19 research outputs found

    Patient-Centric Knowledge Graphs: A Survey of Current Methods, Challenges, and Applications

    Full text link
    Patient-Centric Knowledge Graphs (PCKGs) represent an important shift in healthcare that focuses on individualized patient care by mapping the patient's health information in a holistic and multi-dimensional way. PCKGs integrate various types of health data to provide healthcare professionals with a comprehensive understanding of a patient's health, enabling more personalized and effective care. This literature review explores the methodologies, challenges, and opportunities associated with PCKGs, focusing on their role in integrating disparate healthcare data and enhancing patient care through a unified health perspective. In addition, this review also discusses the complexities of PCKG development, including ontology design, data integration techniques, knowledge extraction, and structured representation of knowledge. It highlights advanced techniques such as reasoning, semantic search, and inference mechanisms essential in constructing and evaluating PCKGs for actionable healthcare insights. We further explore the practical applications of PCKGs in personalized medicine, emphasizing their significance in improving disease prediction and formulating effective treatment plans. Overall, this review provides a foundational perspective on the current state-of-the-art and best practices of PCKGs, guiding future research and applications in this dynamic field

    Empathy Detection Using Machine Learning on Text, Audiovisual, Audio or Physiological Signals

    Full text link
    Empathy is a social skill that indicates an individual's ability to understand others. Over the past few years, empathy has drawn attention from various disciplines, including but not limited to Affective Computing, Cognitive Science and Psychology. Empathy is a context-dependent term; thus, detecting or recognising empathy has potential applications in society, healthcare and education. Despite being a broad and overlapping topic, the avenue of empathy detection studies leveraging Machine Learning remains underexplored from a holistic literature perspective. To this end, we systematically collect and screen 801 papers from 10 well-known databases and analyse the selected 54 papers. We group the papers based on input modalities of empathy detection systems, i.e., text, audiovisual, audio and physiological signals. We examine modality-specific pre-processing and network architecture design protocols, popular dataset descriptions and availability details, and evaluation protocols. We further discuss the potential applications, deployment challenges and research gaps in the Affective Computing-based empathy domain, which can facilitate new avenues of exploration. We believe that our work is a stepping stone to developing a privacy-preserving and unbiased empathic system inclusive of culture, diversity and multilingualism that can be deployed in practice to enhance the overall well-being of human life

    On robust and adaptive soft sensors.

    Get PDF
    In process industries, there is a great demand for additional process information such as the product quality level or the exact process state estimation. At the same time, there is a large amount of process data like temperatures, pressures, etc. measured and stored every moment. This data is mainly measured for process control and monitoring purposes but its potential reaches far beyond these applications. The task of soft sensors is the maximal exploitation of this potential by extracting and transforming the latent information from the data into more useful process knowledge. Theoretically, achieving this goal should be straightforward since the process data as well as the tools for soft sensor development in the form of computational learning methods, are both readily available. However, contrary to this evidence, there are still several obstacles which prevent soft sensors from broader application in the process industry. The identification of the sources of these obstacles and proposing a concept for dealing with them is the general purpose of this work. The proposed solution addressing the issues of current soft sensors is a conceptual architecture for the development of robust and adaptive soft sensing algorithms. The architecture reflects the results of two review studies that were conducted during this project. The first one focuses on the process industry aspects of soft sensor development and application. The main conclusions of this study are that soft sensor development is currently being done in a non-systematic, ad-hoc way which results in a large amount of manual work needed for their development and maintenance. It is also found that a large part of the issues can be related to the process data upon which the soft sensors are built. The second review study dealt with the same topic but this time it was biased towards the machine learning viewpoint. The review focused on the identification of machine learning tools, which support the goals of this work. The machine learning concepts which are considered are: (i) general regression techniques for building of soft sensors; (ii) ensemble methods; (iii) local learning; (iv) meta-learning; and (v) concept drift detection and handling. The proposed architecture arranges the above techniques into a three-level hierarchy, where the actual prediction-making models operate at the bottom level. Their predictions are flexibly merged by applying ensemble methods at the next higher level. Finally from the top level, the underlying algorithm is managed by means of metalearning methods. The architecture has a modular structure that allows new pre-processing, predictive or adaptation methods to be plugged in. Another important property of the architecture is that each of the levels can be equipped with adaptation mechanisms, which aim at prolonging the lifetime of the resulting soft sensors. The relevance of the architecture is demonstrated by means of a complex soft sensing algorithm, which can be seen as its instance. This algorithm provides mechanisms for autonomous selection of data preprocessing and predictive methods and their parameters. It also includes five different adaptation mechanisms, some of which can be applied on a sample-by-sample basis without any requirement to store the on-line data. Other, more complex ones are started only on-demand if the performance of the soft sensor drops below a defined level. The actual soft sensors are built by applying the soft sensing algorithm to three industrial data sets. The different application scenarios aim at the analysis of the fulfilment of the defined goals. It is shown that the soft sensors are able to follow changes in dynamic environment and keep a stable performance level by exploiting the implemented adaptation mechanisms. It is also demonstrated that, although the algorithm is rather complex, it can be applied to develop simple and transparent soft sensors. In another experiment, the soft sensors are built without any manual model selection or parameter tuning, which demonstrates the ability of the algorithm to reduce the effort required for soft sensor development. However, if desirable, the algorithm is at the same time very flexible and provides a number of parameters that can be manually optimised. Evidence of the ability of the algorithm to deploy soft sensors with minimal training data and as such to provide the possibility to save the time consuming and costly training data collection is also given in this work

    On robust and adaptive soft sensors

    Get PDF
    In process industries, there is a great demand for additional process information such as the product quality level or the exact process state estimation. At the same time, there is a large amount of process data like temperatures, pressures, etc. measured and stored every moment. This data is mainly measured for process control and monitoring purposes but its potential reaches far beyond these applications. The task of soft sensors is the maximal exploitation of this potential by extracting and transforming the latent information from the data into more useful process knowledge. Theoretically, achieving this goal should be straightforward since the process data as well as the tools for soft sensor development in the form of computational learning methods, are both readily available. However, contrary to this evidence, there are still several obstacles which prevent soft sensors from broader application in the process industry. The identification of the sources of these obstacles and proposing a concept for dealing with them is the general purpose of this work. The proposed solution addressing the issues of current soft sensors is a conceptual architecture for the development of robust and adaptive soft sensing algorithms. The architecture reflects the results of two review studies that were conducted during this project. The first one focuses on the process industry aspects of soft sensor development and application. The main conclusions of this study are that soft sensor development is currently being done in a non-systematic, ad-hoc way which results in a large amount of manual work needed for their development and maintenance. It is also found that a large part of the issues can be related to the process data upon which the soft sensors are built. The second review study dealt with the same topic but this time it was biased towards the machine learning viewpoint. The review focused on the identification of machine learning tools, which support the goals of this work. The machine learning concepts which are considered are: (i) general regression techniques for building of soft sensors; (ii) ensemble methods; (iii) local learning; (iv) meta-learning; and (v) concept drift detection and handling. The proposed architecture arranges the above techniques into a three-level hierarchy, where the actual prediction-making models operate at the bottom level. Their predictions are flexibly merged by applying ensemble methods at the next higher level. Finally from the top level, the underlying algorithm is managed by means of metalearning methods. The architecture has a modular structure that allows new pre-processing, predictive or adaptation methods to be plugged in. Another important property of the architecture is that each of the levels can be equipped with adaptation mechanisms, which aim at prolonging the lifetime of the resulting soft sensors. The relevance of the architecture is demonstrated by means of a complex soft sensing algorithm, which can be seen as its instance. This algorithm provides mechanisms for autonomous selection of data preprocessing and predictive methods and their parameters. It also includes five different adaptation mechanisms, some of which can be applied on a sample-by-sample basis without any requirement to store the on-line data. Other, more complex ones are started only on-demand if the performance of the soft sensor drops below a defined level. The actual soft sensors are built by applying the soft sensing algorithm to three industrial data sets. The different application scenarios aim at the analysis of the fulfilment of the defined goals. It is shown that the soft sensors are able to follow changes in dynamic environment and keep a stable performance level by exploiting the implemented adaptation mechanisms. It is also demonstrated that, although the algorithm is rather complex, it can be applied to develop simple and transparent soft sensors. In another experiment, the soft sensors are built without any manual model selection or parameter tuning, which demonstrates the ability of the algorithm to reduce the effort required for soft sensor development. However, if desirable, the algorithm is at the same time very flexible and provides a number of parameters that can be manually optimised. Evidence of the ability of the algorithm to deploy soft sensors with minimal training data and as such to provide the possibility to save the time consuming and costly training data collection is also given in this work.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Towards Prescriptive Analytics in Cyber-Physical Systems

    Get PDF
    More and more of our physical world today is being monitored and controlled by so-called cyber-physical systems (CPSs). These are compositions of networked autonomous cyber and physical agents such as sensors, actuators, computational elements, and humans in the loop. Today, CPSs are still relatively small-scale and very limited compared to CPSs to be witnessed in the future. Future CPSs are expected to be far more complex, large-scale, wide-spread, and mission-critical, and found in a variety of domains such as transportation, medicine, manufacturing, and energy, where they will bring many advantages such as the increased efficiency, sustainability, reliability, and security. To unleash their full potential, CPSs need to be equipped with, among other features, the support for automated planning and control, where computing agents collaboratively and continuously plan and control their actions in an intelligent and well-coordinated manner to secure and optimize a physical process, e.g., electricity flow in the power grid. In today’s CPSs, the control is typically automated, but the planning is solely performed by humans. Unfortunately, it is intractable and infeasible for humans to plan every action in a future CPS due to the complexity, scale, and volatility of a physical process. Due to these properties, the control and planning has to be continuous and automated in future CPSs. Humans may only analyse and tweak the system’s operation using the set of tools supporting prescriptive analytics that allows them (1) to make predictions, (2) to get the suggestions of the most prominent set of actions (decisions) to be taken, and (3) to analyse the implications as if such actions were taken. This thesis considers the planning and control in the context of a large-scale multi-agent CPS. Based on the smart-grid use-case, it presents a so-called PrescriptiveCPS – which is (the conceptual model of) a multi-agent, multi-role, and multi-level CPS automatically and continuously taking and realizing decisions in near real-time and providing (human) users prescriptive analytics tools to analyse and manage the performance of the underlying physical system (or process). Acknowledging the complexity of CPSs, this thesis provides contributions at the following three levels of scale: (1) the level of a (full) PrescriptiveCPS, (2) the level of a single PrescriptiveCPS agent, and (3) the level of a component of a CPS agent software system. At the CPS level, the contributions include the definition of PrescriptiveCPS, according to which it is the system of interacting physical and cyber (sub-)systems. Here, the cyber system consists of hierarchically organized inter-connected agents, collectively managing instances of so-called flexibility, decision, and prescription models, which are short-lived, focus on the future, and represent a capability, an (user’s) intention, and actions to change the behaviour (state) of a physical system, respectively. At the agent level, the contributions include the three-layer architecture of an agent software system, integrating the number of components specially designed or enhanced to support the functionality of PrescriptiveCPS. At the component level, the most of the thesis contribution is provided. The contributions include the description, design, and experimental evaluation of (1) a unified multi-dimensional schema for storing flexibility and prescription models (and related data), (2) techniques to incrementally aggregate flexibility model instances and disaggregate prescription model instances, (3) a database management system (DBMS) with built-in optimization problem solving capability allowing to formulate optimization problems using SQL-like queries and to solve them “inside a database”, (4) a real-time data management architecture for processing instances of flexibility and prescription models under (soft or hard) timing constraints, and (5) a graphical user interface (GUI) to visually analyse the flexibility and prescription model instances. Additionally, the thesis discusses and exemplifies (but provides no evaluations of) (1) domain-specific and in-DBMS generic forecasting techniques allowing to forecast instances of flexibility models based on historical data, and (2) powerful ways to analyse past, current, and future based on so-called hypothetical what-if scenarios and flexibility and prescription model instances stored in a database. Most of the contributions at this level are based on the smart-grid use-case. In summary, the thesis provides (1) the model of a CPS with planning capabilities, (2) the design and experimental evaluation of prescriptive analytics techniques allowing to effectively forecast, aggregate, disaggregate, visualize, and analyse complex models of the physical world, and (3) the use-case from the energy domain, showing how the introduced concepts are applicable in the real world. We believe that all this contribution makes a significant step towards developing planning-capable CPSs in the future.Mehr und mehr wird heute unsere physische Welt überwacht und durch sogenannte Cyber-Physical-Systems (CPS) geregelt. Dies sind Kombinationen von vernetzten autonomen cyber und physischen Agenten wie Sensoren, Aktoren, Rechenelementen und Menschen. Heute sind CPS noch relativ klein und im Vergleich zu CPS der Zukunft sehr begrenzt. Zukünftige CPS werden voraussichtlich weit komplexer, größer, weit verbreiteter und unternehmenskritischer sein sowie in einer Vielzahl von Bereichen wie Transport, Medizin, Fertigung und Energie – in denen sie viele Vorteile wie erhöhte Effizienz, Nachhaltigkeit, Zuverlässigkeit und Sicherheit bringen – anzutreffen sein. Um ihr volles Potenzial entfalten zu können, müssen CPS unter anderem mit der Unterstützung automatisierter Planungs- und Steuerungsfunktionalität ausgestattet sein, so dass Agents ihre Aktionen gemeinsam und kontinuierlich auf intelligente und gut koordinierte Weise planen und kontrollieren können, um einen physischen Prozess wie den Stromfluss im Stromnetz sicherzustellen und zu optimieren. Zwar sind in den heutigen CPS Steuerung und Kontrolle typischerweise automatisiert, aber die Planung wird weiterhin allein von Menschen durchgeführt. Leider ist diese Aufgabe nur schwer zu bewältigen, und es ist für den Menschen schlicht unmöglich, jede Aktion in einem zukünftigen CPS auf Basis der Komplexität, des Umfangs und der Volatilität eines physikalischen Prozesses zu planen. Aufgrund dieser Eigenschaften müssen Steuerung und Planung in CPS der Zukunft kontinuierlich und automatisiert ablaufen. Der Mensch soll sich dabei ganz auf die Analyse und Einflussnahme auf das System mit Hilfe einer Reihe von Werkzeugen konzentrieren können. Derartige Werkzeuge erlauben (1) Vorhersagen, (2) Vorschläge der wichtigsten auszuführenden Aktionen (Entscheidungen) und (3) die Analyse und potentiellen Auswirkungen der zu fällenden Entscheidungen. Diese Arbeit beschäftigt sich mit der Planung und Kontrolle im Rahmen großer Multi-Agent-CPS. Basierend auf dem Smart-Grid als Anwendungsfall wird ein sogenanntes PrescriptiveCPS vorgestellt, welches einem Multi-Agent-, Multi-Role- und Multi-Level-CPS bzw. dessen konzeptionellem Modell entspricht. Diese PrescriptiveCPS treffen und realisieren automatisch und kontinuierlich Entscheidungen in naher Echtzeit und stellen Benutzern (Menschen) Prescriptive-Analytics-Werkzeuge und Verwaltung der Leistung der zugrundeliegenden physischen Systeme bzw. Prozesse zur Verfügung. In Anbetracht der Komplexität von CPS leistet diese Arbeit Beiträge auf folgenden Ebenen: (1) Gesamtsystem eines PrescriptiveCPS, (2) PrescriptiveCPS-Agenten und (3) Komponenten eines CPS-Agent-Software-Systems. Auf CPS-Ebene umfassen die Beiträge die Definition von PrescriptiveCPS als ein System von wechselwirkenden physischen und cyber (Sub-)Systemen. Das Cyber-System besteht hierbei aus hierarchisch organisierten verbundenen Agenten, die zusammen Instanzen sogenannter Flexibility-, Decision- und Prescription-Models verwalten, welche von kurzer Dauer sind, sich auf die Zukunft konzentrieren und Fähigkeiten, Absichten (des Benutzers) und Aktionen darstellen, die das Verhalten des physischen Systems verändern. Auf Agenten-Ebene umfassen die Beiträge die Drei-Ebenen-Architektur eines Agentensoftwaresystems sowie die Integration von Komponenten, die insbesondere zur besseren Unterstützung der Funktionalität von PrescriptiveCPS entwickelt wurden. Der Schwerpunkt dieser Arbeit bilden die Beiträge auf der Komponenten-Ebene, diese umfassen Beschreibung, Design und experimentelle Evaluation (1) eines einheitlichen multidimensionalen Schemas für die Speicherung von Flexibility- and Prescription-Models (und verwandten Daten), (2) der Techniken zur inkrementellen Aggregation von Instanzen eines Flexibilitätsmodells und Disaggregation von Prescription-Models, (3) eines Datenbankmanagementsystem (DBMS) mit integrierter Optimierungskomponente, die es erlaubt, Optimierungsprobleme mit Hilfe von SQL-ähnlichen Anfragen zu formulieren und sie „in einer Datenbank zu lösen“, (4) einer Echtzeit-Datenmanagementarchitektur zur Verarbeitung von Instanzen der Flexibility- and Prescription-Models unter (weichen oder harten) Zeitvorgaben und (5) einer grafische Benutzeroberfläche (GUI) zur Visualisierung und Analyse von Instanzen der Flexibility- and Prescription-Models. Darüber hinaus diskutiert und veranschaulicht diese Arbeit beispielhaft ohne detaillierte Evaluation (1) anwendungsspezifische und im DBMS integrierte Vorhersageverfahren, die die Vorhersage von Instanzen der Flexibility- and Prescription-Models auf Basis historischer Daten ermöglichen, und (2) leistungsfähige Möglichkeiten zur Analyse von Vergangenheit, Gegenwart und Zukunft auf Basis sogenannter hypothetischer „What-if“-Szenarien und der in der Datenbank hinterlegten Instanzen der Flexibility- and Prescription-Models. Die meisten der Beiträge auf dieser Ebene basieren auf dem Smart-Grid-Anwendungsfall. Zusammenfassend befasst sich diese Arbeit mit (1) dem Modell eines CPS mit Planungsfunktionen, (2) dem Design und der experimentellen Evaluierung von Prescriptive-Analytics-Techniken, die eine effektive Vorhersage, Aggregation, Disaggregation, Visualisierung und Analyse komplexer Modelle der physischen Welt ermöglichen und (3) dem Anwendungsfall der Energiedomäne, der zeigt, wie die vorgestellten Konzepte in der Praxis Anwendung finden. Wir glauben, dass diese Beiträge einen wesentlichen Schritt in der zukünftigen Entwicklung planender CPS darstellen.Mere og mere af vores fysiske verden bliver overvåget og kontrolleret af såkaldte cyber-fysiske systemer (CPSer). Disse er sammensætninger af netværksbaserede autonome IT (cyber) og fysiske (physical) agenter, såsom sensorer, aktuatorer, beregningsenheder, og mennesker. I dag er CPSer stadig forholdsvis små og meget begrænsede i forhold til de CPSer vi kan forvente i fremtiden. Fremtidige CPSer forventes at være langt mere komplekse, storstilede, udbredte, og missionskritiske, og vil kunne findes i en række områder såsom transport, medicin, produktion og energi, hvor de vil give mange fordele, såsom øget effektivitet, bæredygtighed, pålidelighed og sikkerhed. For at frigøre CPSernes fulde potentiale, skal de bl.a. udstyres med støtte til automatiseret planlægning og kontrol, hvor beregningsagenter i samspil og løbende planlægger og styrer deres handlinger på en intelligent og velkoordineret måde for at sikre og optimere en fysisk proces, såsom elforsyningen i elnettet. I nuværende CPSer er styringen typisk automatiseret, mens planlægningen udelukkende er foretaget af mennesker. Det er umuligt for mennesker at planlægge hver handling i et fremtidigt CPS på grund af kompleksiteten, skalaen, og omskifteligheden af en fysisk proces. På grund af disse egenskaber, skal kontrol og planlægning være kontinuerlig og automatiseret i fremtidens CPSer. Mennesker kan kun analysere og justere systemets drift ved hjælp af det sæt af værktøjer, der understøtter præskriptive analyser (prescriptive analytics), der giver dem mulighed for (1) at lave forudsigelser, (2) at få forslagene fra de mest fremtrædende sæt handlinger (beslutninger), der skal tages, og (3) at analysere konsekvenserne, hvis sådanne handlinger blev udført. Denne afhandling omhandler planlægning og kontrol i forbindelse med store multi-agent CPSer. Baseret på en smart-grid use case, præsenterer afhandlingen det såkaldte PrescriptiveCPS hvilket er (den konceptuelle model af) et multi-agent, multi-rolle, og multi-level CPS, der automatisk og kontinuerligt tager beslutninger i nær-realtid og leverer (menneskelige) brugere præskriptiveanalyseværktøjer til at analysere og håndtere det underliggende fysiske system (eller proces). I erkendelse af kompleksiteten af CPSer, giver denne afhandling bidrag til følgende tre niveauer: (1) niveauet for et (fuldt) PrescriptiveCPS, (2) niveauet for en enkelt PrescriptiveCPS agent, og (3) niveauet for en komponent af et CPS agent software system. På CPS-niveau, omfatter bidragene definitionen af PrescriptiveCPS, i henhold til hvilken det er det system med interagerende fysiske- og IT- (under-) systemer. Her består IT-systemet af hierarkisk organiserede forbundne agenter der sammen styrer instanser af såkaldte fleksibilitet (flexibility), beslutning (decision) og præskriptive (prescription) modeller, som henholdsvis er kortvarige, fokuserer på fremtiden, og repræsenterer en kapacitet, en (brugers) intention, og måder til at ændre adfærd (tilstand) af et fysisk system. På agentniveau omfatter bidragene en tre-lags arkitektur af et agent software system, der integrerer antallet af komponenter, der er specielt konstrueret eller udbygges til at understøtte funktionaliteten af PrescriptiveCPS. Komponentniveauet er hvor afhandlingen har sit hovedbidrag. Bidragene omfatter beskrivelse, design og eksperimentel evaluering af (1) et samlet multi- dimensionelt skema til at opbevare fleksibilitet og præskriptive modeller (og data), (2) teknikker til trinvis aggregering af fleksibilitet modelinstanser og disaggregering af præskriptive modelinstanser (3) et database management system (DBMS) med indbygget optimeringsproblemløsning (optimization problem solving) der gør det muligt at formulere optimeringsproblemer ved hjælp af SQL-lignende forespørgsler og at løse dem "inde i en database", (4) en realtids data management arkitektur til at behandle instanser af fleksibilitet og præskriptive modeller under (bløde eller hårde) tidsbegrænsninger, og (5) en grafisk brugergrænseflade (GUI) til visuelt at analysere fleksibilitet og præskriptive modelinstanser. Derudover diskuterer og eksemplificerer afhandlingen (men giver ingen evalueringer af) (1) domæne-specifikke og in-DBMS generiske prognosemetoder der gør det muligt at forudsige instanser af fleksibilitet modeller baseret på historiske data, og (2) kraftfulde måder at analysere tidligere-, nutids- og fremtidsbaserede såkaldte hypotetiske hvad-hvis scenarier og fleksibilitet og præskriptive modelinstanser gemt i en database. De fleste af bidragene på dette niveau er baseret på et smart-grid brugsscenarie. Sammenfattende giver afhandlingen (1) modellen for et CPS med planlægningsmulighed, (2) design og eksperimentel evaluering af præskriptive analyse teknikker der gør det muligt effektivt at forudsige, aggregere, disaggregere, visualisere og analysere komplekse modeller af den fysiske verden, og (3) brugsscenariet fra energiområdet, der viser, hvordan de indførte begreber kan anvendes i den virkelige verden. Vi mener, at dette bidrag udgør et betydeligt skridt i retning af at udvikle CPSer til planlægningsbrug i fremtiden

    Language change and evolution in Online Social Networks

    Get PDF
    Language is in constant flux, whether through the creation of new terms or the changing meanings of existing words. The process by which language change happens is through complex reinforcing interactions between individuals and the social structures in which they exist. There has been much research into language change and evolution, though this has involved manual processes that are both time consuming and costly. However, with the growth in popularity of osn, for the first time, researchers have access to fine-grained records of language and user interactions that not only contain data on the creation of these language innovations but also reveal the inter-user and inter-community dynamics that influence their adoptions and rejections. Having access to these osn datasets means that language change and evolution can now be assessed and modelled through the application of computational and machine-learning-based methods. Therefore, this thesis looks at how one can detect and predict language change in osn, as well as the factors that language change depends on. The answer to this over-arching question lies in three core components: first, detecting the innovations; second, modelling the individual user adoption process; and third, looking at the collective adoption across a network of individuals. In the first question, we operationalise traditional language acceptance heuristics (used to detect the emergence of new words) into three classes of computation time-series measures computing the variation in frequency, form and/or meaning. The grounded methods are applied to two osn, with results demonstrating the ability to detect language change across both networks. By additionally applying the methods to communities within each network, e.g. geographical regions, on Twitter and Subreddits in Reddit, the results indicate that language variation and change can be dependent on the community memberships. The second question in this thesis focuses on the process of users adopting language innovations in relation to other users with whom they are in contact. By modelling influence between users as a function of past innovation cascades, we compute a global activation threshold at which users adopt new terms dependent on exposure to them from their neighbours. Additionally, by testing the user interaction networks through random shuffles, we show that the time at which a user adopts a term is dependent on the local structure; however, a large part of the influence comes from sources external to the observed osn. The final question looks at how the speakers of a language are embedded in social networks, and how the networks' resulting structures and dynamics influence language usage and adoption patterns. We show that language innovations diffuse across a network in a predictable manner, which can be modelled using structural, grammatical and temporal measures, using a logistic regression model to predict the vitality of the diffusion. With regard to network structure, we show how innovations that manifest across structural holes and weak ties diffuse deeper across the given network. Beyond network influence, our results demonstrate that the grammatical context through which innovations emerge also play an essential role in diffusion dynamics - this indicates that the adoption of new words is enabled by a complex interplay of both network and linguistic factors. The three questions are used to answer the over-arching question, showing that one can, indeed, model language change and forecast user and community adoption of language innovations. Additionally, we also show the ability to apply grounded models and methods and apply them within a scalable computational framework. However, it is a challenging process that is heavily influenced by the underlying processes that are not recorded within the data from the osns

    Winona Daily News

    Get PDF
    https://openriver.winona.edu/winonadailynews/1868/thumbnail.jp
    corecore