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Abstract The IC industry has been growing rapidly in the
past decades. The continuous scaling-down of the feature size
requires IC machines of highest performances, and pushes the
ICmanufacture to its utmost technology limits. Nowadays, IC
manufacturers employ tightly fixed process parameters as
their strategy to improve the yield. In this paper, a “softer”
way is proved to be more potential in further improving and
managing the yield of IC products. A novel concept which
suggests running an IC procedure with dynamic process pa-
rameters is explained in detail. By using auto-regressive
moving-average (ARMA) model, effects of the key process
steps can be predicted and the related process parameters can
be adjusted self-reactively. Since the discussion indicates
distinct improvements of the IC yields, it seems the time to
break the rule of “using stationary process parameters”.

Keywords Advanced process control . Dynamic process
parameters . IC yield enhancement . Self-adapt modification

1 Introduction

Moore’s law has been adopted as a yardstick by the IC in-
dustry for more than 40 years. Driven by the law, the IC
products are distinctly improved in speed, integrated density,
energy consumption, and overall performances. On the other
hand, as the technology node approaches 45 nm and beyond,
the manufacturing cost is soaring and becomesmore andmore
prohibitive. Among all factors to the total manufacturing cost,
the IC yield has been proved one of the most important [1].

Each phase in the IC process flow, from original design to
final packaging, impacts the yield as well as the reliability of
the product. Statistical methods such as data mining ap-
proaching with classification/regression trees have been used
to identify key factors that limit IC yields [2–4]. Accordingly
corrective activities can be determined to improve the IC yields.

The yield enhancement methods, in general, can be
grouped into three categories.

1) Design for manufacturing (DFM). In this method, every
step involving equipments, raw materials, environmental
conditions, process steps, and settings is carefully studied
to improve efficiency and reduce interference which
limits throughput, cycle time, and wafer-test yields [5–7].
Ideally, if all phases are optimized after DFM analyses,
high yield of IC products can be ensured.

2) Advanced quality management. Quite a few advanced
quality control methods, such as total quality manage-
ment (TQM) and six-sigma approach, have been utilized
in semiconductor manufacturing to eliminate product
defects and shorten cycle time [8–11]. Some other
methods, such as recipe control and management system
(RCMS) focused on escaping low yield due to human
errors [12], and smart dummy/test wafer control focused
on both improving yield and cutting down manufactur-
ing cost [13–14], have also been developed.

3) Advanced process control (APC). Typically an IC pro-
cess involves hundreds of steps. APCmethods are used to
improve qualities of those key process steps, such as
implantation [15], photolithography [16], and plasma
etching [17], etc. Some IC process steps are so com-
plicated that they are dealt with by neural networks in
recent works [17–19].

If a process has been well controlled and high yield is
achieved already, the run to run and wafer to wafer
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consistency becomes the most critical issue. When a new
fabricator is built, the process conditions for each step and the
system configuration will be set up identical to the previous
one, so that the investigation on yield does not have to be
repeated [5, 20]. Furthermore, the process parameters/
conditions of a step are fixed strictly based on the assump-
tion that the process results can be exactly repeated under
fixed settings. In this paper, we proposed that self-reacting
dynamic process parameters leads to equally stable and
potentially better production.

The stable run to run yield control of a modern process is
very difficult to achieve due to the large numbers of variables/
parameters that are available for operator to manipulate. Some
works utilize neural networks to deal with the complexities
[16–18]. In this paper, we ascribe the run to run variation of
a process step to only one factor, the time. The possible fluc-
tuation can be forecast by auto-regressive moving-average
(ARMA) models, which are based on the time series analysis.
According to the predictions, the fluctuation can be compen-
sated by modifying process parameters thus the process
stability and the yield are maintained by such a dynamic
process control method.

In Section 2, an overview on ARMA model is presented.
The basic idea of time series analysis is also introduced. In
Section 3, we apply the ARMA model to control process
steps. Cases involving one or more time series are studied. In
Section 4, the dynamic process control method is applied on
a Si/SiGe epitaxial process. And in Section 5, we conclude
our work on this yield enhancement approach.

2 The ARMA model

The ARMA model was presented by American statistician
George EP Box and British statistician Gwilym M Jankins
in 1968, which is also known as the B-J model. As an
accurate short-term predicting arithmetic, the ARMA model
is one of the most widely used time series analysis models
applied to industry and economy analyzing/predicting [21].

A time series is a set of observed data in sequence.
Although the data for the next time is unknown, it can be
predicted statistically by a time series model. In most cases,
the model can be expressed as a summation of items either
related to the observed data or the residuals, i.e.:

xt ¼ f1xt�1 þ f2xt�2 þ . . .þ fpxt�p þ "t þ q1"t�1

þ q2"t�2 þ . . .þ qq"t�q ð1Þ

In the formula, xt is the sample value at time t, and xt-i
refers to time t-i, ɛt-j is the residual at time t-j, and φi, θj are
weights which can be fit later in the “parameter estimation”
step.

In (1), p is called the order of “auto-regressive” part, and q
the order of “moving average” part. Thus, (1) is named the
ARMA( p, q) model [22]. Once the values of p, q, and the
weights are determined, the data for the next time can be
estimated accurately by using this model.

An ARMA is a combination of AR andMAmodels. While
q = 0, the ARMA( p, q) becomes a pure auto-regressive mo-
del AR( p), while p = 0, it becomes a pure moving-average
model MA(q).

For a particular time series, its ARMA model can be
established by following the procedures shown in Fig. 1.

One prerequisites of ARMA modeling is that the time
series must be at least a weak stationary stochastic series if not
stationary. Many stochastic time series in practice are not
stationary, which may lead to invalid regressions. Therefore,
stationarity of a time series must be tested before ARMA
modeling and non-stationary time series must be stationar-
ized. The autocorrelation value can be used as the criteria to
identify the stationarity. If most of the values are out of
confidence interval in the correlogram, and don’t converge to
zero, the time series is non-stationary. Another commonly
used method is the unit root test. If one unit root exists, the
time series is not stationary, but it is a 1st-order differential
stationary series. If there are n unit roots, the time series is
nth-order differential stationary. The commonly used meth-
ods to stationarize a time series include differential trans-
form, and/or logarithm transform.

Orders, i.e., the values of p and q of an ARMA (p, q)
model, are determined in the model identification step in
Fig. 1. These orders can be identified via diagrams of auto-
correlation and partial correlation of the time series. If the
qth-order autocorrelation coefficient becomes very small, and

Fig. 1 Steps of establishing the ARMA model of a time series
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the auto-correlogram is bob-tailed from there, the model must
be an MA(q). Similarly if the partial correlogram becomes
bob-tailed at the pth-order, the desired model should be an
AR(p). When both the auto-correlogram and the partial
correlogram are long-tailed, the model can not be an MA(q)
or an AR(p), but an ARMA(p, q). These general criteria are
listed in Table 1.

It is hard to determine the p and q orders of an ARMA(p,
q) model directly. Regularly, a pair of guess values of p and
q is estimated to establish an ARMA model. After calcu-
lating all the weights in formula (1), the model is tested for.
After several repetitions, the optimized ARMA model for
a specific time series can finally be obtained as shown in
Fig. 1.

Having determined p and q, the coefficients in Eq. (1) are
fit with the observed data. The model is tested based on the
rule that the residuals at different time, ɛt, should form a
white noise series which is often identified by Q testing for
the residual auto correlations, as well as by observing auto-
correlation and partial autocorrelation coefficients of the
residuals. If the residuals failed to form a white noise series,
the model has to be re-established. On the other hand, if more
than one ARMA models are tested to be valid, the most
accurate one can be determined if one calculate the standard
deviations of the dependent variables from the models, and
compare these deviations. For these models, the Akaike info
criterion or Schwarz Criterion values can also be compared.
Generally, the smaller the value is, the more accurate the
model is indicated.

3 Prediction and the dynamic process control

In this section, we will discuss how to apply the time series
analysis in advanced IC process control.

The application won’t be a direct one because of the strict
requirement that a time series under processing must be at
least weak stationary. For instance, in practice, the film thick-
ness is always measured after depositing a film layer. It is
possible to forecast film thickness of the next deposition by
ARMA modeling, and then adjust the process conditions so
the resulted film thickness could meet the specification.
Although the “forecast-correction” scheme may work at the
first time, it is unlikely that such a scheme may work all the
time. Because once one has changed the process conditions,
the time series of film thickness is disturbed, and possibly
becomes non-stationary.

To overcome the problem, IC process details are taken into
consideration. Normally, the data of a process step depend on
more than one process variables. These variables can be
roughly divided into two groups. One group varies from time
to time, and can be predicted by time series analysis. The other
is to be adjusted so that the variance of the first group can be
compensated accordingly. The former is used only for pre-
diction, and the latter is used only for correction. In this way,
one or more variables are selected, and their values at different
time form the time series. Since these variables keep un-
disturbed in the correction phase, their time series may keep
stationary.

3.1 One time series case

In this part, we take the epitaxy film thickness for instance
to show our dynamic process control idea.

Epitaxy is an important process in semiconductor manu-
facturing which is widely used for growing thin-film of
varieties of materials. A critical requirement for this unit pro-
cess is that the film thickness must be uniform not only at
different sample points on one wafer, but also on different
wafers, and wafers of different batches.

Each time when an epitaxy process finishes, film thickness
and some process parameters are measured, or calculated
from measured data. One of the parameters is chosen and its
values at different times form a time series. Based on this time
series, the process parameter for the next depositing can be
forecast by an ARMA model.

In order to not only meet the requirement on film thickness
uniformity but also keep the time series stationary, we prefer
adjusting other process parameters. This implies we must
know the relationships between film thickness and the process
parameters. For the epitaxy process, a simple process model
can be used:

Dt ¼ St � Tt ð2Þ

According to the model, the thickness D is only de-
termined by the epitaxial growing speed S, and the pro-
cessing time T. Film thickness at each deposition can be
calculated as the multiply of these two parameters.

In nature, the epitaxial conditions such as gas flows,
temperature, pressure, etc. can not be controlled absolutely
steady. As a result, thickness of the films varies randomly. In
our simple epitaxial model, fluctuation of these process
conditions is reduced to the fluctuation of the growing speed.

Table 1 Model selection
criteria Model AR (p) MA (q) ARMA (p, q)

Auto-correlogram Long-tailed Bob-tailed at qth order Long-tailed
Partial auto-correlogram Bob-tailed at pth order Long-tailed Long-tailed
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Each time the film thickness is measured, the growing
speed for that time is calculated, and its values at different
times form a time series. The ARMA method can be suc-
cessfully used to forecast the growing speed for the next time.
If by prediction, the film growing speed will increase, the
process time will be shortened by an amount calculated ac-
cordingly, and vice versa. In this way, a better thickness
control is achieved.

In this section, we have studied on how to dynamically
control a process step which can be described by a simple
process model. In the next section, we will discuss the case of
more complicated process model, where two or more time
series are involved.

3.2 More than one time series case

Most IC processes are described by more complicated process
models. To dynamically control these processes, two or more
related time series must be considered. As an example, oxi-
dation process is discussed here.

The film thickness after a Si oxidation process is described
by (3), the well known Deal-Grove model [23].

x2 þ Ax ¼ B t þ tð Þ ð3Þ

where x is the thickness of SiO2 film, t is the process time, A
and B are the coefficients, and t is a time constant. To sim-
plify the problem, we assume t to be 0 which does not affect
our conclusion.

The values of t and x are recorded at each time as the
known data, i.e. ti and xi. According to (3), since the target
thickness is known, given the Ai+1 and Bi+1 for the next
oxidation by prediction, ti+1 can be corrected, so that xi+1
can meet the expectation. For the oxidation process, the
“forecast-correction” scheme works under the requirement to
deal with two time series.

Statisticians haven’t told us how to predict two variables
at a same time. The following steps are suggested to solve
this problem.

1) From formula (3) and the known xi, ti (i = 1, 2, ..., n)
values, we can get:

a
0
iAi þ b

0
iBi þ c

0
i ¼ 0 i ¼ 1; 2; :::n ð4Þ

where a
0
i ¼ xi; b

0
i ¼ �ti; c

0
i ¼ x2i . The value a

0
i; b

0
i; c

0
i are

known, and Ai, Bi are variables.

2) Ai and Bi depend on oxidation conditions, such as gas
flows, temperature, pressure, etc. These values vary from
time to time, but in real oxidation furnaces the fluctua-
tions are observed to be tiny. The standard values of A
and B under specific process conditions can be easily
found, for example, in an IC process handbook. Eq. (4)
can be rewritten as,

a
0
i Astd: þ dAið Þ þ b

0
i Bstd: þ dBið Þ þ c

0
i ¼ 0

) aidAi þ bidBi þ ci ¼ 0 i ¼ 1; 2; :::n
ð5Þ

Fig. 2 The point on the line and nearest to origin

Fig. 3 The self-made UHV/CVD SiGe epitaxial system

Fig. 4 Correlogram of S1∼S30
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where Astd. and Bstd. represent the standard or the long term
values of A and B, δAi and δBi represent the fluctuations at
time i (i = 1, 2, ..., n).

3) A point, P(δAi, δBi), can easily be calculated with Eq. (5)
and the criterion,

min : dAið Þ2þ dBið Þ2
h i

ð6Þ

Namely, P is the point which is on line and nearest to the
origin, as shown in Fig. 2.

4) As δAi, δBi being calculated, we now have two time
series. δAn+1 and δBn+1 for the next oxidation can be
predicted, from δA1∼δAn and δB1∼δBn, respectively.

5) Since the process status for the next oxidation is esti-
mated, the processing time can be adjusted accordingly to
achieve a more accurate process control.

6) The above steps can be generalized to deal with multi-
dimension cases. For example, if t in Eq. (3) is not a
constant but a variable, then we face a 3-dimension
prediction problem. By forecasting the next step A, B,
and t, and correcting the processing time, the process
can be similarly controlled.

4 An example on dynamic process control

In this section, we show an example on dynamic control in a
SiGe epitaxial process. In this example, thickness non-
uniformity is decreased by tuning the processing time for
each run. SiGe eptaxial layers were grown on wafers of
different batches with a self-made UHV/CVD system, which
is shown in Fig. 3.

Since the equipment was not designed for massive
production, it is mainly used for research purpose. After each
epitaxy process, the layer thickness was measured. Apparent
variance can be found in the recorded thickness data. There
are two ways to improve the tool performance. One is the
hardware redesign and optimization, the other is to relief this
issue by advanced process control. The second one is
preferred here for economical consideration.

Thickness data from 60 continuous runs are studied to
find out whether the dynamic process control can evidently
improve the process uniformity. Here we use the method
presented in Section 3.

1) Thickness data and processing times of the 60 runs
have been recorded. These data, Dt and Tt (t from one
to 60), are known.

Fig. 5 Correlogram of the first order differential sequence

Fig. 6 Correlogram of the second order differential sequence

Fig. 7 Coefficients and other data in the ARMA (1, 2) model

Fig. 8 Correlogram of residuals of the ARMA (1, 2) model
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2) Eq. (2) is used as the process model. Then the growing
speeds, St (t from one to 60), are calculated.

St ¼ Dt=Tt ð7Þ
3) S1, S2... S30 form a time series and S31 can be estimated

by ARMA model. Steps shown in Fig. 1 are followed
to build an ARMA (p, q) model.

Correlogram of the time series is shown in Fig. 4. The
values are almost zero, which shows that the time series is
stationary. It also shows that all the values of correlogram are
within confidence interval, which means the data correlation
is quite weak. Therefore higher order differential sequence
should be further examined for model identification. Corre-
lograms of the first and second order differential sequences
of {Si} are shown in Figs. 5 and 6.

Both of the first and second order differential sequences are
feasible for ARMA modeling. And the former is illustrated
here as an example.

Figure 5 shows that the autocorrelation function goes into
the confidence interval at the second order and long tailed, the
partial autocorrelation function goes into the confidence
interval at the first order and long tailed. Therefore we try
an ARMA (1, 2) model. With the existing series {Si}, the
ARMA (1, 2) model is established. The coefficients are calcu-
lated and shown in Fig. 7.

After the modeling, it is necessary to make sure that the
model is valid. The correlogram of the residuals is shown in
Fig. 8, and that the residuals are observed to be white noise.
So the ARMA (1, 2) model is self-consistent.

The 31st epitaxial speed S31
Est is then estimated by the

ARMA model. Calculation shows that S31
Est = 44.09849

(nm/min).

4) The adjusted processing time T31
Est for the 31st epi-

taxial growing is calculated.

TEst
31 ¼ Dtarget

�
SEst31 ð8Þ

where Dtarget is the thickness we want to get from the
epitaxy process and in this work it is set to be the mean
value of all observed thicknesses (661nm).
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Fig. 9 Estimated speeds vs. real speeds
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Fig. 10 Dynamic processing times vs. fixed processing times
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Fig. 11 Layer thickness after adjustment vs. original layer thickness

Table 2 Results with and without dynamic process control

D Dtarget DEst

Mean 663.0000 661.1500 660.0494
Median 663.0000 661.1500 660.3339
Maximum 687.0000 661.1500 677.2151
Minimum 640.0000 661.1500 646.2508
Std. dev. 11.11073 0.000000 7.314567
Skewness −0.015956 NA 0.169837
Kurtosis 2.599254 NA 3.313851
Jarque-Bera 0.202020 NA 0.267352
Probability 0.903924 NA 0.874874
Sum 19890.00 19834.50 19801.48
Sum sq. dev. 3580.000 0.000000 1551.584
Observations 30 30 30
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Since the real speed for the 31st epitaxial growing is
known (we have calculated all the growing speeds, St (t from
1 to 60)), the conclusion can be reached that if dynamic
processing time, T31

Est, is adopted, the epitaxial layer thick-
ness must be T31

Est×S31 (=D31
Est). This value is compared

with the tested thickness, D31, to see if the prediction–
adjustment scheme works better.

5) S32 can also be predicted with the known epitaxial speeds
S2∼S31. If the processing time is adjusted in the same
way, a layer thickness, D32

Est, will be calculated and
compared with the measured experiment result D32.

Using the method described above, D31
Est∼D60

Est are all
obtained. And we find the ARMA (1, 2) model is feasible
for all these calculations. The estimated thickness sequence
can be used to compare with the real thickness sequence,
D31∼D60.

6) In Fig. 9, the forecasted epitaxial layer growing speeds is
shown together with the real speed. The results exhibit
close trends match with acceptable value tolerance.

The comparison of the dynamic processing times and the
fixed processing time in experiment is shown in Fig. 10,
and the adjusted layer thickness DEst and the real thickness
D are shown in Fig. 11, it sees the thicknesses are closer to
the mean value after the adjustment.

Some statistics are listed in Table 2, which shows the
thickness fluctuation is successfully reduced by our predic-
tion–adjustment scheme. We can see that if the processing
times are dynamically adjusted, the standard deviation (std.
dev.) and the sum of deviation square (sum sq. dev.) of
epitaxial thickness can be evidently decreased. If we define
that the epitaxy thickness within 661±12 nm is eligible to
use, shown as the region confined by the two lines in
Fig. 11, then the yield of the original process is 66.7% (20
out of 30 points fall in the range), while the yield becomes
83.3% if dynamic process control is applied (25 out of 30
points fall in the region).

5 Conclusion

It is very difficult to deal with the process fluctuation due to its
stochastic properties. Such fluctuations become more and
more important when the technology node goes smaller and
smaller. To further improve IC product yields, process fluc-
tuations must be reduced.

Time series analysis is a powerful statistical tool and
becomes an important way to provide IC yield enhancement
when applied to IC industry. However, it can not be directly
used for process control. By separating variables, one or
more undisturbed time series could be obtained for accurate

forecasting. Then the processing time can be adjusted ac-
cordingly to reduce the process fluctuations. Our example
shows that the uniformity of the epitaxial process step can be
improved by more than 10% on the self-made epitaxy system
by using the self-reactive adjustment method.

The dynamic process control method we introduced here
can easily be applied to a variety of IC processes other than
epitaxial process we discussed.

The current rule in IC process control prefers fixed process
parameters. Our work indicates that higher yield can be
achieved by introducing dynamic process parameters.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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