and description, association, classification, prediction, clustering and evolution analysis. The papers reviewed have therefore been categorized in these five categories. It has been shown that there is a rapid growth in the application of data mining in the context of manufacturing processes and enterprises in the last 3 years. This review reveals the progressive applications and existing gaps identified in the context of data mining in manufacturing. A novel text mining approach has also been used on the abstracts and keywords of 150 papers to identify the research gaps and find the linkages between knowledge area, knowledge type and the applied data mining tools and techniques

    A review of data mining applications in semiconductor manufacturing

    Get PDF
    The authors acknowledge Fundacao para a Ciencia e a Tecnologia (FCT-MCTES) for its financial support via the project UIDB/00667/2020 (UNIDEMI).For decades, industrial companies have been collecting and storing high amounts of data with the aim of better controlling and managing their processes. However, this vast amount of information and hidden knowledge implicit in all of this data could be utilized more efficiently. With the help of data mining techniques unknown relationships can be systematically discovered. The production of semiconductors is a highly complex process, which entails several subprocesses that employ a diverse array of equipment. The size of the semiconductors signifies a high number of units can be produced, which require huge amounts of data in order to be able to control and improve the semiconductor manufacturing process. Therefore, in this paper a structured review is made through a sample of 137 papers of the published articles in the scientific community regarding data mining applications in semiconductor manufacturing. A detailed bibliometric analysis is also made. All data mining applications are classified in function of the application area. The results are then analyzed and conclusions are drawn.publishersversionpublishe

    Discovering correlated parameters in Semiconductor Manufacturing processes: a Data Mining approach

    Get PDF
    International audienceData mining tools are nowadays becoming more and more popular in the semiconductor manufacturing industry, and especially in yield-oriented enhancement techniques. This is because conventional approaches fail to extract hidden relationships between numerous complex process control parameters. In order to highlight correlations between such parameters, we propose in this paper a complete knowledge discovery in databases (KDD) model. The mining heart of the model uses a new method derived from association rules programming, and is based on two concepts: decision correlation rules and contingency vectors. The first concept results from a cross fertilization between correlation and decision rules. It enables relevant links to be highlighted between sets of values of a relation and the values of sets of targets belonging to the same relation. Decision correlation rules are built on the twofold basis of the chi-squared measure and of the support of the extracted values. Due to the very nature of the problem, levelwise algorithms only allow extraction of results with long execution times and huge memory occupation. To offset these two problems, we propose an algorithm based both on the lectic order and contingency vectors, an alternate representation of contingency tables. This algorithm is the basis of our KDD model software, called MineCor. An overall presentation of its other functions, of some significant experimental results, and of associated performances are provided and discussed

    The Irrelevant Values Problem of Decision Tree for Improving a Glass Sputtering Process

    Get PDF
    [[abstract]]In this paper, we use decision tree to establish a yield improvement model for glass sputtering process; however, the tree may have irrelevant values problem. In other words, when the tree is represented by a set of rules, not only comprehensibility of the resultant rules will be detracted but also critical factors of the manufacturing process cannot be effectively identified. From the performance issue and practical issue, we have to remove irrelevant conditions from the rules; otherwise, a domain expert is needed to review the decision tree. In this paper, we use a very simple example to demonstrate this point of view. Moreover, to identify and remove irrelevant conditions from the rules, we also revise Chiang's previous algorithm such that the modified algorithm can deal not only discrete data but also quantitative data.[[notice]]補正完畢[[incitationindex]]EI[[booktype]]紙

    Defect cluster recognition system for fabricated semiconductor wafers

    Get PDF
    The International Technology Roadmap for Semiconductors (ITRS) identifies production test data as an essential element in improving design and technology in the manufacturing process feedback loop. One of the observations made from the high-volume production test data is that dies that fail due to a systematic failure have a tendency to form certain unique patterns that manifest as defect clusters at the wafer level. Identifying and categorising such clusters is a crucial step towards manufacturing yield improvement and implementation of real-time statistical process control. Addressing the semiconductor industry's needs, this research proposes an automatic defect cluster recognition system for semiconductor wafers that achieves up to 95% accuracy (depending on the product type)

    Data Mining Industrial Applications

    Get PDF
    corecore