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Abstract

More and more of our physical world today is being monitored and controlled by so-called
cyber-physical systems (CPSs). These are compositions of networked autonomous cyber
and physical agents such as sensors, actuators, computational elements, and humans in
the loop. Today, CPSs are still relatively small-scale and very limited compared to
CPSs to be witnessed in the future. Future CPSs are expected to be far more complex,
large-scale, wide-spread, and mission-critical, and found in a variety of domains such
as transportation, medicine, manufacturing, and energy, where they will bring many
advantages such as the increased efficiency, sustainability, reliability, and security. To
unleash their full potential, CPSs need to be equipped with, among other features, the
support for automated planning and control, where computing agents collaboratively
and continuously plan and control their actions in an intelligent and well-coordinated
manner to secure and optimize a physical process, e.g., electricity flow in the power grid.

In today’s CPSs, the control is typically automated, but the planning is solely per-
formed by humans. Unfortunately, it is intractable and infeasible for humans to plan
every action in a future CPS due to the complexity, scale, and volatility of a physical
process. Due to these properties, the control and planning has to be continuous and au-
tomated in future CPSs. Humans may only analyse and tweak the system’s operation
using the set of tools supporting prescriptive analytics that allows them (1) to make
predictions, (2) to get the suggestions of the most prominent set of actions (decisions)
to be taken, and (3) to analyse the implications as if such actions were taken.

This thesis considers the planning and control in the context of a large-scale multi-
agent CPS. Based on the smart-grid use-case, it presents a so-called PrescriptiveCPS
– which is (the conceptual model of) a multi-agent, multi-role, and multi-level CPS auto-
matically and continuously taking and realizing decisions in near real-time and providing
(human) users prescriptive analytics tools to analyse and manage the performance of
the underlying physical system (or process). Acknowledging the complexity of CPSs,
this thesis provides contributions at the following three levels of scale: (1) the level of
a (full) PrescriptiveCPS, (2) the level of a single PrescriptiveCPS agent, and (3)
the level of a component of a CPS agent software system.

At the CPS level, the contributions include the definition of PrescriptiveCPS,
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according to which it is the system of interacting physical and cyber (sub-)systems. Here,
the cyber system consists of hierarchically organized inter-connected agents, collectively
managing instances of so-called flexibility, decision, and prescription models, which are
short-lived, focus on the future, and represent a capability, an (user’s) intention, and
actions to change the behaviour (state) of a physical system, respectively.

At the agent level, the contributions include the three-layer architecture of an agent
software system, integrating the number of components specially designed or enhanced
to support the functionality of PrescriptiveCPS.

At the component level, the most of the thesis contribution is provided. The con-
tributions include the description, design, and experimental evaluation of (1) a unified
multi-dimensional schema for storing flexibility and prescription models (and related
data), (2) techniques to incrementally aggregate flexibility model instances and dis-
aggregate prescription model instances, (3) a database management system (DBMS)
with built-in optimization problem solving capability allowing to formulate optimization
problems using SQL-like queries and to solve them “inside a database”, (4) a real-time
data management architecture for processing instances of flexibility and prescription
models under (soft or hard) timing constraints, and (5) a graphical user interface (GUI)
to visually analyse the flexibility and prescription model instances. Additionally, the
thesis discusses and exemplifies (but provides no evaluations of) (1) domain-specific and
in-DBMS generic forecasting techniques allowing to forecast instances of flexibility mod-
els based on historical data, and (2) powerful ways to analyse past, current, and future
based on so-called hypothetical what-if scenarios and flexibility and prescription model
instances stored in a database. Most of the contributions at this level are based on the
smart-grid use-case.

In summary, the thesis provides (1) the model of a CPS with planning capabilities,
(2) the design and experimental evaluation of prescriptive analytics techniques allowing
to effectively forecast, aggregate, disaggregate, visualize, and analyse complex models
of the physical world, and (3) the use-case from the energy domain, showing how the
introduced concepts are applicable in the real world. We believe that all this contribution
makes a significant step towards developing planning-capable CPSs in the future.
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Chapter 1

Introduction

1.1 Cyber-Physical Systems
Today, more and more of our physical world is being monitored and controlled by
so-called cyber-physical systems (CPSs) featuring highly integrated computational and
physical capabilities. CPSs are compositions of networked autonomous cyber-agents
(e.g., sensors, actuators, computational elements) and humans that monitor and influ-
ence the operation of the system (see Figure 1.1). Such systems can be found in areas
as diverse as aerospace, automotive, healthcare, manufacturing, transportation, enter-
tainment, and energy where they bring many advantages such as increased efficiency,
sustainability, reliability, and security.

The CPSs today are only at the pre-matured state, still relatively small-scale, and
lacking many features and the potential of the full-fledged CPSs to be witnessed in the
future. The CPSs of tomorrow are expected to be far more complex, large-scale, mission-
critical, and wide-spread compared to the existing CPSs today. The CPSs of tomorrow
will be systems of systems encompassing large areas such as country, continent, or the
whole Earth, coordinating physical processes both at the nano and the mega scale, and
dealing with thousands or millions of agents such as sensors, actuators, computational
elements, and humans in the loop, where they either control or take part in the system.
Computational and communication capabilities of CPSs will be embedded in nearly
all types of objects and structures such as a human body, households, vehicles, or
road infrastructure, and new types applications harnessing these capabilities will offer
enormous economic benefit and social impact in variety of domains. For the vision
of future CPSs to become reality, many challenges with the regards to adaptability,
autonomy, efficiency, functionality, reliability, safety, and usability needs to be addressed
today, requiring inputs from engineering, mathematics, computer science and other
fields, combined with domain-specific knowledge.
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Cyber space

Actuation
Physical
Sensing

Physical space

Cyber agents

Sensors-actuators

Sensors-actuators Sensors-actuators

Networks

Human users

Figure 1.1: The components of cyber-physical systems

One of the major challenges in the context of future CPSs is the support for the
intelligent and automated planning and control, as part of which computational agents
of a CPS collaboratively plan and control their actions in a well-coordinated intelligent
manner, potentially, at different time scales (long-, short-term) and aggregation levels
(nano, micro, and macro) to secure and optimize a managed physical process, e.g., elec-
tricity flow in the grid. In today’s CPSs, the control is typically automated but the
planning is solely performed by humans, often with the aid from decision support tools
(e.g., OLTP, OLAP, data mining, and optimization software systems). In a future CPS,
it becomes intractable and infeasible for humans to plan actions of a CPS due to its
complexity and the scale as well as the volatility of the physical process. Consequently,
new generation CPSs need a support for automated planning and control, where compu-
tational agents automatically and continuously perform planning and control activities,
and humans only tweaks the system’s operation at coarser time granularity and higher
data aggregation level, by utilizing a support from a CPS. When the planning and con-
trol are done intelligently and effectively, CPSs can indeed achieve the ultimate CPS
goals [10], among which are zero-energy footprint buildings and cities, extreme-yield
agriculture, accident-free transportation systems, and blackout-free electricity.
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1.2 Planning and Control
In the general sense, planning and control are the two essential activities of an intelligent
behaviour during which decisions are made and acted upon. To define and show the
relationship between planning and control, it is convenient to use a simple conceptual
model [11] (see Figure 1.2a) defining interaction between three components:

1. A dynamic system that evolves according to the events and actions that it receives.

2. A controller that produces actions according to observations and a plan, which is
a structure that describes appropriate actions.

3. A planner that synthesizes a plan for the controller in order to achieve objectives
based on context information such as a description of the dynamic system, the
initial situation, external data, etc.

Planner

Controller

Dynamic system 

Plans

Actions

Execution status

Observations

Context 
Information

Objectives

Events

Identify Objectives

Identify Alternative Decisions

Model System’s Response to 
Alternative Decisions

Choose Best Decision

Perform Analysis

More Analysis 
Needed?

Implement Decision

Monitor

No

Yes

Collect and Consolidate 
Information

P
la

n
n

in
g

C
o

n
tr

o
l

Make Predictions

Performs

Performs

Focus of this thesis

(a) (b)

Figure 1.2: The conceptual model (a) and the process of planning and control (b)

The planner and the controller are entities such as humans or agents – autonomous
interacting hardware- and software-based computer systems [12]. With the respect to
the conceptual model, planning and control lead to (effective) plans and actions and are
two closely related processes (activities) performed by the planner and the controller,
respectively. Here, planning is a rational, systematic, and (often) cognitive process look-
ing ahead in time (in short- or long-term) to determine the future course of action in
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order to achieve the objectives laid down. On the contrary, control looks at current time
(or backwards in time) to find out if the dynamic system is behaving (or behaved) ac-
cording to the plan (course), and brings the system back to the desired state in the case
of (plan) deviations. The generalized joint process of planning and control is depicted
in Figure 1.2b. Among others, it includes the steps of (1) information collection and con-
solidation, (2) prediction of the future behaviour, (3) alternative decision identification,
(4) the selection of the best decision and (5) the implementation of the decision.

1.3 Prescriptive Analytics and Automation
In most planning and control scenarios today, control is typically automated, and plan-
ning is solely performed by humans, mostly because human-planners, even though they
are slower than machines, have better cognitive capabilities required for planning.

To aid humans in planning, the vast amount of Decision Support Systems (DSSs) –
ranging from simple data querying to scalable machine learning systems – was developed
over the last five decades. Most of these systems focus on one or multiple steps of plan-
ning (see Figure 1.3) and are designed exclusively for business enterprises, where they
support the planning of business process through the exploration, prediction, and/or
actuation of the business performance. Depending on their capabilities, these systems
support one of the following types of analytics, determining their usefulness (value),
difficulty, and the level of intelligence (see Figure 1.4):

Descriptive analytics focuses on the data collection and consolidation step (see Fig-
ure 1.3). It is the most common and well-understood type of business analytics [13]. It
categorizes, consolidates, and summarizes data to convert it into useful information for
the purposes of understanding and analysing past and current business performance.
The typical question that the descriptive analytics helps answering is: “What has hap-
pened in the past or is happening now and why?”.

Predictive analytics focuses on the data collection/consolidation and the predictions
steps (see Figure 1.3). It predicts future by examining historical data, detecting patterns
or relationships in data, and extrapolating these relationships forward in time. By using
advanced techniques and prediction models, the predictive analytics can help to detect
trends and hidden patterns in large quantities of data. ”What will happen in the future?”
– is a typical question that the predictive analytics helps to answer.

Prescriptive analytics focuses on nearly all steps of planning (see Figure 1.3), in-
cluding the steps of data collection/consolidation, prediction, and the decision making.
It is a new and emerging type of business analytics [13], aiming to recommend and
present the best course of decisions (actions) to take advantage of the predictions in a
timely manner. It allows what-if analysis [14] and generates effective decisions in the
form of prescriptions – short-term plans of what to do next in the present situation. To
derive such prescriptions, as well as to explore factors, constraints, and the interactions
between them, prescriptive analytics encourages [15] the use of decision models and
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mathematical optimization, allowing to search for the best set of prescriptions among
feasible candidates. Prescriptive analytics addresses the question: “What should we do
to achieve our goal?”.

Unlike in traditional scenarios where humans conduct planning (with the support
from DSS), the future CPS scenario requires fully automated planning and control where
humans only monitor the planning and plan realization process, and, when needed, are
able to re-program or assist machines, e.g., by utilizing the provided DSS tools. In other
words, CPSs have to become so-called Decision Automation Systems (DASs) eliminating
the need for humans in planning and control (e.g., Google Car [16]). With the support of
prescriptive automation, DASs are able to automate the complete planning and control
process (shown in Figure 1.3) by offering an elaborate and built-in control (software,
hardware, firmware, and more) to automatically “action” prescriptions after they are
generated automatically by prescriptive analytics tools or manually by (human) users.

However, fully automated control and planning is challenging. Typically, the auto-
mated control is simpler that the automated planning, and, consequently, various auto-
mated control approaches (e.g., open-loop and closed-loop controllers) has been proposed
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and well studied in the field of control theory [17]. Automated planning, on the other
hand, is difficult is even in simple deterministic single-agent scenarios, which are the fo-
cus of the research fields of classical and neoclassical planning [11]. In the CPS setting,
automating the planning becomes even more challenging as the planning activities has
to be done by a large number of agents managing the physical world that is complex,
volatile, and non-deterministic. We now show how planning in the CPS setting differs
compared to the planning in other multi-agent scenarios, previously explored in the field
of multi-agent planning.

1.4 Multi-Agent Planning
In the multi-agent setting, agents have to share resources, coordinate activities, and aim
to achieve goals that are common to the whole agent population and/or are specific to
individual agents. The field of multi-agent planning focuses on planning in such multi-
agent scenarios and distinguishes the following three types of distributed planning [18]:

Cooperative Distributed Planning (CSP) distributes the single planning process
(shown in Figure 1.2) among two or more agents cooperating to build a common
global plan using some parallel planning algorithm. Agents participate in the
construction of the plan and exchange information about their individual sub-
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plans, which are first constructed and later adjusted to the needs of a global
common plan realization.

Negotiated Distributed Planning (NDP) relies onmultiple planning processes that
are pursued by each agent concurrently. It aims for the successful realization of
local agent goals as well as the goal of an agent group. The plan embracing a group
of agents results from a negotiation and action coordination between agents.

Distributed Continual Planning (DCP) relies on multiple planning and control
processes coupled together and seen as ongoing, dynamic, and interleaved joint
activities pursued by each agent concurrently (as shown in Figure 1.2). As soon
as deviations from a plan are detected, continual planning not only reacts to
changes that threaten the execution of the plan, but also looks for opportunities
to improve the plan.
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For each of the distributed planning types, various approaches of multi-agent plan-
ning were proposed [18]. All these approaches, with no exception, make certain as-
sumptions [19, 20] concerning the properties of agents, agent interaction, and physical
environment (see Traditional multi-agent systems in Figure 1.5). Unfortunately, often
these assumptions are too restrictive for the existing approaches to be practically used
in the real-world [18] (including the CPS setting). Among all simplifying assumptions
these approach make, there is one or more assumptions from the following list:

• Agents are homogeneous, reactive, and with no or limited cognitive capabilities.
They pursue distributed planning (CSP, NDP, or DCP) to achieve the goals that
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are either contradicting or complementary. The number of agents is (relatively)
small.

• Interaction (communication) between agents is fixed, reliable, having central-
ized (or decentralized) pattern, and based on the signal passing (rather than the
knowledge passing).

• Environment in which agents act is discrete (has a countable number of states)
and can be accurately observed (accessible) and predicted (predictable) by agents.
It changes only due to agents’ action having one predictable outcome at any given
moment (deterministic).

These simplifying assumptions are much too restrictive for the CPS setting, charac-
terized as following:

• Agents are heterogeneous, reactive, proactive, and with cognitive capabilities
where humans and machines collaborate to formulate more efficient and robust
plans (aka. mixed-initiative planning [21,22]). There are thousands of such agents,
and they pursue distributed continual planning (DCP) in real- or near real-time to
achieve their goals that are both contradicting and complementary within distinct
groups of agents. As the part of the planning, complex models (e.g., mathematical,
forecasting) need to be built, decision (optimization) problems need to be solved,
and decision needs to be followed [23,24].

• Interaction (communication) between agents is frequent (due to DCP), unre-
liable, knowledge-intensive, and changeable in configuration (due to the agent
entering and leaving a CPS participation). The interaction between agents fol-
lows a distributed hierarchical pattern reflecting the organizational view of the
physical world (e.g., consider enterprise’s hierarchical organization that includes
a president, vice president, manager, and employee).

• Environment is a physical system or process in the real-world. It is dynamic,
continuous, and evolving in ways beyond the agent’s control. Its state cannot be
accurately observed (limited accessibility) and predicted (predictions are possible,
but only at higher aggregation levels). Furthermore, the actions of an agent may
have several predictable outcomes (non-deterministic), and they are often mission
critical and with strict timing requirements that must not be violated.

Consequently, the accomplishments of the multi-agent research, though fine within
their intended settings, are not sufficient for the setting of future CPSs. New multi-
agent planning approaches are required to support the automated planning in the CPS
setting. Motivated by this challenge, this thesis focuses on the future CPS setting and
aims to design (1) a CPS, at multiple levels of scale, for mixed-initiative distributed
continuous planning (DCP) as well as (2) prescriptive analytics tools and technology for
such a CPS. The next section elaborates the overall problem addressed in this thesis.
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1.5 Problem Statement
In summary, future CPSs will be much more integrated into the physical world, where
they will manage various physical systems and processes in a secure and optimal man-
ner and thus bring many advantages to the society. For that to become a reality, CPSs
have to become decision support and automation systems (DSSs and DASs) with a large
number of intelligent agents collectively realizing mixed-initiative distributed continual
planning (DCP) and offering prescriptive analytics tools for (human) users. The users
must be able to use these tools to monitor the plan realization and to tweak the pro-
cesses of planning through more effective decision models. Unfortunately, most of the
ideas and approaches in the fields of prescriptive analytics, prescriptive automation, and
multi-agent planning are either too limited for the CPS setting (see Section 1.4) or
presented only at the conceptual level [15] with no common and standardized theories
and techniques available. Consequently, the emerging field of CPSs requires new pre-
scriptive analytics, prescriptive automation, and distributed continual planning theories
and methods that can practically be applicable in the CPS setting. This leads to the
following overall problem statement of this thesis:

How to (1) design a CPS at multiple levels of scale for mixed-initiative (human-
and machine-based) distributed continuous planning (DCP), how to (2) apply such
design in a concrete real-world use-case, and how to (3) develop a software that
supports the planning and control activities (show in Figure 1.2) and offers (human)
users prescriptive analytics tools for monitoring the plan realization and for tweaking
the processes of planning through more effective decision models?

1.6 Thesis Contributions
This thesis looks into the problem of designing, and practically applying the design of,
a multi-agent CPS for mixed-initiative distributed continual planning (DCP). To tackle
this problem, the thesis presents PrescriptiveCPS, which is our proposed (conceptual
model of a) multi-agent, multi-role CPS where computational agents are organized hier-
archically to optimally manage an underlying physical system (see Figure 1.6). The CPS
takes and realizes decisions automatically, continuously, and in near real-time (DCP).
Agents at different levels of the hierarchy deal with so-called flexibility (world), decision,
and prescription models of different aggregations levels. Depending on supported model
management functionality, an agent takes one or multiple agent roles such as the sen-
sor, aggregator, and/or global prescriptor (decision-maker) role. Human users owning
and/or using agents in decision-making roles are provided prescriptive analytics tools
for monitoring plan realization (control) and for tweaking the process of planning.
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In the thesis, relevant concepts are exemplified and studied using a real-world use-
case from the smart-grid domain. In the use-case, an instance of PrescriptiveCPS
is specialized for balancing electricity consumption and production in the power grid
with a large number of renewable energy sources (e.g., windmills), as specified by the
EU FP7 project MIRABEL [25] (abbr. Micro-Request-Based Aggregation, Forecasting
and Scheduling of Energy Demand, Supply and Distribution).

As seen in Figure 1.6, PrescriptiveCPS is the system of hierarchically organized
agents, where each agent is a complex individual multi-component system. Acknowl-
edging this complexity, the thesis focuses to the multiple levels of a PrescriptiveCPS
scale: (1) the level of the (full) CPS, (2) the level of a CPS agent, and (3) the level of
a component of a CPS agent software system. The thesis provides contributions at all
these levels. The amounts of contribution at each of these levels, together with relevant
thesis chapters, are shown in Figure 1.6. The meanings of the contribution amounts
used in the figure are as follows:

No contribution A particular entity (e.g., system or component) is only ab-
stractly defined (as it might be specific to an application). No detailed discussion,
examples, architecture, and experimental evaluation are given.

Minor contribution A particular entity is only discussed and exemplified. No
architecture and the experimental evaluation of a prototype are provided.

Medium contribution A particular entity is discussed and exemplified, and ar-
chitecture is presented. However, no experimental evaluation of a prototype is
provided.
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Major contribution A particular entity is discussed and exemplified, architec-
ture is presented, and the experimental evaluation of the prototype is provided.

By focusing at the different levels of the CPS scale, we now elaborate these contri-
butions. The amount of a contribution is depicted where relevant.

Thesis contributions at the CPS level

1. Provides the definition of PrescriptiveCPS (Section 3.1), according to which it
is the system of interacting physical and cyber (sub-)systems. Here, the cyber sys-
tem consists of inter-connected agents forming a hierarchy based on their obedience
to each other (see Figure 1.6). Agents collectively manage instances of so-called
flexibility (world), decision, and prescription models, which are short-lived, focus
on the future, and represent (1) capability, an (2) (agent owner) intention, and
(3) actions to change the behaviour (state) of a physical system, respectively.

2. Presents the definition of flexibility, decision, and prescription models, by showing
how these models are related and formally defined (Section 3.2).

3. Defines the semantics of PrescriptiveCPS in terms of core planning operations
transforming flexibility, decision, and prescription model instances (Section 3.3).

4. Defines the set of roles an agent can potentially take depending on the set of core
planning operations it supports (Section 3.5).

5. Exemplifies the defined concepts by elaborating the specialized PrescriptiveCPS
instance from the MIRABEL project (Section 3.6).

Thesis contributions at the agent level

6. Defines functional and non-functional requirements with regards to the model
(and related data) management to be satisfied by a PrescriptiveCPS agent
(Section 3.7).

7. Proposes the architecture of an agent software system integrating the number of
components specially designed or enhanced to satisfy the agent-specific functional
and non-functional requirements (Section 4.1). Additionally, the overviews of
capabilities and functionality of these components are provided.

Thesis contributions at the agent component level

8. Proposes and generalizes (for other PrescriptiveCPS instances) a multi-
dimensional data warehouse schema (Chapter 5) to be used for storing flexibil-
ity and prescription model instances (and related data) in the MIRABEL use-
case. The schema is unified as it can be used by different CPS agent roles in
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the MIRABEL use-case. Alternative data modelling strategies based on typical
queries from the energy domain were discusses and experimentally evaluated.

9. Proposes techniques to aggregate flexibility model instances and disaggre-
gate prescription model instances and demonstrates these techniques using the
MIRABEL use-case (Chapter 6). The (lossy) aggregation and (exact) disaggrega-
tion is vitally important for the large-scale instances of PrescriptiveCPS (such
as the one from the MIRABEL use-case), as the aggregation and disaggregation
allow (substantially) reducing the complexity of decision problems while still al-
lowing to reproduce valid prescriptions at lower aggregation levels. The decision
problems of the manageable size are required for (near) real-time planning where
time for decision making is often limited and (good enough) decisions need to be
generated in a limited time. The thesis also presents an efficient incremental ag-
gregation technique allowing to update aggregated model instances incrementally
(after changes in input), requiring no complete re-computation.

10. Proposes the design of a DBMS with built-in time series forecasting function-
ality (Section 7.1), which offers increased usability, productivity, and performance
compared to the traditional forecasting process. The DBMS supports so-called
forecast queries allowing to compute forecasted (future) time series values inside
a DBMS based on historical measurements from a database. The thesis discusses
integration aspects, presents the requirements and challenges of time series fore-
casting, and proposes an ANSI/SPARC-based architecture allowing a transparent,
efficient, and end-to-end execution of forecast queries.

11. Demonstrates domain-specific (MIRABEL-specific) approaches and software
architecture for forecasting instances of flexibility models (Section 7.2) – entities
that are far more complex than time series and therefore cannot be directly fore-
casted using the DBMS with built-in time series forecasting (Section 7.1). The
demonstrated approaches convert (augment) time series into instances of a flexi-
bility model utilizing detailed information about a domain.

12. Proposes the design of a DBMS with built-in optimization problem solving
functionality (Chapter 8), which allows solving optimization (decision) problems
“inside” a DBMS. The DBMS enables so-called solve queries that offer a common
language for queries and optimization models, both expressed using Structural
Query Language (SQL) constructs. As part the contribution, the thesis presents
an extensible solver infrastructure allowing to integrate (into a DBMS) a variety
of solvers, each of which tackles a specific class of problems, e.g., linear program-
ming. Additionally, the thesis presents query optimization techniques allowing to
increase the execution performance and/or result quality. The presented results of
extensive experiments with the PostgreSQL-based implementation witness both
significantly better user productivity and problem solving performance.
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13. Demonstrates simplified powerful ways to analyse past, current, and future data
based on so-called hypothetical what-if scenarios and flexibility and prescription
models from the MIRABEL use-case (Chapter 9). These what-if scenarios, as
we elaborate in this thesis, can be expressed in SQL and natively supported by
the agent’s DBMS. When the DBMS additionally features built-in forecasting and
optimization functionalities, an analyst can be offered an integrated prescriptive
analytics platform supporting most of the tasks of planning (see Figure 1.3).

14. Proposes a real-time data management architecture for processing instances of
flexibility and prescription models under (soft or hard) timing constraints (Chap-
ter 10). The architecture enables storage and query processing optimizations and
offers many useful features such as model-specific, approximate, and subscription-
based queries. Experiments with our initial MIRABEL-specific prototype, inte-
grating (some of) our proposed techniques, witness significant performance im-
provements with respect to (historical) measurement storage, flexibility model
aggregation, and forecast model maintenance.

15. Presents the design of a graphical user interface (GUI) for displaying and visu-
ally analysing instances of flexibility and prescription models from the MIRABEL
use-case (Chapter 11). The presented initial implementation is able to visualize
large amounts of such complex model instances and offer generalized and in-depth
analysis of all such data.

Summary of contribution

All these thesis contributions can be summarized as follows:

The thesis provides:

• The model of a CPS with the capabilities of mixed-initiative (human- and
machine-based) distributed continual planning and control.

• The design and experimental evaluation of the following prescriptive ana-
lytics techniques, all contributing the process of planning (Figure 1.3):

– planning-specific techniques allowing to effectively generate, forecast,
aggregate, and disaggregate complex (world) models of a physical
system.

– data management and analysis techniques enabling (near) real-time
processing and new ways of and querying and analysing data about
past, presence, and/or future.
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• The use-case from the smart-grid domain, showing how the introduced con-
cepts are applicable in real-world.

1.7 Thesis Overview
The rest of the thesis follows the structure shown in Figure 1.7. As denoted by inden-
tation and grouping in the figure, the chapters of this thesis focus on different levels of
the PrescriptiveCPS scale (i.e., the level of a CPS, an agent software, or an agent
software component) and have different aims, summarized below.
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Figure 1.7: The structure of the thesis

Present a use-case Chapter 2 presents the real-world example of a large-scale CPS
with planning and control capabilities. The CPS takes and realizes decisions contin-
uously and automatically to balance electricity consumption and production in the
power-grid with a substantial amount of renewable energy sources (RES). As shown
later, this CPS is an instance of a generic PrescriptiveCPS.
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Drill-down PrescriptiveCPS Chapter 3 elaborates PrescriptiveCPS at full scale
by discussing its overall architecture, entities managed by the system, agent roles, core
functionality, etc. Chapter 4 drills down to the level of a CPS agent software and
presents its architecture and core functionality. The presented architecture is generic as
it can be employed by PrescriptiveCPS agents irrespectively to their roles.

Present functionality for supporting the planning After presenting the soft-
ware architecture, the thesis drills down to the agent’s software component level and
follows the process of planning (see Figure 1.7) while presenting individual components
and/or their functionality. Specifically, Chapter 5 follows the MIRABEL use-case and
elaborates the storage of agent’s data using a multi-dimensional data warehouse. Chap-
ter 6 also follows the MIRABEL use-case and present techniques to aggregated complex
flexibility model instances. Chapter 7 presents domain-specific and generic built-in ap-
proaches to forecast flexibility model instances (e.g., time series). Chapter 8 presents
built-in approach to solve optimisation problems. Chapter 9 demonstrates the use of
what-if analysis using an integrated DBMS in the MIRABEL use-case. Chapter 10
considers planning under the presence of (soft or hard) constraints on processing time.
Finally, Chapter 11 considers the visual representation and analysis of complex flexibility
and prescription models used in planning.

Recapitulate Chapter 12 summarizes the contributions, concludes the thesis, and
presents future work.
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Chapter 2

The MIRABEL Use-case

In this chapter, we present a large-scale hierarchical ICT system that will be used
throughout the thesis as the use-case example of a CPS with planning and control capa-
bilities. The ICT system was designed and prototyped in the MIRABEL (abbr. Micro-
Request-Based Aggregation, Forecasting and Scheduling of Energy Demand, Supply
and Distribution) project [25] from the smart-grid domain. The system automatically
takes and realizes decisions to balance electricity consumption and production in the
power-grid with a substantial amount of renewable energy sources (RES). The content
of this chapter is based on Publication [1].

2.1 MIRABEL Project Overview
Today, more and more renewable energy sources (RES) such as windmills are added to
the European electricity production portfolio since they offer sustainable energy with a
much lower environmental impact compared to the conventional energy sources. How-
ever, due to the intermittent nature of the RES supply, the balancing of energy in the
power grid with the substantial amount of RES (>30% of a total production) becomes
a really challenging task, as it is not always possible to store larger amounts of en-
ergy [26]. Hence, the capacity of RES is not always fully utilized during nights when
most consumers are inactive, and there is often not enough supply from RES during
days when most consumers are active. To address this challenge (among others), the
European electricity grid is being incrementally transformed into a smart-grid – which
is a new generation power grid that utilizes a modern information and communication
technology (ICT) to produce, distribute, and consume energy in a more intelligent way.

MIRABEL (abbr. Micro-Request-Based Aggregation, Forecasting and Scheduling
of Energy Demand, Supply and Distribution) is an EU FP7 research project [25] that
develops and prototypes a multi-agent ICT system [1] for the European smart-grid. The
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Figure 2.1: The example of loads before and after the MIRABEL ICT system balances demand and
supply in the power grid

MIRABEL system opens the possibility for millions of individual energy consumers to
consume more energy at times when there is excessive supply from RES and less energy
when a RES supply is insufficient, as well as provides convenient ways to balance the
grid (see Figure 2.1) for the actors (legal entities) of the European electricity market [27].
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Figure 2.2: The relevant concepts of the European electricity market

In the European electricity market (see Figure 2.2), actors in the roles of Balance
Responsible Party (BRP) and Transmission System Operator (TSO), as defined by the
Harmonized Electricity Market Role Model [27], concerns balancing demand and supply
in the grid and, therefore, benefit from the MIRABEL ICT system. Here, an actor in
the TSO role, among other activities, handles imbalances at the level of market bal-
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ance area (MBA), which is a sub-domain within the complete European power-grid.
To ensure the balance, the TSO actor meters the difference between consumption and
production at MBA level in real-time and triggers interventions to keep energy con-
sumption and production balanced (in sync) at every second. Similarly, an actor in the
BRP role is financially accountable for imbalances in a so-called balance group (BG),
which is a sub-domain within an MBA. The BRP actor manages the loads of prosumers
(e.g., entities that consume and/or produce energy) and aims to reduce imbalances, all
these prosumers collectively incur in a balance group while consuming and producing
electricity. For actors in the TSO, BRP, and prosumer roles, the MIRABEL ICT system
brings various advantages such as (1) savings and earnings on electricity, (2) reduced
imbalances and peak-loads, (4) higher RES integration, (5) CO2 reductions, etc.
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Figure 2.3: Structural elements of a flex-offer (a) and a corresponding flex-offer assignment (b)

MIRABEL relies on the concept of a flex-offer – an entity that explicitly captures
a prosumer’s capability to consume (or produce) energy in a flexible manner. Each
flex-offer captures elements depicted in Figure 2.3a. Among other elements, a flex-offer
defines an energy profile with a number of slices, each of which specifies the minimum and
maximum amounts of energy to be consumed (or produced) at a particular time interval,
which is relative to the starting time of an appliance (e.g., a dishwasher). According to
the flex-offer, an appliance can be scheduled (by a BRP) to started at any point in time
within a bounded time interval (see start time flexibility). The scheduled flex-offer is
termed a flex-offer assignment, and it is a time series (i.e., flex-offers with empty time
and energy flexibility bounds) defining an actual starting time of an appliance (see start
time) and concrete amounts to be consumed (or produced) at each time slice, which
are specified by a flex-offer profile (see Figure 2.3b). We will elaborate later how such
flex-offers and flex-offer assignments are leveraged in MIRABEL.
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The MIRABEL ICT system consists of a large number of agents used by the actors
of the European electricity market (Figure 2.4). An agent supports a particular role of
an actor, which we denote by associating a role to an agent, e.g., a BRP agent or an
agent in the BRP role. The agents of the MIRABEL ICT system form the multi-level
hierarchy shown in Figure 2.5. The levels four to one of the hierarchy include the agents
in the TSO, BRP, aggregator, and prosumer roles, respectively.

Level 2:

Aggregator agents

(thousands)

Level 4:

TSO agents

(few)

Level 1:

Prosumer agents

(millions)

Prosumer Prosumer Consumer Producer Producer

Level 3:
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Meteorological 

Stations

Figure 2.5: Agents and their hierarchical organization in the MIRABEL ICT system

The agents of the MIRABEL ICT system collectively realize the workflow, shown
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in Figure 2.6. We now describe these agents and elaborate flex-offer and flex-offer
assignment management activities they are involved in.

Aggregation of flex-offers 

(Aggregator)

Disaggregation of flex-offers 

(BRP)

Flex-offer scheduling 

(TSO)

Flex-offer scheduling 

(BRP)

Aggregation of flex-offer assignments 

(BRP)

Disaggregation of flex-offer assignments

(Aggregator)1

2

3

4

5

6

Figure 2.6: The workflow of flex-offers and flex-offer assignments in the MIRABEL ICT system

A prosumer agent generates a flex-offer for every intent of the prosumer to consume or
produce electricity in a near future, e.g., in the day ahead. For each flex-offer, the agent
receives the corresponding flex-offer assignment respecting the constraints specified in a
flex-offer and indicating actual time and the amounts of load that has to be consumed
or produced. The details of flex-offer generation and flex-offer assignment processing
will be elaborated in Section 2.3.

An aggregator agent aggregates N (micro) flex-offers into M (macro) flex-offers and
disaggregates corresponding (macro) M flex-offer assignments into N (micro) flex-offer
assignments such that M ď N (see 1 and 6 in Figure 2.6). By aggregation, the agent
abstracts (micro) energy loads from individual households with the (macro) loads from
individual feeders, transformers, or radials of the distribution network for the simplified
handling of loads (flex-offers) at the BRP level.

A BRP agent plans energy for a certain horizon ahead in time (e.g., day-ahead) to
minimize imbalances between consumption and production in a balance group. In plan-
ning, both flexible and inflexible loads of consumption and production are considered.
Here, flexible loads are defined as (macro) flex-offers that are collected from aggrega-
tor agents. The inflexible loads of production (e.g., supply from RES) and consumption
(e.g., inflexible demand of consumers) are defined as time series and are forecasted based
on external data (e.g., metered energy, wind speed) from external data sources such as
distribution system operations (DSOs – aka. grid companies) and meteorological sta-
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tions. The planning results in a number of flex-offer assignments (see 3 in Figure 2.6).
Furthermore, depending on the BRP’s business strategy, the BRP allocates some part
of its flexible loads for the purpose of energy balancing at the grid (inter-balance group)
level (see 2 in Figure 2.6). In the form of flex-offers, the BRP agent makes these loads
available to a TSO agent. When scheduled TSO loads in the form of flex-offer assign-
ments are received by the BRP agent, they are aggregated with other BRP’s flex-offer
assignments to be realized by underlying prosumer agents, via the aggregator agent (see
6 in Figure 2.6).

A TSO agent utilizes flexible BRP loads (specified as flex-offers), among other types
of reserve loads, to stabilize the grid in the presence of grid-level (the MBA level)
imbalances (see 4 in Figure 2.6).

2.3 Example of Electric Vehicle Charging
We now demonstrate the typical flow of events in the MIRABEL ICT system by em-
ploying the use-case example of charging an electric vehicle (EV). The use-case involves
a prosumer, an aggregator, a BRP, and a TSO agent.

1. An EV owner comes home at 11pm and wishes to recharge the EV’s battery at
the lowest possible price before the next morning. Once plugged in, the outlet
recognizes the EV and chooses a default energy consumption profile, according to
which the minimum required energy is 50kWh and the default charging completion
time is 5am.

2. The prosumer agent automatically generates a flex-offer (as in Figure 2.3) and
sends it to the aggregator agent, where it is aggregated with other similar flex-
offers (see 1 in Figure 2.6). The aggregator agent sends aggregated flex-offers to
the BRP agent.

3. The BRP agent schedules these (aggregated) flex-offers, while taking into account
weather and inflexible energy forecasts (see 3 in Figure 2.6). When it is done, the
corresponding (aggregated) flex-offer assignments are sent back to the aggregator
agent. Simultaneously, the BRP agent disaggregates some of the (aggregated) flex-
offers (see 2 in Figure 2.6) and sends them to the TSO agent for the grid-level
balancing.

4. The prosumer agent receives a flex-offer assignment (corresponding to the original
flex-offer) from the aggregator agent after it disaggregates its (aggregated) flex-
offer assignments (see 6 in Figure 2.6). According to the flex-offer assignment,
the EV’s battery is scheduled to start charging at 2am, as such scheduling lowers
an energy demand peak at 0am and consumes surplus production of RES at 2am
at the BRP (BG) level.
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5. At 2am, the TSO notices a shortfall of supply at the grid level and instructs the
BRP agent to shift the specific amount of load from 2am to 3am (see 4 in Fig-
ure 2.6). The BRP agent reschedules its flex-offers correspondingly (see 5 in Fig-
ure 2.6) and delivers new (aggregated) flex-offer assignments to the aggregator
agent.

6. The prosumer agent receives a new flex-offer assignment (corresponding to the
original flex-offer) from the aggregator agent after it disaggregates the new flex-
offer assignments from the BRP agent (see 6 in Figure 2.6). According to the
flex-offer assignment, the charging of the EV’s battery is now scheduled to start
at 3am instead at 2am.

7. The prosumer agent starts charging the EV’s battery at 3am and finishes the
charging at 5am. Metered consumption loads incurred by the charging of the EV
are supplied to the BRP agent, e.g., via a local DSO (out of scope of this thesis).

8. The next month, the BRP sends an energy bill to the consumer. The bill reflects
the reduced energy cost in return for user’s offered flexibility.

2.4 Summary
In this chapter, we presented the multi-agent, multi-role, and multi-level ICT system
from the smart-grid domain. The system was designed and prototyped in the MIRABEL
project to balance electricity consumption and production in the power grid with the
substantial amount of renewable energy sources (RES). To balance the grid, and thus
provide various benefits to stakeholders, the system exploits flexibilities offered by a
large number of prosumers (e.g., households) in the representation of flex-offers.

In the next chapter, we generalize the MIRABEL ICT system and the concepts pro-
posed in the MIRABEL project. As a result, we present a so-called PrescriptiveCPS,
which is a generic CPS with automated planning and control capabilities.
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Chapter 3

Cyber-Physical System for
Planning and Control

We now present a PrescriptiveCPS, which is our proposed (conceptual model of a)
CPS for mixed-initiative (human- and machine-based) distributed continual planning
(DCP). PrescriptiveCPS consists of two interacting systems: a cyber system and
physical system. Here, the cyber system continuously and automatically (1) monitors the
state of the physical system, (2) infers the system’s responses to actuations, (3) makes
decisions to achieve desired goals, and, finally, (4) controls the physical system to follow
the decisions. In this chapter, we elaborate (1) the architecture of PrescriptiveCPS,
(2) the types of models managed by PrescriptiveCPS, (3) core operations used to
manage these models, and (4) the roles of PrescriptiveCPS agents. Additionally, we
show that the MIRABEL ICT system is the specialized instance of PrescriptiveCPS.
Finally, we conclude the chapter by providing a number of common model (and other
data) management requirements that need to be addressed for the MIRABEL’s, as well
as other similar instances of PrescriptiveCPS.

3.1 Definition of PrescriptiveCPS
Assume a physical system P consisting of a number of individual physical sub-systems
tP1, P2, ..., Pmu, the performances of which influence or determine the overall perfor-
mance of P . Let S be a cyber system consisting of the set of autonomous agents, S =
ta1, a2, ..., anu, having an electro-mechanical links to (some or all) physical sub-systems
and aiming to plan and control the performance of the physical system P (or Ď P ). For
this intent, the agents are networked and communicate according to a hierarchy defined
by the binary relation ď partially ordering the agents based on their obedience to each

25
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Figure 3.1: The hierarchical organisation of agents in PrescriptiveCPS

other (see Figure 3.1). The notation a21 ď a31 represents the fact that a21 can derive
its individual plan based on its own objectives, but the plan must be consistent with
the “master plan” prescribed by a31. According to the hierarchy, an agent may have
multiple (immediate) successor agents, denoted as masterspa P Sq, decisions of which
the agent has to follow. Similarly, an agent may have multiple (immediate) predecessor
agents, denoted as childrenpa P Sq to which the agent prescribes decisions. With re-
spect to the hierarchy, an agent either (1) takes a decision if it has no successor agent,
(2) follows a decision if it has no predecessor agent, (3) takes and follows decisions
if it has both successor and predecessor agents. The coupling and the interaction of
these two systems (P and S) are summarized in the following (conceptual) definition
of PrescriptiveCPS:

Definition 3.1. PrescriptiveCPS is a system (CPS) consisting of electro-
mechanically coupled cyber and physical systems, where the agents of the cyber
system (S) are organized hierarchically based on obedience to each other to opti-
mally manage the performance of the physical system (P ).

The model of a PrescriptiveCPS agent is shown in Figure 3.2. According to
the model, the agent ax P S is a hardware- and software-based computer system with
a number of links for interacting with (1) a physical system, (2) human users, (3)
external data sources, and (4) successor and predecessor agents. The agent has the
capability to directly sense and actuate a physical (sub-)system P paxq Ď P (see the
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Figure 3.2: The model of a PrescriptiveCPS agent

electro-mechanical link). It also allows human operators and administrators to monitor
and program the behaviour of the agent (see the human-computer link). Additionally,
the agent has an access (via the information link) to external data sources (see the
left-right information link) for accessing external data (e.g., weather forecasts) to be
used in planning. Finally, the agent communicates with the immediate successor and
predecessor agents (masterspaxq and childrenpaxq) by continuously exchanging so-called
flexibility model and prescription model instances (see the top-down information link).
Internally, the agent builds so-called decision model instances to produce prescription
model instances from flexibility model instances. As we show later, depending on the set
of roles the agent realizes, some of these links and models might not be integrated or
managed by an agent.

The flexibility model, the decision model, and the prescription model are special
models, representing a (1) capability, (2) an intention, and (3) actions to change the
behaviour (state) of a physical system (e.g., P paxq), respectively. We now elaborate
these models and describe the core operations an agent uses to manipulate instances of
these models.

3.2 Models of a Physical System
We assume the common notion of a model, where the model is a generic entity (struc-
ture) that must be instantiated to a model instance [28] before it can be used for its
intended purpose. Following this notion, an agent of our proposed PrescriptiveCPS
continuously maintains flexibility, decision, and prescription model instances, which are
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short-lived, focus on the future, and either describe (represent) or specify (prescribe) cer-
tain aspects of the physical system at a particular moment in time. The relationships
between our proposed models and their decompositions are visualized in Figure 3.3,
where the common model modelling notations [29,30] are used. Note, for simplicity, we
use the term model to denote a model instance where it is clear.

Flexibility Model

A flexibility model is the special (but still general enough) world model [31]. An instance
of this model explicitly defines how a physical system can be stimulated and how it
responds to every possible stimulus at a particular moment in time. In order words, it
defines stimuli (Stimulus Model) and responses (Response Model) describing a capability
to change the physical system’s state (aka. flexibility) together with properties and the
behaviour of a physical system under various conditions and alternative stimulus (actu-
ations) applied to the physical system. These are described from the perspective of some
specific time moment (e.g., current time) and, therefore, an instance of the flexibility
model is valid as long as the physical system exhibits the represented stimulus-response
behaviour (causal representation). The structure and the properties of a flexibility model
are elaborated in the following definition:

Definition 3.2. A flexibility model f is (or can be defined as) a 5-tuple
pV, S,R,DV , DRq. Here, V is a set of so-called prescription variables defining the
aspects of a physical system an agent has the capability to prescribe (e.g., power
output, voltage level, flow rate, or starting time). S is a so-called a stimulus rela-
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tion capturing value combinations the prescription variables can take. The relation
consists of a set of tuples (d1, d2, ..., d|V |) where each tuple in the set is called a
stimulus. Each dn is a member of the domain DV

n , where DV “ DV
1 ˆD

V
2 ˆ ...ˆD

V
n

is termed the stimulus domain, and S Ď DV . R : DV Ñ DR is a so-called response
function defining physical system responses to stimuli. Here, a response r “ Rpsq is
such that r P DR, where DR is called the response domain. When R is defined as a
composition of two functions Ripq‘Rvpsq such that Ri : HÑ DR, Rv : DV Ñ DR,
and the pair pDR,‘q forms an Abelian group, then we say that the response R has
invariant and variant parts Ri and Rv, respectively.

We now provide two examples of a flexibility model. The flexibility model in the
first example takes the 5-tuple representation. The flexibility model in the second ex-
ample takes a different representation, but can easily be transformed into the 5-tuple
representation.

C

To

Php
[0..15kw]

Ti

R

Figure 3.4: The temperature model of a simple household with a heat pump

Example 3.1 (A household’s temperature flexibility model). A flexibility
model fhouse can represent the expected future temperatures of a household with
an electrical heat pump (see Figure 3.4). Suppose that the expected temperature
of the household follows T ptq “ PhpRp1 ´ e´

t
RC q ` pT p0q ´ Toqe

´t
RC ` To, where

Php is the power delivered by the heat pump, T p0q is the initial temperature in
the household, To is the temperature outside the household, and C and R are
household’s thermal capacity and heat resistance, respectively. Suppose that power
output of the heat pump (Php) can be adjusted and set to any power value in the
range between 0kW to 10kW . Furthermore, suppose that at the current moment
in time, To “ ´5˝C, T p0q “ 15˝C, C “ 0.5kWh{˝C, and R “ 0.1˝C{kW .
Then, the corresponding household’s flexibility model fhouse can be defined as
ptPhpu, tPhp|0 ď Php ď 15u, pPhp, tq ÞÑ 0.1Phpp1 ´ e´

t
0.05 q ` 20e ´t

0.05 ´ 5,R,R ˆ R).
Here, the functions t ÞÑ 20e ´t

0.05 ´ 5 and pPhp, tq ÞÑ 0.1Phpp1 ´ e´
t

0.05 q are the
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invariant and variant responses, respectively. Unlike the variant response, the
invariant response is not dependent on the stimulus (Php).

Example 3.2 (A flex-offer as a flexibility model). A flex-offer, as defined
in Section 2.1, is a flexibility model which defines flexible loads of a single consump-
tion and/or production unit (e.g., an electric vehicle or a heat pump). A flex-offer
can be transformed into the 5-tuple representation funit “ pV, S,R,D

V , DRq, where
V includes starting time (of a unit) and energy amounts for every slice in the profile
as prescription variables (see Figure 2.3a). The stimulus relation S includes all
possible flex-offer assignments (see Figure 2.3b) that can be prescribed according to
the flex-offer. The response model R is the identity function R : x ÞÑ x, which means
that stimuli (flex-offer assignments) fully define responses.

Prescription Model

A prescription model represents one of the alternative stimuli defined by a flexibility
model. In order words, it describes how a physical system has to be stimulated at
a particular moment in time to, for example, achieve some desired objectives. The
properties of the prescription model are elaborated in the following definition:

Definition 3.3. A prescription model (or prescription for short) is an entity p
conforming to the flexibility model f “ pV, S,R,DV , DRq such that p P S (S Ď DV ).

We now provide two prescription model examples that are based on the previously
presented flexibility models (fhouse and funit).

Example 3.3 (Household’s temperature prescription model). With respect
to the described flexibility model fhouse, the heater’s power output Php “ 10kW is a
valid prescription model.

Example 3.4 (A flex-offer assignment as a prescription model). A flex-offer
assignment, as defined in Section 2.1, is a prescription model which defines a starting
time of an appliance (scheduled start time, aka. tstart) and concrete energy amounts
to be consumed (or produced) at each time slice specified in a flex-offer profile.
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Decision Model

A decision model is a mathematical model representing a decision (optimization) prob-
lem. It is derived from the flexibility model by decomposing it into entities such as
numbers, variables, sets, equations, functions and operators. Together with additional
objectives and constraints that are specific to an agent, these define an optimization
problem, the solution of which includes a prescription leading the physical system to a
state desired by an agent.

Definition 3.4. A decision model is the following mathematical model derived from
a flexibility model f “ pV, S,R,DV , DRq:

Minimize:
X

f1pXq, f2pXq, ..., fkpXq

Subject To: gipXq ď 0, i “ 1, 2, ...,m
hjpXq “ 0, j “ 1, 2, ..., p,

(3.1)

Here, X is a set of decision variables that include prescription variables, i.e., X Ě

V . f1pXq, ..., fkpXq are objective functions with co-domains in R. The gipXq ď 0
and hjpXq “ 0, i “ 1 : m, j “ 1 : p, are inequality and equality constraints,
respectively.

An objective function(-s) might potentially be derived from the response model (R) if
an agent’s intention is to minimize or maximize some objective (e.g., a profit) dependent
on a response. Similarly, the constraint (in-)equalities might potentially be derived from
the stimulus model (S) in order to bound the prescription variables to the values of
valid stimuli, i.e., px1, x2, ..., x|V |q P S where xi P V Ď X,@i “ 1..|V |. Finally, as we
will discuss later, prescriptions from the successor agents might be incorporated into
the objective function or (in-)equalities to be able to meet the “master plan” from the
successor agents. We now provide two decision model examples that are based on the
previously presented flexibility models (fhouse and funit).

Example 3.5 (Household’s temperature decision model). To stabilize the
household’s temperature at 20˝C by prescribing the heat pump’s power level
Php, the following decision model dhp is defined based on the flexibility model
fhouse “ ptPhpu, S,R,D

V , DRq:

Minimize:
Php

pRpPhp,`8q ´ 20q2

Subject To: Php P S
(3.2)
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Based on the flexibility model fhouse, decision models can be built for other types of
prescription objectives, e.g., to minimize the energy Php while keeping the temperature
at least 20˝C in the household.

Example 3.6 (A flex-offer scheduling decision model). The following decision
model defines the problem of balancing the consumption and production from a single
flexible consumption unit (funit) and inflexible RESs during the 24 hour time period:

Minimize:
tstart,e1,e2,...,ek

24h
ÿ

t“1h

|RESptq ´ faptq|

Subject To: tstart Pstarttime_boundpfunitq

ei Penergy_boundpfunit, iq, i “ 1..k
fa “generate_assignmentpfunit, tstart, e1, e2, ..., ekq

(3.3)

Here, tstart, e1, e2, ... ek are the starting time and energy amounts at every slice
in a profile (see Figure 2.3b). The starttime_bound and energy_bound are functions
returning starting time and energy bounds as defined by a flex-offer. The RES is a
time series of RES production, and generate_assignment generates a flex-offer as-
signment (time series) based on the supplied flex-offer and the prescription variables
(tstart, e1, e2, ..., ek).

As seen from the examples above, flexibility, decision, and prescription models repre-
sent a (1) capability, an (2) (actor’s) intention, and (3) actions to change the behaviour
(state) of some physical (sub-)system P 1 Ď P at some moment in time. We denoted
physical systems underlying a flexibility model f , a decision model d, and a prescription
model p as P pfq, P pdq, and P ppq, respectively. Note, these should be distinguished from
the physical system P paxq an agent ax has a direct electro-mechanical link with.

To summarize, a flexibility model is a special “world model” defining stimuli and
responses of a physical system. The decision model defines an optimization problem, a
solution of which leads to a prescription. The prescription is a short-term plan leading
into a desired state of the physical system. We now define the number of core planning
operations used by an agent to deal with these three types of models.

3.3 Core Planning Operations with Flexibility, Deci-
sion, and Prescription Models

To deal with instances of flexibility, decision, and prescription models, an agent ax P S
relies on some (or all) of the planning operations, summarized in Table 3.1. We now
elaborate each of them, grouped by the model type:
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Table 3.1: The summary of planning operations with flexibility, decision, and prescription models

Flexibility model Decision model Prescription model
buildpq ÞÑ f solvepfq ÞÑ pf applyppq ÞÑ H

reducepf1, ..., fnq ÞÑ fa solveRpf, p1, ..., pmq ÞÑ pf reducepp1, ..., pmq ÞÑ pa

mappfaq ÞÑ pf1, ..., fmq solveM pfa, pfa
q ÞÑ pp1, ...pnq mapppaq ÞÑ pp1, ..., pnq

Flexibility Model Operations

• buildpq creates an instance of the flexibility model. In practice, this can be achieved
by (1) directly monitoring the stimulus-response behaviour of the physical system
(like in MIRABEL), (2) inferring a behaviour using historical data and predictive
analytics (see Section 1.3) or machine learning [32] techniques, (3) pre-defining
the behaviour in built-in flexibility models, or (4) applying a combination of these
techniques.

• reducepf1, f2, ..., fnq aggregates the set of (smaller) flexibility model instances F “
tf1, f2, ..., fnu into a single (larger) flexibility model instance fa. This operation
can be either lossless or lossy depending on if the number of prescription variables
in the aggregated model fa “ pVa, Sa, Ra, D

V
a , D

R
a q is equal to the total number

of prescription variables in the models f1, f2, ..., fn. We use the term lossless
aggregation to denote the case where |Va| “

ř

pV,S,R,DV ,DRqPF |V | and the term
lossy aggregation to denote the case where |Va| ă

ř

pV,S,R,DV ,DRqPF |V |. Note
that f1, f2, ..., fn, and fa can be instances of different flexibility models (and/or
flexibility models in different representations).

• mappfq disaggregates a (larger) flexibility model instance f into the set of (smaller)
flexibility model instances tf1, f2, ..., fnu. Note that f1, f2, ..., fn, and f can
be instances of different flexibility models (and/or flexibility models in different
representations).

Example 3.7 (The flexibility model management in MIRABEL). The flexi-
bility model building, aggregation, and disaggregation has been demonstrated as a se-
quential bottom-up workflow in the MIRABEL use-case (see Sections 2.2–2.3), where
flex-offers are used as flexibility model instances.

Decision Model Operations

• solvepfq builds and solves a decision model instance that results in a prescription
pf conforming to a flexibility model f . The decision model instance represents
intentions (objectives) of a single agent only. Therefore, the operation is intended
to be used by an agent taking (highest level) decisions (see Section 3.1).
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• solveRpf, p1, p2, ..., pmq builds and solves a decision model instance that results in a
prescription pf conforming to the flexibility model f . The decision model instance
includes the prescriptions p1, p2, ..., pm from successor agents (masterspaxq). Con-
sequently, the decision model represents the intentions ofmultiple agents, specif-
ically the agents ax and masterspaxq. Therefore, the operation is intended to be
used by an agent taking and following decisions (see Section 3.1).

• solveM pfa, pfaq builds and solves a decision model instance that results into mul-
tiple prescriptions p1, p2, ..., pn, conforming to flexibility models f1, f2, ..., fn, re-
spectively, such that reducepf1, f2, ..., fnq “ fa. The decision model instance rep-
resents the intention of a single or multiple agents (ax or ax and masterspaxq)
and aims to disaggregate the prescription pfa

conforming to fa into a number of
individual prescriptions to be issued to predecessor agents (childrenpaxq). The
operation is intended to be used by an agent taking or both taking and following
decisions (see Section 3.1).

The solve, solveR, and solveM can be seen as composite functions in the pattern
evalpbuildpf, ...qq. Here, the build function transforms the instances of flexibility model
into the instances of a decision model. It is carefully designed by humans to reflect
agent-specific (external) objectives and constraints. The eval function is a fixed (static)
and invokes a respective solver to produce the instance(-s) of a prescription model from
the instance of a decision model.

Example 3.8 (Decision model building and solving in MIRABEL). In the
MIRABEL use-case (see Chapter 2), TSO and BRP agents realize the solve and
solveR operations, respectively. The solveM operation is not considered in the use-
case, but it can be potentially used by TSO, BRP, and aggregator agents to minimize
incompatibilities of flex-offer assignments (prescriptions) at two adjacent levels (e.g.,
the BRP and aggregator levels). Such incompatibilities may occur when disaggregat-
ing flex-offer assignments under (micro and macro) flexibility model incompatibilities,
which may occur, for example, due to network delays and rapidly changing flex-offers.

Prescription Model Operations

• applyppq translates a prescription model instance p into a valid physical action,
which might cause a physical system’s state change. For example, this opera-
tion might translate the prescription p “ 5kW into (the set point of) continuous
5kW heater’s power output, which is only changed when a new prescription is
applied. This function realizes the control (as opposed to planning), introduced
in Section 1.3.
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• reducepp1, p2, ..., pmq aggregates a set of (smaller) prescription model instances
tp1, p2, ..., pmu into a (large) aggregated prescription model instance pa conform-
ing to a flexibility model instance fa. It is a derived operation and can be formu-
lated as reducepP q “ solveRpfa, p1, p2, ..., pmq. When a deterministic algorithm to
transform p1, p2, ..., pm into pa exists, a decision model (the use of solveR) building
and solving can be avoided.

• mapppaq disaggregates a (large) prescription model instance pa conforming to fa

into the set of (smaller) prescription model instances tp1, p2, ..., pnu. It is a derived
operation and can be formulated as mapppaq “ solveM pfa, paq. When a determin-
istic algorithm to transform pa into tp1, p2, ..., pnu exists, a decision model (the
use of solveM ) building and solving can be avoided.

Example 3.9 (The prescription model management in MIRABEL). The
prescription model aggregation, disaggregation, and applying has been demonstrated
as the sequential top-down workflow in the MIRABEL use-case (see Sections 2.2–2.3),
where flex-offer assignments are used as prescription model instances.

The set of planning operations is sufficient for systematically transforming momen-
tary knowledge about physical system stimulus and response (encapsulated in flexibility
models) into rigorous physical actions (potentially) leading a physical system into a de-
sired state. The individual planning operations can be combined in many ways to realize
various planning and control workflows, as shown in the next section.

3.4 Planning Workflow of PrescriptiveCPS
The described core planning operations can be nested into the numerous of ways, re-
alizing various planning workflows in PrescriptiveCPS. The following heat pump
scheduling example presents one possible instance of such workflow:

Example 3.10 (Heat pump scheduling workflow). Figure 3.5 shows the plan-
ning workflow of prescribing temperatures in three different households. It starts
with the building of the flexibility models fhouse1, fhouse2, and fhouse3 (see build)
representing the temperature responses of the three different households (see Exam-
ple 3.1). Then, these models are aggregated (see reduce) into a “multi-household”
flexibility model (fmulti) capturing the joint temperature response of the three house-
holds. When the aggregation is lossless, then fmulti is defined as pV1 Y V2 Y V3, S1 ˆ
S2ˆS3, ps1, s2, s3q ÞÑ pR1ps1q, R2ps2q, R3ps3qq, D

V
1 ˆD

V
2 ˆD

V
3 , D

R
1 ˆD

R
2 ˆD

R
3 q where

fi “ pVi, Si, Ri, D
V
i , D

R
i q, i P thouse1, house2, house3u. Then, the joint model fmulti

is partitioned into fC1
multi and fC2

multi based on, for example, the energy companies (C1
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Figure 3.5: An example workflow (pursued by a single or multiple agents) to plan heat pump outputs
at three different households

and C2) supplying energy to these households as these companies might have differ-
ent power supply capabilities and energy planning interests. Suppose that each fC1

multi

and fC2
multi represents the combined power responses of underlying heat pumps (rather

than temperature responses) of a particular household group. An example of fC1
multi

or fC2
multi is ptPtotalu, tPtotal|0 ď Ptotal ď 1500u, Ptotal ÞÑ Ptotal,R,R ˆ Rq. During

the decision making, energy companies decide energy amounts pC1
multi and pC2

multi to be
consumed by each household group (see solve). These amounts are disaggregated into
pmulti so that each household within the group gets, for example, equal temperatures
in long-term, assuming that such objective is programmed in reduce. The prescription
pmulti is mapped into the individual prescriptions phouse1, phouse2, and phouse3, speci-
fying actual heat pump power outputs for each household (see map). Finally, phouse1,
phouse2, and phouse3 are used to program and control the behaviour of the heat pumps
(see apply).

We have demonstrated one possible planning workflow specific to the heat-pump
application. Various concurrent workflows with interleaved planning operations and
nested reduce and map operations can be imagined and customized to fit organizational
structures of the physical world in other applications (e.g., MIRABEL).

PrescriptiveCPS sets no restriction on the set of planning operations a particular
agent may support. In fact, a particular planning workflow can be realised by a single,
multiple, or all collaborating agents of PrescriptiveCPS. Irrespective to a concrete
planning workflow and the number of agents realising it, PrescriptiveCPS has the
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semantics expressed in the following endless loop:
while true do
pf1, f2, ..., fmq Ð pbuild1pq, build2pq, ..., buildmpqq;
(p1, p2, ..., pn) Ð planpf1, f2, ...fmq;
apply1pp1q; apply2pp2q; ...; applynppnq;

end
Algorithm 1: The loop of PrescriptiveCPS semantics

As shown in the algorithm, PrescriptiveCPS continuously (1) builds flexibility
model instances (using buildi, i “ 1..m), (2) transforms flexibility model instances
into prescription model instances using a concrete planning workflow (plan), and (3)
applies prescription model instances to the physical world (using applyj , j “ 1..n).
These actions must be performed sufficiently fast (e.g., by parallelizing them) to be able
to effectively detect problems and take new opportunities in the physical world (see
distributed continual planning in Section 1.4). To denote a particular set of the planning
operations an agent realises, it is often convenient to define agent roles, presented in the
next section.

3.5 Agent Roles in PrescriptiveCPS
Based on the supported set of planning operations, we define the number of agent roles to
be adopted by the agent of PrescriptiveCPS. These are summarized in Figure 3.6(a-
d). An agent ax P S might take one of more of these roles.

An agent in the builder role supports the build operation (see Figure 3.6a). As
mentioned in Section 3.3, a flexibility model instance f for physical the system P pfq
can be built by (1) directly sensing P pfq with electro-mechanical sensors, (2) using
built-in knowledge about P pfq, (3) applying machine learning or predictive techniques
such as forecasting, or (4) using the combination of these techniques. In fact, as we show
later, the direct physical sensing and forecasting capabilities are important and must be
distinguished. Therefore, we explicitly define two derivatives of the builder role:

• An agent in the (derived) sensor role is a builder agent which senses the physical
(sub-)system P paq with electro-mechanical sensors and builds a flexibility model
instance f such that P pfq “ P paxq (see Figure 3.7a).

• An agent in the (derived) forecasting role is a builder agent which uses forecasting
techniques to build a flexibility model instance f (see Figure 3.7b). These fore-
casting techniques require external information and historical P pfq measurements
to predict stimuli and (in-)variant responses (future states of P pfq). The agent
obtains such data from other agents and/or external sources via the informational
link (see Section 3.1).
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Figure 3.6: The core roles of agents in PrescriptiveCPS

An agent in the applier role supports the apply operation (see Figure 3.6b). Conse-
quently, it translates a prescription p into some actions (in some representation) leading
a physical system P paxq into the state represented by p. A special case of an applier
agent is an actuator agent having a direct electro-mechanical link to make alternations
in P paxq. This derived role is defined as follows:

• An agent in the (derived) actuator role is an applier agent having an electro-
mechanical link to the physical (sub-)system P paxq (see Figure 3.7c) and using
this link to control P paxq so that it follows a prescription p compatible with P paxq,
i.e., P ppq “ P paxq.

An agent in the global prescriptor role supports solve operation (see Figure 3.6c).
It builds and solves decision model instances to produce prescription model instances
according to flexibility model instances. The agent takes highest level decisions in Pre-
scriptiveCPS.

An agent in the aggregator role supports the reduce, (potentially) solveM , and
map operations with flexibility, decision, and prescription models, respectively (see Fig-
ure 3.6d). Consequently, it has the capability to aggregate flexibility model instances
f1, f2, ... fN into fA and disaggregate a corresponding prescription model instance
pA into instances p1, p2, ..., pN such that pA, p1, p2, ..., pN match fA, f1, f2, ..., fN ,
respectively.

An agent in the disaggregator role supports the map, (potentially) solveR, and
reduce operations with flexibility, decision, and prescription models, respectively (see Fig-
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Figure 3.7: The special cases of the builder (a and b) and the applier (c) roles

ure 3.6e). Consequently, it has the capability to disaggregate a flexibility model instance
fA into instances f1, f2, ... fM and aggregate corresponding prescription model instances
p1, p2, ..., pM into an instance pA such that pA, p1, p2, ..., pM match fA, f1, f2, ..., fM ,
respectively.

Lastly, we use one more derived role, termed a decision-making role, to denote the
global prescription, aggregator, and disaggregator roles as they take decisions to produce
prescriptions. Note, this role name is also valid in those aggregator and disaggregator role
cases when prescription models are built without the use of decision models (as solveM

and solveR are not used). In these cases, there is only one feasible decision candidate,
and it is deterministically chosen by map or reduce, as explained in Section 3.3.

3.6 MIRABEL ICT System as the Instance of Pre-
scriptiveCPS

We now show that the MIRABEL ICT system (see Chapter 2) is the instance of Pre-
scriptiveCPS and that our proposed concepts can be conveniently used to describe
such a complex system. First, we identify flexibility and prescription models managed
by the agents of the MIRABEL ICT system. Then, we define the roles of these agents.
Finally, we show the detailed model management workflow pursued by MIRABEL ICT
system agents to balance electricity consumption and production.

Flexibility and prescription models in the MIRABEL ICT system
As explained in Sections 2.1–2.3, the MIRABEL ICT system manages different types
of data concerning flexible and inflexible demand and supply loads, represented as flex-
offers/flex-offer assignments and time series, respectively. All such data forms flexibility
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Figure 3.8: Flexibility and prescription models managed by the MIRABEL’s ICT system

and prescription models, shown in Figure 3.8, respectively. The number and the names
of these models are specific to the MIRABEL use-case and are bound to the levels of
the hierarchy of the MIRABEL ICT system. We now elaborate these flexibility and
prescription models.

A unit flexibility model funit is represented by a flex-offer and it defines the
flexible load of a single consumption and/or production unit such as a heat pump and
electric vehicle (see Example 3.2). The corresponding unit prescription model punit

is in the representation of a flex-offer assignment (see Example 3.4).
Amulti-unit flexibility model fmulti is represented by the set of flex-offers, and it

defines flexible loads collectively incurred by multiple consumption and/or production
units (e.g., 200 heat pumps and 100 EVs). In the 5-tuple representation, fmulti “

pV, S,R,DV , DRq includes V and S defined as V “
Ť

i“1..N Vi and S “
Ś

i“1..N Si,
where @i “ 1..N pVi, Si, Ri, D

V
i , D

R
i q are the 5-tuple representations of flex-offers in the

set. The response model R is defined as the sum of all individual responses Ri, i “ 1..N ,
i.e., R : ps1, ..., sN q ÞÑ R1ps1q ‘ ... ‘ RN psN q, where si P Si, @i “ 1..N , and ‘ is the
operator for time series addition. The corresponding multi-unit prescription model
pmulti is represented as the set of flex-offer assignments.

A BG flexibility model fBG defines both flexible and inflexible consumption and
production loads within a balance group (BG). It is represented by the set of flex-offers
(for flexible loads) and the set of time series (for inflexible loads). Likewise in the multi-
unit model, the response model of fBG is defined as the sum of time series (using ‘) and
represents the total load of all underlying flexible and inflexible units within a BG. Like
the multi-unit prescription model, the corresponding BG prescription model pBG is
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represented as the set of flex-offer assignments.
AMBA flexibility model fMBA defines a difference between the consumption and

production loads at the market balance area (MBA) level along with the flexible BG
loads to be used for balancing. Consequently, fMBA is represented as a single time series
(for ∆ loads) and the set of flex-offers (for flexible loads). In the 5-tuple representation,
the model is defined similarly to the multi-unit and BG models. Depending on a chosen
stimulus (in the format of flex-offer assignments), the response of fMBA represents the
consumption and production deviations at the MBA (grid) level, compensated with the
loads of a BRP. Like the multi-unit and BG prescription models, the corresponding
MBA prescription model pMBA is represented as the set of flex-offer assignments.

MIRABEL agent roles and a model management workflow
The set of cyber-agents in the MIRABEL ICT system, denoted as S, forms a hierarchy
such that the agent ax P S has at most one immediate successor (|masterpaxq| ď 1).
The MIRABEL agents manage the described unit, multi-unit, BG, and MBA flexibility
and prescription models using the planning operations, introduced in Section 3.3. The
supported types of operations and the corresponding MIRABEL agent roles are shown
in Figure 3.9. To balance consumption and production at the levels of a balance group
and an MBA (power grid), the agents realize the workflow, shown in Figure 3.10. We
now briefly overview the involved operations, grouped by the MIRABEL agent roles
(which are orthogonal to the PrescriptiveCPS roles).

A prosumer agent in the sensor and actuator roles realizes buildP and applyP

operations. It builds (see 1 in Figure 3.10) a unit flexibility model (funit
1 ) for each

prosumer’s intent to use an appliance (e.g., EV) and applies (13) the corresponding
unit prescription model (punit) to activate loads from the appliance, respectively. In the
MIRABEL context, buildP builds flex-offers and applyP applies flex-offer assignments,
respectively.

An aggregator agent in the aggregator role realizes the reduceA and mapA (and
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Figure 3.10: The workflow of flexibility and prescription model processing in MIRABEL’s ICT system

optionally solveA
M ) operations. These aggregate ( 2 ) a set of unit flexibility models

from different prosumer agents (funit
1 , ..., funit

N ) into a single multi-unit flexibility model
(fmulti

1 ) and disaggregates (12) a multi-unit prescription model pmulti
1 into the set of unit

prescription models (punit
1 , ..., punit

N ), respectively. In the MIRABEL context, reduceA

aggregates a set of flex-offers into another set of flex-offers and mapA disaggregates
a set of flex-offer assignments into another set of flex-offer assignments (as explained
in Section 2.2).

A BRP agent takes the forecasting, aggregator, and disaggregator roles. In the
forecasting role, the agent uses buildB to forecast ( 3 ) inflexible consumption and pro-
duction loads in the format of a time series set (tscons`prod). In the aggregator role, the
BRP agent uses reduceB to fuse ( 4 ) inflexible and flexible loads, represented as a set of
time series (tscons`prod) and a set of multi-unit flexibility models from multiple aggre-
gator agents (fmulti

1 , ..., fmulti
M ), respectively. This action results into a BG flexibility

model (fBG). In the disaggregator role, the agent uses mapB to disaggregate ( 5 ) the
BG flexibility model (fBG) into a single multi-unit flexibility model (fmulti

1 ) represent-
ing flexible loads to be used at the MBA level (inter-balance group). Furthermore, with
reduceB the agent aggregates (10) corresponding multi-unit prescription models into
a BG prescription model (pBG) so that both the agent’s (BRP’s) and the successor’s
(TSO’s) balancing objectives are aligned. Finally, it uses mapB to disaggregate (11) a
BG prescription model (pBG) into the set of multi-unit prescription models (pmulti

1 , ...,
pmulti

M ). In the MIRABEL context, the agents perform scheduling of flex-offers while
exchanging flex-offers and flex-offer assignments with aggregator and TSO agents, as
explained in Section 2.2.

A TSO agent takes the sensor, aggregator, and global prescriptor roles. In the sen-
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sor role, the agent uses buildT to build ( 6 ) a flexibility model of real-time deviations
between consumption and production at the MBA level (tsdiff ). Then, in the aggre-
gator role, it uses reduceT to fuse ( 7 ) the deviations model with the set of multi-unit
flexibility models (fmulti

1 , ..., fmulti
K ) representing flexible loads of different BRPs. This

action results in an MBA flexibility model (fMBA). Finally, in the global prescriptor
role, the agent prescribes ( 8 ) the MBA flexibility model (fMBA) to compensate im-
balances at the grid level, and with mapT the agent disaggregates ( 9 ) the prescription
model (pMBA) into the set of multi-unit prescription models (pmulti

1 , ..., pmulti
K ). In the

MIRABEL context, the TSO thus uses flex-offers as alternative (secondary or ternary)
reserve loads while balancing the grid.

As seen above, the MIRABEL ICT system consists of the set of agents in specific
PrescriptiveCPS roles and relies on the planning operations involving different flex-
ibility and prescription (and decision) models. The MIRABEL project gives the rise
to the set of high-level requirements for these agents, roles, and planning operations.
In the next section, we generalize these requirements for other (similar) instances of
PrescriptiveCPS.

3.7 Common Requirements of PrescriptiveCPS
In this section, we draw high-level functional and non-functional requirements for Pre-
scriptiveCPS agents and agent roles. First, we define high-level requirements that are
applicable to all agents of PrescriptiveCPS and then we focus on individual agent
roles (groups) and draw requirements specific to a particular role. We motivate and
exemplify these requirements using the use-case of the MIRABEL project.

Common Agent Requirements
Requirement 1: An agent of PrescriptiveCPS has to provide near real-time

model management and exchange capabilities.

Example 3.11 (Performance requirement in MIRABEL). As seen in the
MIRABEL use-case, flexibility and prescription models have to be built, propagate
through the hierarchy, and be applied fast enough so that decisions are realized us-
ing “fresh” rather than outdated models. This performance requirement applies to all
agent roles, unexceptionally. If the requirement is not met, the MIRABEL ICT sys-
tem, or any other instance of PrescriptiveCPS, is not responsive to, for example,
shortfalls in a physical power grid.

Requirement 2: An agent of PrescriptiveCPS has to be sufficiently consistent
with other agents (successors and predecessors) and/or a physical system.
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This is a correctness requirement ensuring that flexibility models (the view of a phys-
ical system) and prescription models (the view of the actuation of a physical system)
are sufficiently consistent with a physical system and between agents. If sufficient con-
sistency is achieved, decisions are made (and realized) based on models that correctly
represent an underlying physical system and its actuations.

Example 3.12 (Correctness requirement in MIRABEL contra-example).
As a contra-example, consider a flexibility model (at the BRP level) with incorrect
stimuli and/or responses of a balance group. This will result into imbalances in a
physical balance group even if a decision model leads into a perfect balance.

Requirement 3: An agent of PrescriptiveCPS must be highly available and be
able to tolerate network splits (especially at the higher levels).

An instance of PrescriptiveCPS is required to be reliable, especially at the higher
levels. It is very important that the system provides the service to stakeholders from the
higher hierarchical levels (e.g., BRPs, TSOs) with high availability. If some agent (e.g.,
a prosumer) disconnects from the system, both the agent and the rest of the system
must be able to operate autonomously. The system must be resilient to failures such as
network splits (partitioning) and agent crashes. Note, Requirements 2–3 are conflicting,
as stated by the CAP theorem [33].

Requirement 4: An agent of PrescriptiveCPS must have (flexibility and pre-
scription) model management and storage capabilities.

Example 3.13 (Model management and storage in MIRABEL). Consider
the mapB and reduceB operations for BG prescription models. They require an
instance of the BG flexibility model to be kept (at least) until a respective instance
of the BG prescription model is generated (as defined in Section 3.3). Additionally,
as exemplified in Figure 3.11, multiple flexibility and prescription model instances
may co-exist due to (1) changes in a physical system (e.g., new flex-offers) and (2)
multiple decisions that may be generated with a single instance of a flexibility model
(e.g., the BG flexibility model. As we show later, the history of model instances must
be kept to be able to study and document past conditions that lead into corresponding
decisions. An agent of the MIRABEL ICT system must be able to store, retrieve,
and process multiple instances of (several) flexibility and prescription models (e.g.,
unit, multi-unit).

Requirements for the Aggregator Role
As defined in Section 3.5, an aggregator agent implements the pair of reduce and map
operations with flexibility and prescription models, respectively. The pair has to be
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(carefully) designed so that the governing correctness requirement (Requirement 2) is
satisfied, and, consequently, the views of a physical system before and after reduce and
the views of a physical system actuation before and after map correspond. However,
there are additional requirements related to the practical use of reduce and map (and
the whole PrescriptiveCPS).

When the set of flexibility models are aggregated with reduce, this might lead into
a (compound) flexibility model, which is difficult or infeasible to handle at (higher)
decision levels due to its size or a (very) high number of prescription (unknown/deci-
sion) variables and the (exploded) number of alternative stimuli. It is, however, often
preferable to keep the number of the prescription variables at the manageable level
while still preserving (lots of) alternative physical system responses, as they need to be
explored in decision making. We formulate this aim using the following two conflicting
requirements:

Requirement 5: An aggregation agent must reduce the number of stimulus al-
ternatives (prescription variables) during the reduce of flexibility models.

Requirement 6: An aggregation agent has to preserve as many response alter-
natives as possible during the reduce of flexibility models.

Example 3.14 (Aggregator role requirements in MIRABEL). Consider the
MIRABEL use-case with millions of prosumers at the lowest level. It is, however, very
impractical to deal with the very large number of flex-offers at the BRP or TSO level.
This is why aggregator agents of the MIRABEL ICT system use lossy reduceA to ag-
gregate unit flexibility models into multi-unit flexibility models, while building “larger
flex-offers”, as shown in Figure 2.6. The lossless reducers (reduceB and reduceT )
are still practically feasible and used, e.g., to fuse flexibility models of different types
(e.g., tscons`prod and fmulti

1 to fBG or tsdiff and fmulti
1 to fGRID).
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Requirements for the Forecasting Role
As defined in Section 3.5, a forecasting agent implements the build operation, which
builds a flexibility model by projecting historical data to future and thus predicting
expected responses (and stimuli) of a physical (sub-)system. This leads to the following
requirement:

Requirement 7: A forecasting agent must support a forecasting functionality (e.g.,
time series forecasting), which allow building responses (and stimuli) of a flexibility
model based on historical measurements (of a response/stimulus), external data, and
relevant context information.

As most forecasting techniques require a long series of data to produce accurate
forecasts [34], the forecasting agent has to satisfy an additional storage requirement.

Requirement 8: A forecasting agent must have sufficient storage for historical
measurements, external data, and all required contextual information.

Example 3.15 (Forecasting role requirements in MIRABEL). As seen
in Section 3.6, the forecasting operation (buildB) is used to build a “missing” flexibil-
ity model (tscons`prod) for a physical system (non-flexible demand and supply) that
is not directly observed by underlying predecessor agents but is required to “complete”
a larger (fBG) flexibility model. Such capability to build “missing” models is required
in MIRABEL ICT system as well as in other instances of PrescriptiveCPS.

Requirements for the Decision-Making Role
As described in Section 3.5, the decision-making role covers the global prescription, ag-
gregator, and disaggregator roles, and a corresponding decision-making agent uses solve,
solveM , or solveR (with exceptions) to produce prescriptions, respectively. As explained
in Section 3.3, the solve, solveM , and solveR operations produce prescriptions in two
steps: (1) decision model building (2) decision model solving (evaluation). The decision
model building can be seen as the application of a “builder function” (buildpf, ...q) which
produces an instance of a decision model according to a flexibility model instance f and
is carefully designed by humans to reflect their desired (external) objectives and/or
constraints, e.g., minimize imbalances between consumption and production. To de-
sign such builder function (build), a decision-making agent should provide to (human)
users sufficient insights into a decision domain, allowing them to design effective decision
models (to be generated with build). Such insights may include, for example, the graph-
ical visualization of decision spaces (flexibility models). They may allow designing new
and/or updating existing decision model builder functions. The need for the described
analytical capabilities is formulated as the following requirement:

Requirement 9: A decision-making (global prescription, aggregation, or disaggre-
gator) agent must offer a decision model building and adaptation support (analytics) to
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(human) users.
The decision model solving can be done utilizing the capabilities of an optimization

problem solving. Consequently, the agent is required for the built-in support of such
capabilities, as formulated by the following requirement:

Requirement 10: A decision-making agent (a global prescription, aggregation,
disaggregator agents) must have the capability of solving decision (optimization) model
instances.

Example 3.16 (Decision-making role requirements in MIRABEL). A BRP
agent’s decision model for minimizing imbalances between consumption and production
was carefully designed in the MIRABEL project, and three meta-heuristic scheduling
algorithms (a randomized greedy search, an evolutionary, and a hybrid algorithm)
were proposed [35] to solve instances of this decision model.

3.8 Summary
In this chapter, we have presented PrescriptiveCPS, which is our proposed (concep-
tual model of a) CPS for distributed continual planning and control. In Prescrip-
tiveCPS, agents are organized hierarchy based on their obedience to each other. They
manage a number of physical system model instances. We have defined and elaborated
the three types of these models, namely flexibility, decision, or prescription models. To
deal with these types of models, an agent uses the set of planning operation. Depending
on the set of supported operations, the agent takes one of more of roles such as the builder
(sensor, forecasting), applier (actuator), global prescription, aggregator, or disaggregator
role. We also demonstrated that the MIRABEL ICT system is a specialized instance
of PrescriptiveCPS. By using the MIRABEL use-case example, we formulated 10
general requirements that are applicable to similar instances of PrescriptiveCPS and
their agents. In the next chapter, we focus on the software of a PrescriptiveCPS
agent, while aiming to support these requirements.
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Chapter 4

Agent Software System for
Prescriptive Analytics

We now focus on the software of a single PrescriptiveCPS agent and present the
generic (internal) architecture of an agent software system. The architecture supports
multiple agent roles and, as we elaborate later in the thesis, allows meeting the most
of the requirements specified in Section 3.7. In this chapter, first we present the ar-
chitecture focusing on the logical separations of data management functions and then
show how various components of the architecture map to the agent model (defined
in Section 3.1). Then, we overview the capabilities of a database management system
(DBMS) component, enhanced to support specific operational and analytical tasks of
a PrescriptiveCPS agent. We overview the analytical capabilities and the types of
queries supported by the DBMS. Finally, we point-out agent (sub-)components, which
we focus in details in the rest of the thesis.

4.1 Architecture of an Agent Software System
We design software system architecture for a PrescriptiveCPS agent based on the
standard three-layer (three-tier) model [36]. The architecture is shown in Figure 4.1.
It is designed to be generic to handle all the agent roles described in Section 3.5 and
to address the role-independent requirement for model storage (Requirement 4) and
the role-specific requirements for forecasting (Requirement 7), historical data storage
(Requirement 8), and decision model building and solving (Requirements 9–10).

The architecture includes the standard three data management, business logic, and
presentation layers with the number of components designed or customized specifically
for the agent of PrescriptiveCPS. We now briefly overview these components in each
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Figure 4.1: The architecture of a PrescriptiveCPS agent software system

layer, while elaborating them in-depth in the current and the remaining chapters of this
thesis.

Data Management Layer includes data sources and data destinations of an agent.
These are sensors/actuators, other agents, and an integrated general-purpose database
management system (DBMS) with built-in analytical capabilities. The DBMS, in addi-
tion to the standard features, supports forecasting (Forecasting), optimization problem
solving (Optimization), and what-if analysis based on so-called hypothetical scenarios [37]
(What-if).

Business Logic Layer includes components realizing role- or agent-specific busi-
ness objectives and rules (e.g., of a TSO or BRP actor). Specifically, the layer includes
the control component and the planning component. Here, the control component orches-
trates the data exchange between different data sources and destinations. The planning
component, among other functionality, offers a concrete realisation of the (sub-)set of
the planning operations (see Section 3.3) such as map, reduce, solve, apply, and build
(of the sensor/forecasting roles).

Presentation Layer includes a graphical user interface (GUI) allowing (human)
users to query and visually analyse data of an agent.

Figure 4.2 shows how various components of the software architecture can be inte-
grated into an agent, defined in Section 3.1. Depending on the set of roles an agent
takes, the agent may or may not integrate all of the described (sub-)components. For
example, an agent integrates the control and the DBMS components irrespective to
its role (see mandatory components). However, the most of these components are not
integrated in a (simple) agent taking the sensor or actuator roles and requiring no ana-
lytical capabilities. In the latter case, the agent may only integrate sensors, actuators,
the control component, and a standard DBMS with no analytical capabilities.
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Figure 4.2: The integration of the agent software system with other PrescriptiveCPS agent com-
ponents

We now focus exclusively on the DBMS component with the built-in forecasting,
optimization, and what-if capabilities. While focusing on the component, we elaborate
the supported types of analytical queries, potentially, contributing the decision model
building and adaptation (Requirement 9).

4.2 Analytical Capabilities of the DBMS
The DBMS of a PrescriptiveCPS agent software, among other types of data, stores
historical measurements and the flexibility and prescription models of different types
(Requirement 4 and Requirement 8). The supported analytical capabilities (forecasting,
optimization, and what-if) enable novel and powerful ways to analyse all such data, thus
helping (human) analytics/administrators (1) to study the (past, current, and future)
performance of a physical system and (2) to optimize the PrescriptiveCPS agent op-
eration through more effective decision models (Requirement 9). We now focus on each
of these capabilities individually while briefly presenting functionality and advantages
they bring.

The forecasting capability allows processing a large amount of historical data in-
side a DBMS to produce accurate forecasts without the need to export data to external
forecasting tools (e.g., Matlab). As elaborated in Chapter 7, this functionality offers in-
creased usability, productivity, and performance (Requirement 1), and can be effectively
used for realizing the build operation (for forecasting) in the planning component.

The optimization problem solving functionality enables complex analytical queries
involving optimization problem solving to be processes inside a DBMS without the
need to export data to external optimization tools (e.g., AMPL). As will be elaborated
in Chapter 8, this brings many advantages such as increased (DBMS and solver) usabil-
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ity, (user) productivity, and (overall) performance (Requirement 1). This functionality
can be effectively used to realise the solve, solveR, and solveR operations in the plan-
ning component, for building and solving decision models based on flexibility models
(and other inputs).

The what-if analysis allows assessing the effects of various hypothetical scenarios,
which, as we elaborate in Chapter 9, are user-defined as ordered sets of hypothetical
modifications (deletions, insertions, and updates) of data in a database. The convenience
of such hypothetical scenarios in the process of data analysis is shown in the following
example:

Example 4.1 (What-if analysis in the MIRABEL use-case). Consider a (hu-
man) analyst in the MIRABEL use-case willing to study consumption and production
imbalances in a balance-group (BG) as if no production from RES was produced at
a particular day in the past. In such case, the analyst may choose (or define) and
apply a hypothetical “no-wind” scenario and then issue a query(-ies), retrieving the
amount(-s) of imbalances encountered as if such scenario really happened.

The time-travel functionality [38] (FOR SYSTEM_TIME AS OF, FOR BUSINESS_TIME AS OF)
of existing bi-temporal databases can be seen as the special case of scenario-driven
querying, during which the database is queried as if system or business time is as user
specifies in its scenario. Such a “time-travelling” well complements what-if analysis
in PrescriptiveCPS, as demonstrated in Chapter 9.

In the next section, we overview the most important types of queries supported by
the DBMS utilizing the described analytical capabilities.

4.3 Queries Supported by the DBMS
We now outline the most important types of queries to be supported by the DBMS of
a PrescriptiveCPS agent. We list these query types in the order of their complexity,
and include the types that can be supported by standard DBMSs (without analytical
capabilities) as well as by the DBMS with the described analytical capabilities (opti-
mization, forecasting, and what-if).

History queries are standard DBMS queries focusing on the (factual) data stored in
a database. Among other purposes, historical queries may be used to study “deviations
from a plan” while assessing the (past) performance of PrescriptiveCPS.

Example 4.2 (A history query). As explained in Section 3.1, an agent collects
flexibility model instances, which (in the invariant part) may represent (historical)
measurements of a physical system state. A historical query may contrast such mea-
surements against (existing) prescription model instances that, potentially, led the
physical system into the states represented by these measurements.
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Forecast queries project physical system responses (and stimuli) into future based
on historical measurements (and other context information) in a database. Such queries
rely on either built-in or external forecasting techniques and may be used to study
expected behaviour of a physical system.

Example 4.3 (A forecast query). A forecast query may retrieve (expected) day-
ahead values of an inflexible RES production (tscons`prod) based on historical mea-
surements stored in a database.

Stimulus queries provide overviews of stimuli defined by flexibility model instances
stored in a database. Such queries can, potentially, be used in feasibility/risk analysis
where the flexibility of a physical system is explored.

Example 4.4 (A stimulus query). A stimulus query may retrieve the sums or the
distributions of time and amount flexibilities (as defined in Section 2.1) for a given
set of flex-offers (a multi-unit model) as the estimate of the total flexibility (capability
to change state) of a physical system.

Response queries provide overviews of responses defined by flexibility model in-
stances stored in a database. Such type of queries can, potentially, be used in feasi-
bility/risk analysis where alternative (incl., nominal or peak) responses of a physical
system are explored.

Example 4.5 (A response query). A response query may retrieve a time series
(response) with feasible minimum, maximum, or average energy amount values at
every time interval, allowed by any feasible stimuli in a given set of flex-offers (a
multi-unit model).

Prescription queries allow studying (potential) prescriptions, derived “on-the-
fly” during the query evaluation. Such queries may rely on the built-in support for
optimization and can be used to study impacts of various decision models. The solve,
solveR, and solveM operations of the planning component (see Section 4.1) are based
on such queries.

Example 4.6 (A prescription query). Given the set of flex-offers (a multi-unit
model) stored in a database and a user-specified objective for balancing (Chapter 8
describes how such an objective is specified), a prescription query may retrieve the
amount of remaining imbalances incurred by the best found set of flex-offer assign-
ments (a stimuli/prescription).
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Prescription adaptation queries allow studying feasible changes (deltas) of the
prescription model that is already generated and stored in a database together with a
corresponding flexibility model. Such queries may also rely on the built-in optimization
functionality.

Example 4.7 (A prescription adaptation query). A prescription adaptation
query might retrieve energy amount values that can still be increased or decreased
at a given time interval with the respect to existing prescription, e.g., to counter un-
expected highs or lows in the RES production.

What-if queries allow studying flexibility, decision, and prescription models (incl.,
measurements) as if some user specified or selected hypothetical scenario has, in fact,
really happened, as presented by Example 4.1. Among these scenarios, there exist
scenarios where a business or system time is (hypothetically) set to a user-specified
time moment. Such “time-travel” scenarios allow retrieving measurements, flexibility,
or prescription models in versions that were valid or present in a database at that
particular time moment. Such queries rely on the built-in support for scenarios and can
be combined with other types of queries such as forecast queries and prescription queries.
When combined with forecast and prescription queries, hypothetical forecasts (flexibility
models) and subsequent prescriptions can be studied, for example, as if measurements
followed a different user-specified pattern or alternative decision models (decision model
builders of solve) were applied in the past or will be applied in future.

Example 4.8 (A what-if forecast and prescription query). A combined what-
if, forecast, and prescription query can be used to study hypothetical imbalances as
if a past day’s electricity consumption followed a different pattern (than it actually
did) leading to different forecasts, different decisions, and different imbalances for the
day-ahead.

In PrescriptiveCPS, the DBMS of an agent in the decision-making role supports
all the discussed types of queries and allows mixing standard DBMS queries with the
queries described above. When an agent is equipped with such a DBMS, an analyst (hu-
man) is provided with the rich set of prescriptive analytics tools for both managing and
analysing flexibility, decision, and prescription model instances in a single powerful data
management and analysis system. Furthermore, pushing more of the analytical func-
tionality into a single common system allows for more simplified and more lightweight
implementations of the GUI, the control, and the planning components (see Figure 4.1),
as the required analytical functionality can be reused and shared across all these compo-
nents. Therefore, the (large) part of this thesis (Chapters 7–9) is devoted for supporting
all the presented types of queries in a single integrated DBMS for planning. Thesis con-
tributions on (the rest of) agent’s software components are summarized in the next
section.
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Figure 4.3: Thesis contributions on different components of the PrescriptiveCPS agent software

4.4 Contribution on the Agent Components
As shown earlier, PrescriptiveCPS agent software consists of the number of compo-
nents (and functionalities) at all three layers of the agent software architecture. The
components (and functionalities) from the data management layer are generic, meaning
that they can, potentially, be reused across all agents (and agent roles) of Prescrip-
tiveCPS. On the contrary, the components (and functionalities) from the business logic
and presentation layers are specific to an agent (or an agent role) and, therefore, must
be specially adapted and customised for a particular agent (or an agent role).

The rest of the thesis focuses on, and provides contributions for, both the generic
and specific components (and their functionalities) at all the three layers, as shown
in Figure 4.3. Specifically, Section 7.1 and Chapters 8–9 consider the generic DBMS
and focus on its built-in forecasting, optimization, and what-if functionalities. Chapter 5
shows how this generic DBMS component can be used to store agent-specific data using
a generalised database schema that can, potentially, be reused across all agents. Then,
Chapter 6 presents agent-specific techniques to aggregate flexibility model instances
(using reduce) and disaggregate prescription model instances (using map). Similarly,
Section 7.2 presents agent-specific (domain-specific) flexibility model forecasting tech-
niques, which rely on the forecasting-capable DBMS (Section 7.1). Chapter 10 considers
the general architecture of the agent-specific planning component, and, finally, Chap-
ter 11 elaborates agent-specific flexibility and prescription model visualisation and visual
analysis techniques.
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4.5 Summary
In this chapter, we presented the three-layer software architecture of PrescriptiveCPS
agent software and showed how various components of the architecture can be integrated
into a PrescriptiveCPS agent. Then, we focused on the DBMS component and
overviewed its supported types of queries and PrescriptiveCPS-specific functionalities
that have to be integrated into the DBMS for convenient and efficient management and
analysis of flexibility, decision, and prescription models. Finally, we presented generic
and agent-specific software components (and functionalities), which we focus on in the
remaining chapters of this thesis in details.



Chapter 5

Multi-Dimensional Flexibility
and Prescription Model
Representation

In this chapter, we focus on the DBMS component of a PrescriptiveCPS agent soft-
ware system (see Section 4.1) and show how flexibility and prescription model instances
and historical measurements can be stored in a database underlying this component
(Requirement 4 and Requirement 8). For specificity, we focus on flexibility and prescrip-
tion models from the MIRABEL use-case. There, instances of unit, multi-unit, BG, and
MBA flexibility and prescription models together with other related data need to be
stored by agents taking the roles that are defined by the Harmonized Electricity Market
Role Model [27]. Flexibility and prescription models in MIRABEL are complex multi-
dimensional entities represented as (sets of) flex-offers, (sets of) flex-offer assignments,
and (sets of) time series (Section 3.6). For the storage of these, a multi-dimensional
representation is considered, and the schema of a multi-dimensional warehouse (DW)
is proposed. In this chapter, we first discuss the modelling of actors and their roles
(Section 5.2) as well as flex-offers and time series (Sections 5.3–5.4). Then, we show the
complete schema (Section 5.5) and experimentally evaluate alternative data modelling
strategies based on typical queries from the MIRABEL use-case (Section 5.6). Finally,
we review related work on energy-related data modelling (Section 5.7) and discuss flex-
ibility and prescription model storage in other similar instances of PrescriptiveCPS
(Section 5.8). The content of this chapter is based on Publication [2].
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5.1 Data Storage in the MIRABEL Use-case
As explained in Chapter 4, the DBMS component of a PrescriptiveCPS agent soft-
ware system handles the storage of data required for (online) planning and (offline)
human-based analysis. To provide the storage of flexibility models, prescription models
(Requirement 4), and measurements (Requirement 8) a database is required. In the
general case, the schema of such database is specific to an agent (or a role) and de-
pends on a number and types of flexibility and prescription models an agent needs to
manage. In the MIRABEL use-case, fortunately, the (unit, multi-unit, BG, and GRID)
flexibility and prescription models are made from (represented by) common and shared
entities (“building blocks”) which are flex-offers, flex-offer assignments, and time series
(see Section 3.6). Consequently, the common database schema suitable for all agents in
any role can be designed in the MIRABEL use-case. We now elaborate the schema of
such unified MIRABEL database. To design this schema, we rely on the Harmonized
Electricity Market Role Model [27] and the MIRABEL specification [39].

In the MIRABEL use-case, an agent manages a data of a single actor (legal entity) in
a particular role such as the prosumer, aggregator, BRP, or TSO role (see Section 2.2).
When an agent communicates data with other agents, it deals with data for/from other
actors, which can, potentially, take multiple roles. To be able to store local data and
to keep track of exchanged data, the schema of the agent’s database must be designed
to support multiple actors in multiple roles so that data is stored in a database for
each actor-role combination separately. As the database integrates data from multiple
sources (actor-roles), it can be seen as an agent’s (local) data warehouse (DW), and,
therefore, referred as MIRABEL DW.

Example 5.1 (The MIRABEL DW of an aggregator agent). As explained
in Section 2.1, the agent of an aggregator actor exchanges data with the agents of
BRP actors (successors) and the agents of prosumer actors (predecessors). The
agent needs a DW for the storage of data of its own (aggregator) role as well
data (flexibility and prescription models) interchanged between each successor or
predecessor actors (agents) in the BRP and prosumer roles. Consequently, data in
the MIRABEL DW need to be stored in “per actor in a role” fashion.

We present how actors and actor roles are modelled in the MIRABEL DW, in Sec-
tion 5.2. For each actor-role, MIRABEL DW needs to store instances of the flexibility
and prescription models of the types unit, multi-unit, BG, and MBA, composed of (sets
of) flex-offers, (sets of) flex-offer assignments, and (sets of) time series. As these are
complex multi-dimensional entities, we elaborate the multi-dimensional representation
of flex-offers and flex-offer assignments in Section 5.3, and the multi-dimensional rep-
resentation of time series in Section 5.4. Finally, we present the full multi-dimensional
MIRABEL DW in Section 5.5.
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5.2 Modelling of Different Actors and Roles
The MIRABEL DW needs to support different actors taking different roles. To model
these, we rely on (and aim to be consistent with) the Harmonized Electricity Market
Role Model [27], which is generic, elaborate, and not limited only to the roles (pro-
sumer, aggregator, BRP, TSO) presented earlier in Section 2.1. The role model defines
additional roles (e.g., consumer, producer, imbalance settlement responsible, and market
operator) and specifies more complex relationships and interaction patterns between all
these roles. In our modelling, we aim to capture all relevant roles and show how these
roles are inter-related and linked with market balance areas (MBAs) and balance groups
(BGs), described earlier in Section 2.1. To achieve the consistency with both the role
model and the MIRABEL specification [39], we use interchangeably the terms (1) actor
and legal entity, (2) actor role and legal entity role, (3) prosumer and party connected to
grid, (4) transmission system operator (TSO) and system operator, and (5) aggregator
and metered data aggregator.

In the MIRABEL DW, we represent actors and the roles from the Harmonized
Electricity Market Role Model by means of the tables, shown in Figure 5.1.

Figure 5.1: Tables for representing different actors/roles of the European electricity market

The table D_role represents roles such as producer, consumer, and BRP. A role can
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belong to another parent role, and this is captured by a self-reference.

Example 5.2 (Consumers and producers as parties connected to a grid).
The consumer and producer roles are specializations of the role party connected to
grid (prosumer). This is indicated by a self-reference in D_role.

Actors are represented by D_legalEntity. To capture when a certain actor plays a cer-
tain role, we use D_legalEntityRole. This table references both D_role and D_legalEntity.
Further, it has an attribute to hold a unique ID for a given actor playing a given role.
We include this ID as it makes it easy to point to an actor in a certain role. We do
exactly that from a number of tables, as shown in Figure 5.1. For each role, there
is a specialized table (D_*) that (directly or indirectly through another table) refer-
ences D_legalEntityRole. A particular specialized table can be referenced, thus, making
it explicit what kind of role is required.

Example 5.3 (Referencing for specialization). The tables D_lerProducer and
D_lerConsumer reference D_lerPartyConnectedToGrid to indicate that actors in the pro-
ducer and consumer roles are special cases of actors in the party connected to grid
(prosumer) role.

Example 5.4 (Referencing for an actor in a particular role). The table
D_lerBalanceSupplier references D_lerBalanceResponsibleParty to link actors in the
balance supplier role with actors in the balance responsible party (BRP) role.

Figure 5.2: Tables for representing market areas

We provide tables to represent market balance areas (MBAs), as shown in Figure 5.2.
Here, D_localMeteringPoint represents the meters that are connected to the grid both at
the producer and consumer sites. D_localMeteringPoint references four different spe-
cializations of D_legalEntityRole. Further, it references D_balanceGroup which in turn
references D_marketBalanceArea that hierarchically groups metering points, as explained
previously in Section 2.1.
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Discussion
The MIRABEL DW captures (1) actors in different hierarchically organized roles, (2)
actor relationships at the role level, and (3) actor-role belonging to various domains
within the power grid (MBA or BG). The schema allows representing attributes that
are only relevant for certain roles. This is achieved by introducing specialized tables and
then referencing these tables with foreign keys to indicate what kind of role is required.
The schema thus helps to avoid mistakes where, e.g., an actor in the balance supplier
role is referenced where an actor in the balance responsible party role actually should
have been referenced instead. We note that if no special attributes must be stored for
different roles, then, instead of storing the D_ler*’s as physical tables, they can be views
selecting from D_legalEntityRole. This reduces the risk of mistakes further and makes
maintenance of them automatic.

5.3 Modelling of Flex-offers and Flex-offer assign-
ments

Figure 5.3: Tables for representing flex-offers

The MIRABEL DW needs to store flex-offers and flex-offer assignments that are core
building blocks of the unit, multi-unit, BG, and MBA flexibility and prescription models
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in the MIRABEL use-case. In addition to flex-offer (and flex-offer assignment) attributes
described in Section 2.1, the MIRABEL specification [39] describes additional flex-offer
(and flex-offer assignment) attributes (e.g., states, aggregation level) which we include
in our modelling. To represent flex-offers and flex-offer assignments (both aggregated
and non-aggregated), we use a multi-dimensional schema, shown in Figure 5.3. We first
describe the dimension tables (which are recognized by the prefix D_ in their names)
and then the fact tables (recognized by the prefix F_ in their names).

Dimension tables
As seen in Figure 5.3, all dimension tables (prefixed with D_) have surrogate keys
with names ending with Id. The possible states for a flex-offer (e.g., offered, accepted,
assignment, and rejected) are represented in the dimension D_flexEnergyState and all
possible reasons that led the flex-offer to a particular state are represented in the di-
mension D_flexEnergyStateReason. The D_flexEnergyStateReason includes columns for both
the generic categories and the specific reasons. This allows specifying the hierarchy of
reasons with few generic reason categories and many more specific reason descriptions.

Example 5.5 (A flex-offer state and a state reason). A flex-offer may be re-
jected if the requested energy is too high. In such case, the flex-offer has the state
rejected, “Energy too high” as a generic reason, and “Energy (100kWh) too high” as
a specific reason.

We represent time by discretized time intervals. This is done by D_timeInterval which
represents 15 minutes intervals (other interval lengths can be chosen if needed). Flex-
offers are always related to at least one metering point (at the location where the energy
is to be consumed or produced), but if a flex-offer is aggregated, it will be associated
with many metering points. To capture this, D_meteringPointGroup is used as bridge
table [40] between the fact table and D_meteringPoint which represents the individual
metering points. To represent the aggregation level of a flex-offer, D_aggregationLevel is
used.

Fact tables
As flex-offers and flex-offer assignments are often handed in pairs, the fact table F_flexOffer
holds combined flex-offer and flex-offer assignment facts. The fact table references all
the previously described dimension tables. The table holds only the current informa-
tion about the pairs of flex-offers and flex-offer assignments, but, as we elaborate later,
may include the standard validity time and transaction time attributes of bi-temporal
databases for versioning. We now present the attributes relevant to a flex-offer and then
elaborate the attributes for a flex-offer assignment.
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Flex-offer representation

There are six foreign keys to D_timeInterval to represent different times such as when the
flex-offer was created and when it at the latest has to be assigned, etc. These foreign keys
thus all represent an absolute time. There is also an attribute assignmentBeforeDuration
which holds a time span telling how long before the actual execution time the flex-offer
assignment must be generated.

Further, F_flexOffer references D_legalEntityRole (explained in Section 5.2) twice to
represent who offered and accepted the flex-offer, respectively. There are measures to
hold the lowest and highest amount of energy required by a flex-offer. Finally, each rep-
resented flex-offer is given a unique identifier in the attribute flexOfferId which technically
is a degenerate dimension.

Information about the profile intervals (slices) of flex-offers is represented in the fact
table F_enProfileInterval. This fact table only has a single foreign key which references the
unique flexOfferId in F_flexOffer. The imported value together with a sequential intervalNr
forms the primary key for F_enProfileInterval. The reason for this design is that a single
flex-offer can have many profile intervals (slices). For each represented profile interval,
there is a duration specifying how many time units the profile interval spans over, and
both the lowest and highest amount of energy needed in this interval. An alternative
to this design would be to represent the measures of F_enProfileInterval in arrays in
F_flexOffer such that all data about a given flex-offer would be represented in a single
fact. Yet another alternative would be to represent all attributes of F_enProfileInterval
in F_flexOffer, i.e., denormalize the data and have one (wide) fact in F_flexOffer for
each profile interval. These three design alternatives are experimentally evaluated later
in Section 5.6.

As flex-offers can be aggregated into larger flex-offers, we also introduce the table
F_aggregationMeta which references F_flexOffer twice to point to the aggregating “parent
flex-offer” and the smaller “child flex-offer” which has been aggregated, respectively.
Profiles of each child flex-offer can be shifted relatively to the profile start of the parent
flex-offer when aggregating child flex-offers into the parent. Therefore, for every child
flex-offer, the childProfileTimeShift attribute indicates the amount of time units the profiles
of the child flex-offer has been shifted in the aggregated flex-offer. This information is
used in the disaggregation.

Flex-offer assignment representation

In the discussed F_flexOffer and F_enProfileInterval tables, there are additional attributes
that are specific to a flex-offer assignment. The attribute enProfile_startFixTimeIntervalId
in F_flexOffer represents a “prescribed” starting time of an underlying appliance. Sim-
ilarly, en_fix in F_enProfileInterval is a measure holding the “prescribed” energy amount
for each interval (slice) of a profile. Finally, there are computed (derived) measures
(/enTotal_fix and /costTotal_fix) for representing the “prescribed” total energy amount
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and price (when cost_perEnergyUnit is specified).

Example 5.6 (Representation of flex-offer and flex-offer assignment).
For a single flex-offer and a corresponding flex-offer assignment, there is a
single fact in the F_flexOffer table and multiple facts in the F_enProfileInterval
table. As flex-offer assignment is generated according to a flex-offer, each
enProfile_startFixTimeIntervalId value falls between enProfile_startAfterTimeIntervalId and
enProfile_startBeforeTimeIntervalId values, and each en_fix value falls between the values
of en_low and en_high.

Discussion
As seen in Figure 5.3, the multi-dimensional database representation of flex-offers and
flex-offer assignments is challenging as several fact tables are involved to represent flex-
offer and flex-offer assignment entities. Consider the fact table F_flexOffer which is the
central table for representation of flex-offer and flex-offer assignment pairs. This fact
table is, however, also used as a dimension table in the sense that each fact has a unique
ID such that F_enProfileInterval and F_aggregationMeta can reference F_flexOffer and in
effect store facts about facts. Unlike traditional DW schemas, we thus have non-atomic
composed facts.

Example 5.7 (Flex-offers as non-atomic composed facts). Consider
F_flexOffer and F_enProfileInterval fact tables. An energy profile interval (slice)
always belongs to a flex-offer and any meaningful flex-offer has an energy profile
interval, as a flex-offer for zero consumption/production at an undefined point in
time is hardly interesting. In this context, it can be discussed what a fact actually is.
It could be argued that a single fact is represented by a single row in F_flexOffer and
many rows in F_enProfileInterval.

As pointed out above, we could alternatively have modelled this by using arrays
in F_flexOffer to hold the measures that currently are represented in F_enProfileInterval.
This would, however, make it more cumbersome to compare different measures (e.g.,
en_low with the minimum energy requirement to en_fix with the assigned energy) as the
interval position currently represented by intervalNr only would be implicitly represented
by the position in the array. The denormalized variant (with a fact in F_flexOffer for
each profile interval) would increase redundancy dramatically.

The MIRABEL DW represents facts for both non-aggregated and aggregated flex-
offers in a unified way. The aggregation is unlike the traditional aggregation, since the
parent flex-offer contains other flex-offers that can be shifted within the parent flex-offer.
We, therefore, call the contained flex-offers shiftable child facts.
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5.4 Modelling of Time Series
In MIRABEL DW, time series are represented by the tables shown in Figure 5.4.

Figure 5.4: Tables for representing time series

It is necessary to be able to represent time series of energy (see Section 3.6) as well
as other data types [39] such as power and price. To represent these general classes, we
use the D_typeClass dimension table. Apart from its surrogate key, it has the attribute
typeClassDesc which holds a textual description of the time series type (such as “Energy”),
and the attribute unit which holds the unit of measurements (such as “kWh”). Instances
of the general classes are represented in the table D_type. It references D_typeClass to
represent the hierarchy between time series types and time series type classes.

Example 5.8 (RES production as a special type of energy). “Energy-
Metered-Production-RES-Wind” is an instance of the “Energy” class. Such type is
stored in D_type while referencing “Energy” in D_typeClass for a type class.

For different types of time series, it is, however, necessary to store different infor-
mation. Therefore, we introduce the tables D_typeEnergy, D_typePower, and D_typePrice
to hold the attributes that are relevant for the different types. These tables supple-
ment, but cannot replace, D_type. The reason is that we need a single table to reference
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from D_timeSeries to represent the type of the time series in question. Thus D_type is
referenced from D_timeSeries, but the special attributes for an energy time series are
represented in D_typeEnergy. The latter table has columns to describe the origin of the
energy (e.g. “Metered” or “Forecasted”), the flow direction (i.e., if it is production or
consumption), the category (e.g., energy from renewable energy sources), and the type
of energy (e.g. “Wind”). The design is likely to evolve in the future. For example,
there is a traditional hierarchy where types roll up into categories that roll up into flow
directions. A more advanced hierarchy is, however, needed to represent hybrid energy
types like “At least 90% energy from renewable energy sources and the rest produced
from coal”.

D_timeSeries holds a single entry for the entire time series. For each represented time
series, there is a unique ID tid and further a name may be given. Further, D_timeSeries
references D_type (as previously described), D_aggregationLevel to represent the level of
aggregation of the time series, and D_meteringPointGroup to represent which meters the
time series describes. Thus, D_timeSeries is mainly used to relate different dimension
values that describe the represented time series. The values of the time series are, how-
ever, represented in the fact table F_timeSeriesInterval. This table references D_timeSeries
to identify a time series (a value belongs to) and D_timeInterval to identify the time
instant when the value occurred. Finally, the table holds the value itself as a measure.
A fact thus exists for each value in each time series. It can, however, also be argued that
a fact consists of what it represented in F_timeSeriesInterval and what is represented in
D_timeSeries which – apart from a possible name – only points out to other dimensions.

Discussion
In our modelling of time series, the schema is neither a traditional star schema nor a
snowflake schema.

One reason for this is that the representation of time series, similarly to flex-offers,
also leads to non-atomic composed facts where one fact can be considered to be made up
of parts in different tables (D_timeSeries and F_timeSeriesInterval). Actually, an alternative
design is to merge F_timeSeriesInterval into D_timeSeries such that the values instead
are represented in an array, meaning that a single time interval (and all its values)
only would result in one fact. Yet another alternative is to merge D_timeSeries and
F_timeSeriesInterval and have a row for each value in a time series. There are thus
different possible ways to represent the complex sequence-facts arising from time series.
We choose the model in Figure 5.4 since it both reduces complexity (compared to the first
alternative where two arrays must be processed to find the value for a given time instant)
and redundancy (compared to the second alternative where there is very wide fact for
each value in the time series). These three modelling alternatives are experimentally
evaluated later in Section 5.6.

Another reason is the support for different types of time series for which different
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attributes are needed. We have different tables that reference D_type which also is the
dimension table referenced from the fact table. Consider D_typeEnergy which represents
attributes that are relevant for energy time series only. An alternative design would
be to join all these D_type* tables into one dimension table, but, for every dimension
member, many attribute values would then be NULL.

5.5 Full Data Warehouse Schema

Figure 5.5: The full schema for MIRABEL DW

To summarize the previous descriptions, the full schema for MIRABEL DW is shown
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in Figure 5.5. The schema is general enough to hold all the data that is defined in
the MIRABEL specification [39]. Specifically, the schema captures the roles that were
presented in Section 2.1 as well as additional roles from the Harmonised Model [27].
The schema also includes actors (legal entities) together with “actor configurations”
specifying the set of roles an actor takes. Further, the schema captures flex-offers,
flex-offer assignments, and different kinds of time series as complex multi-dimensional
facts.

The schema can hold flexibility and prescription models of the types unit, multi-unit,
BG, and MBA, which are composed of flex-offers, flex-offer assignments, and time series,
as mentioned in Section 3.6. The following four examples point specific MIRABEL DW
tables used to store each of these models.

Example 5.9 (Representation of the unit models). The instances of the unit
flexibility and prescription models are a flex-offer and a flex-offer assignment, respec-
tively. A single fact in F_flexOffer and multiple facts in F_enProfileInterval represent
these two model instances.

Example 5.10 (Representation of the multi-unit models). The instances of
the multi-unit flexibility and prescription models are a set of flex-offers and a set of
flex-offer assignments, respectively. Multiple facts in F_flexOffer and F_enProfileInterval
represent both these two model instances.

Example 5.11 (Representation of the BG models). The instances of the BG
flexibility and prescription models are a set of time series and flex-offers and
a set of flex-offer assignments, respectively. Multiple records in D_timeseries,
F_timeSeriesInterval, F_flexOffer, and F_enProfileInterval represent these two model in-
stances.

Example 5.12 (Representation of the MBA models). The instances of the
MBA flexibility and prescription models are the pair of a time series and a set of flex-
offer and a set of flex-offer assignments, respectively. A single record in D_timeseries
and multiple records in F_timeSeriesInterval, F_flexOffer, and F_enProfileInterval repre-
sent these two model instances.

An agent hold data (incl., flexibility and prescription models) of its own role as well
as roles it interchanges data with. The following four examples elaborate the types of
data managed by agents in different roles in the MIRABEL use-case.
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Example 5.13 (The data of a prosumer agent). An agent in the prosumer role
manages data that includes its own non-aggregated individual flex-offers and flex-offer
assignments (unit models).

Example 5.14 (The data of an aggregator agent). An agent in the aggregator
role manages data exchanged with prosumers (unit models) and data exchanged with
a BRP (multi-unit models). The data includes both non-aggregated and aggregated
flex-offers and flex-offer assignments.

Example 5.15 (The data of a BRP agent). An agent in the BRP role manages
data exchanged with aggregator agents (multi-unit models), locally produced data (BG
models), and data exchanged with TSO agents (multi-unit models). The data includes
a set of time series (with forecasted or metered values) and a set of aggregated flex-
offers and flex-offer assignments.

Example 5.16 (The data of a TSO agent). An agent in the TSO role manages
data exchanged with BRP agents (multi-unit models) and locally produced data (MBA
models). The data includes a time series (with ∆ energy values) and a sets of aggre-
gated flex-offers and flex-offer assignments.

In summary, the MIRABEL DW schema is generic and can be used by MIRABEL
ICT system agents taking different roles. We now consider and experimentally evaluate
alternative flex-offer and time series modelling strategies.

5.6 Performance Study
In this section, we consider three different MIRABEL DW schema alternatives and
compare them in terms of the performance of typical queries from the MIRABEL use-
case. We now overview the schema alternatives, then present the experimental setup,
and finally present experiments and the results of the experiments involving queries on
either flex-offers, flex-offer assignments, or time series.

5.6.1 The MIRABEL DW schema alternatives
We consider three MIRABEL DW schema alternatives: MDW, Denorm, and Array.

MDW is the (unchanged) schema that was described in Sections 5.2–5.5.
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Denorm is the denormalized variant of MIRABEL DW. In the variant, F_flexOffer and
F_enProfileInterval are joined and so are F_timeSeriesInterval and D_timeSeries. To
make a typical fact table for time series, the “name varchar” attribute is replaced
with the foreign key of the integer type.

Array is an array-based variant of MIRABEL DW. In this variant, F_flexOffer and
F_enProfileInterval are joined and so are F_timeSeriesInterval and D_timeSeries, but
now grouped on all dimension references and with measures aggregated into arrays.

5.6.2 The experimental setup
We experimentally evaluate the schema alternatives using one stimulus query (Q1) and
four history queries (Q2-Q5), as defined in Section 4.3. These involve flex-offers (Q1),
flex-offer assignments (Q2 and Q3), and time series (Q4 and Q5). For the experiments,
we use real life data set with consumption data from 963 customers (the data originates
from the MEREGIO project [41]). This gives rise to 963 (energy consumption) time
series with 32.1 million time series values, and 3,1 million flex-offers. We evaluate the
performance on a server with two Quad Core 1.86GHz Intel Xeon CPUs, 16 GB RAM,
4 SATA 7200RPM disks (with one dedicated to a database and a log). The DBMS is
PostgreSQL 9.1 [42] and has the parameter shared_buffers set to 4GB, temp_buffers
to 128MB, and work_mem to 96MB. All tables are “fully vacuumed” such that their
disk representations only take up the needed space and do not occupy unused space.
Further, the tables are “analysed” such that their statistics are up-to-date. Each query
is executed once in a warm-up round and then the queries are executed in a round-robin
fashion such that each query gets executed five times. We report the average execution
times.

5.6.3 Experiments with flex-offers (Q1)
The first query, Q1, considers the average flexibility in flex-offers, both with respect to
time and amount of energy. For the MDW variant, Q1 is defined as follows:
Q1: SELECT AVG((enProfile_startBeforeTimeIntervalId -

enProfile_startAfterTimeIntervalId) *
(SELECT SUM((en_high - en_low) * intervalDuration)
FROM F_enProfileInterval i
WHERE i.flexOfferId = f.flexOfferId)
)

FROM F_flexOffer f;

The query considers the flexibility with respect to time, i.e., the difference between
latest start time and earliest start time (see Figure 2.3a). We assume that corresponding
time interval IDs (enProfile_startBeforeTimeIntervalId and enProfile_startAfterTimeIntervalId)
are assigned sequentially and thus the difference between the IDs of the time intervals
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Figure 5.6: The results of the performance study

can be used to find the time flexibility. The time flexibility is multiplied with the
SUM of the energy flexibility in each profile interval. The energy flexibility in a profile
interval is found by multiplying the length of the profile interval (intervalDuration) with
the difference between the maximum (en_high) and minimum (en_low) required amount
of energy. This query considers the average of the combined flexibility for all flex-offers.
A high number of the combined flexibility indicates much freedom in the scheduling
(stimuli) while a low number shows that the considered flex-offers are not very flexible.

Results of experiments with Q1 and all three schema variants are shown in Fig-
ure 5.6(Q1). It can be seen that the MDW variant is the fastest, followed by the array
variant (38.3 seconds and 49.1 seconds, respectively). These two query variants have
similar query execution plans, but with arrays there are fewer rows to process. On the
other hand, these rows need to have their arrays “unnested” to produce as many values
as there are rows to consider in the MDW variant. When the denormalized variant is
considered, there are also many rows and these rows are wide. Further, the plan is not
similar to the plans for the other variants as GROUP BY is necessary with this variant.
This makes the denormalized variant the slowest (123.4 seconds).

5.6.4 Experiments with flex-offer assignments (Q2 and Q3)
The second query, Q2, focuses on flex-offer assignments and, therefore, is of interest after
the flex-offer scheduling is completed. The query gives the total amount of scheduled
energy and, for the MDW variant, it is defined as follows:
Q2: SELECT SUM(en_fix)

FROM F_enProfileInterval;
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This is a simple query which, however, must read data from many rows in a realistic
setting (the DBMS we use does not currently support materialized views). Results of
experiments with Q2 and all three schema variants are shown in Figure 5.6 (Q2). It
can be seen that the MDW variant is again the fastest (8.9 seconds) to use. Again, the
array variant is the second fastest (11.1 seconds). With this variant, the arrays must
again be unnested to produce the values that are available in the rows in the MDW
variant. The denormalized variant uses wider rows and is the slowest (16.8 seconds).

The third query, Q3, is more complex, focuses on flex-offer assignments, and therefore
is applied after scheduling has taken place. It builds a time series that, for each time
interval ID, shows the amount of fixed energy. For the MDW variant, Q3 is defined as
follows:
Q3: SELECT timeIntervalId, SUM(en_fix_part)

FROM (SELECT en_fix_part, ROW_NUMBER() OVER (PARTITION BY i.flexOfferId
ORDER BY intervalNr) - 1 + f.enProfile_startFixTimeIntervalId
AS timeIntervalId

FROM (SELECT flexOfferId, intervalNr, en_fix / intervalDuration
AS en_fix_part, generate_series(1, intervalDuration)

FROM F_enProfileInterval
WHERE en_fix IS NOT NULL
) i, F_flexOffer f, D_flexEnergyState s

WHERE i.flexOfferId = f.flexOfferId AND f.stateId = s.stateId
AND s.stateDesc = ’Assigned’

) AS subquery
GROUP BY timeIntervalId
ORDER BY timeIntervalId;

The query computes the IDs of the time intervals which are covered with flex-
offer assignment’s profile intervals (slices). But a profile interval has a duration (in
intervalDuration) which defines how many time intervals the profile interval spans. There-
fore, it is necessary to (evenly) distribute the profile intervals’ energy amounts over one
or more time intervals. To do this, one “part” row is generated for each time interval
a profile interval covers by means of generate_series. This happens in the innermost
SELECT. The result of this is used by the second SELECT which also uses the SQL
window function ROW_NUMBER to enumerate the rows in each partition where a
partition consists of the part rows for a given flex-offer assignment and is ordered by
the interval numbers. Thus, the resulting row number corresponds to the number of
time intervals between the assigned start time for the entire flex-offer assignment and
the part represented by the row (we subtract 1 since ROW_NUMBER counts from
1). When we add enProfile_startFixTimeInterval for the flex-offer assignment, we get the
ID of absolute time interval when the part executes. Finally, the outermost SELECT
aggregates the sums of scheduled (fixed) energy amounts over all parts belonging to a
given time interval.

Results of experiments with Q3 and all three schema variants are shown in Fig-
ure 5.6(Q3). It can be seen that the MDW variant remains the fastest (172.1 seconds)
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while the array variant now is the slowest (237.2 seconds) even though it avoids a join.
On the other hand, the array variant requires a SELECT clause to unnest the array and
an extra use of ROW_NUMBER to recreate the values from intervalNr which only are
implicitly available from the array positions. The denormalized variant (192.2 seconds)
is bit slower than the MDW variant even though it avoids a join.

5.6.5 Experiments with time series (Q4 and Q5)
The fourth query, Q4, finds the balance, i.e., the difference between produced and con-
sumed energy, for a 24 hours period. For the MDW variant, Q4 is defined as follows:
Q4: SELECT date, timeDesc,

SUM(CASE energyFlowDirection WHEN ’Production’ THEN value
ELSE 0 END) AS production,

SUM(CASE energyFlowDirection WHEN ’Consumption’ THEN value
ELSE 0 END) AS consumption

SUM(CASE energyFlowDirection WHEN ’Production’ THEN value
WHEN ’Consumption’ THEN -1 * value
ELSE 0 END) AS balance

FROM F_timeSeriesInterval f, D_timeSeries ts, D_type ty,
D_typeEnergy te, D_timeInterval ti

WHERE f.tid = ts.tid AND ts.typeId = ty.typeId AND te.energyTypeId =
ty.typeId AND ti.timeIntervalId = f.timeIntervalId AND
te.energyOrigin = ’Metered’ AND ti.date = ’2011-06-01’

GROUP BY ti.timeIntervalId
ORDER BY ti.timeIntervalId;

The query Q4 is an example where we use the special attributes that only apply
to some time series. In this example, we consider consumed and produced energy, and
we thus use energyFlowDirection and energyOrigin which only exist for energy time series.
The query sums the production values, consumption values, and the difference between
them for each time interval that belongs to a given date (2011-06-01 in this case).

Results of experiments with Q4 and all three schema variants are shown in Fig-
ure 5.6(Q4). It can be seen that the MDW variant is significantly faster (0.8 seconds)
than the others. The denormalized variant which avoids a join uses an order of magni-
tude more time (7.7 seconds). The array variant is by far the slowest (131.9 seconds)
as there is no index on timeIntervalId which is an array. Thus all rows must be processed
and have their rows unnested to perform a join with D_timeInterval.

Our last query, Q5, finds those time series where the average energy usage grouped
on hours exceeds the average energy usage for the hour with more than 25% at least 10
times. For the MDW variant, Q5 is defined as follows:
Q5: WITH indavguse AS (

SELECT tid, hour, COUNT(value) AS indcnt, AVG(value) AS indavg
FROM F_timeSeriesInterval NATURAL JOIN D_timeInterval
GROUP BY tid, hour

),
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totavguse AS (
SELECT hour, SUM(indcnt * indavg) / SUM(indcnt) AS totavg
FROM indavguse
GROUP BY hour

),
overuse AS (

SELECT tid, t.hour, indavg, totavg,
COUNT(*) OVER (PARTITION BY tid) AS cnt

FROM totavguse t, indavguse i
WHERE t.hour = i.hour AND indavg >= 1.25 * totavg

)
SELECT tid, cnt, hour, indavg, totavg
FROM overuse
WHERE cnt > 10
ORDER BY tid, hour;

The query has Common Table Expressions (CTEs) in the WITH part. In the first
CTE, indavguse, we compute a (temporary) table with an average hourly energy
usage for each time series. The result is used again to compute the second CTE, tot-
avguse, where we find the average energy use per hour among all time series (we could
join F_timeSeriesInterval and D_timeInterval again, but it is faster to reuse the result of
the previously computed CTE). In the third CTE, overuse, we join the results of the
two previous CTEs to find the IDs of time series and the hours from indavguse where
the consumption is 25% higher than the general hourly average consumption found in
totavguse. Further, we use COUNT as a window function to count how many such
hours we find for a given time series. Finally, we select the ID of the time series, the
count of hours with an average energy usage at least 25% higher than the average, and
the consumption in the last SELECT clause.

Results of experiments with Q5 and all three schema variants are shown in Fig-
ure 5.6(Q5). It can be seen that the MDW and denormalized variants perform similarly
(59.1 and 61.3 seconds, respectively). The queries involve the same number of rows and
are identical apart from that the denormalized variant uses a wider table. For the array
variant, the first CTE has to unnest two arrays and the query takes longer time (143.8
seconds).

5.6.6 Summary
To summarize, the MDW variant performs the best for all queries compared to the denor-
malized and array-based variants. Another interesting thing to consider is the disk space
usage. The tables F_flexOffer, F_enProfileInterval, F_timeSeriesInterval, and D_timeSeries
take up 4.1 GB in the MDW variant (not counting indexes). Their alternative repre-
sentations take up 7.0 GB in the denormalized variant and 1.9 GB in the array variant,
respectively. It notable how little space the array variant uses compared to the other
variants due to its fewer number of rows (and thus fewer space-consuming row headers).
Overall, the MDW variant is a good choice for the MIRABEL DW considering both its
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performance and space requirements.

5.7 Related Work
In this section, we review related work on the modelling of energy-related entities,
including actors and time series.

In the energy sector, there is number of standardized data models used to represent
the major objects in an electric utility enterprise [43] as well as to define administra-
tive data internally interchanged between European electricity markets [27, 44]. These
models focus on various aspects of energy trading and physical electricity delivery, and
specify (1) components of the power system at the electrical level, (2) actors and roles
involved in the energy trading, (3) relationships and data exchange between those enti-
ties. These models are used as a basis for the MIRABEL data model [39], which further
enriches them with the concept of flexible consumption and production (flex-offers). All
these models, however, focus on semantic rather than the storage or the management of
energy-related entities. By focusing on the two most important entities in MIRABEL-
time series and flex-offers, this chapter, on the other hand, presents data representation
models (MDW, Denorm, Array) that offer a convenient storage and a good performance
of analytical queries for the instances of flexibility and prescription models defined as
time series and flex-offer entities.

Our proposed MIRABEL DW schema is the first to address with the storage of
flex-offers, but there are previous works which focus the time series warehousing, e.g.
UML-based modelling of time-series in DWs [45], and temporal aggregation of multi-
dimensional data [46], and temporal DWs exploiting research results from the field of
temporal databases [47]. Our modelling of different time-series types has similarities
with Bauer et al’s work [48]. They discuss “locally valid dimensional attributes” whose
existence depends on values of dimensional elements. This is the case, e.g., for our at-
tribute energyType which only exists if the D_type value represents an energy time-series.
The problem of representing all these attributes in a single dimension table (as in a
typical star schema) is that there will be many NULLs in the held data. Bauer et al.
propose to have separate tables with the specific attributes and then create views “on
top” of these with common attributes as well as textual values showing the name of the
relation the data comes from which can be used for hierarchical classification. In con-
trast, we use tables (and not views) for the common attributes of a dimension and then
represent special attributes that only exist for some dimensional values in other tables
that reference the table with the common attributes. This makes it possible to declare
foreign keys to the dimension table with the common attributes and also declare indexes
and constraints on these tables. Bauer et al. also propose to use table inheritance to
represent such cases. This would also be possible in our DBMS [42], but constraints
cannot be enforced on child tables then.

For the MIRABEL DW schema, we considered different representations of profile
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intervals and time series intervals. These can be considered as facts with multi-valued
measures. The latter case also has a many-to-many relationship between the time series
facts and the time interval dimension. Previous work [49] has considered many-to-many
relationships between fact tables and dimension tables. Our denormalized representation
is similar to one of the methods of [49] whereas our other approaches with fact tables
referencing other fact tables and measure values in arrays, respectively, are different.

5.8 Summary and Discussion
In this chapter, we have presented a DW schema for managing the complex MIRABEL-
specific entities, which include actors playing roles, flex-offers, flex-offer assignments,
and different types of time series. The schema has a number of interesting complexities
such as facts about facts and composed non-atomic facts. We have considered different
alternatives for the schema modelling using denormalization and arrays, respectively,
but based on the performance and space usage, the chosen design is favourable.

Flex-offers, flex-offer assignments, and time series are the core building blocks of
the unit, multi-unit, BG, and MBA flexibility and prescription models (see Section 3.6).
Therefore, the schema is generic and can be used for storing instances of these flexibility
and prescription models. Consequently, MIRABEL ICT system agents (actors) in the
prosumer, aggregator, BRP, and TSO roles can use the schema to generate their own
local databases (data warehouses) for the storage of agent-specific flexibility and pre-
scription models and related data. As seen in the case of MIRABEL DW, flexibility and
prescription models are, in fact, complex multi-dimensional structures spanning across
multiple tables in a database (warehouse).

Other similar instances of PrescriptiveCPS may reuse the modelling strategies
and/or schema elements applied for the MIRABEL DW. The actor-role modelling is of a
particular interest, as agents of other instances of PrescriptiveCPS are also expected
to deal with multiple actors, potentially, in several roles. Furthermore, a time series is
a common mean for representing various measurements from real-world. Therefore, the
use of time series is also expected in other similar instances of PrescriptiveCPS. Fi-
nally, the modelling of flex-offers and flex-offer assignments as multi-dimensional objects
where flex-offer and flex-offer assignment pairs are stored as joint non-atomic composed
facts can be reused while designing databases for other instances of PrescriptiveCPS,
also dealing with complex multi-dimensional flexibility and prescription models.
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Flexibility Model Aggregation

In this chapter, we consider PrescriptiveCPS agents in the aggregator role and show
how flexibility models can be aggregated using a lossy reduce operation (see Section 3.3).
Note, lossless reduce variants are straightforward and less interesting. For specificity,
we consider the lossy reduceA operation (used by an aggregator agent, see Section 3.6),
which aggregates a set of unit flexibility models to a single multi-unit flexibility model.
As unit andmulti-unit flexibility models are represented solely by flex-offers, the reduceA

operation essentially maps N flex-offers into M flex-offers such that M ď N . In this
chapter, we present a three-phase flex-offer aggregation technique, which allows control-
ling a trade-off between the loss of stimulus (Requirement 5) and the preservation of
response (Requirement 6). Additionally, we discuss an incremental aggregation tech-
nique, allowing to efficiently accommodate input flex-offer changes without the need to
recompute (re-aggregate) output flex-offers from scratch. Extensive experiments show
that the proposed techniques (1) provide good performance (Requirement 1) while still
satisfying the strict correctness requirement (Requirement 2), and (2) allow improving
flex-offer scheduling (reduceB) result by up to 20 times, compared to the case when
no aggregation is performed. We also discuss the corresponding multi-unit prescription
model disaggregation operation mapA (used by an aggregator agent, see Section 3.6).
We conclude the chapter by reviewing the related work and discussing flexibility model
aggregation in other similar instances of PrescriptiveCPS. The content of this chapter
is based on Publications [3, 4].

6.1 Flexibility Model Aggregation in MIRABEL
As explained in Section 4.1, the planning component of a PrescriptiveCPS agent soft-
ware system includes one or more realizations of the reduce operation (see Section 3.3),
which aggregates a set of (smaller) flexibility models into a single (larger) flexibility
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model. In the general case, the realization of reduce operation is specific to flexibility
models used as input and output, and the required level of stimulus loss (Requirement 5)
and response preservation (Requirement 6).

In the MIRABEL use-case, these are three flexibility model aggregation functions
(realizations), namely reduceA, reduceB , and reduceT used by aggregator, BRP, and
TSO agents, respectively. Here, reduceB and reduceT are lossless aggregation functions
as they simply “fuse” input flexibility models into BG and MBA flexibility models, re-
spectively (less interesting). On the other hand, reduceA is a lossy function, aggregating
the set of unit flexibility models into a single multi-unit flexibility model. As unit and
multi-unit flexibility models are represented solely by flex-offers, the reduceA aggregates
N flex-offers into M flex-offers such that M ď N . In the MIRABEL use-case, reduceA

plays a crucial role as it allows substantially reducing the number of flex-offers that need
to be considered by a BRP agent during the (computationally expensive) scheduling of
flex-offers. In this chapter, consequently, we focus on and propose approaches for the
reduceA operation. We also show that prescription models built according to reduceA

outputs (flexibility models) can be correctly disaggregated with mapA (Requirement 2).
As will be shown later, the aggregation of flex-offers is a non-trivial problem as

there are many possible ways to combine just two flex-offers. To address the problem,
we present two techniques for reduceA – an instant and an incremental. These two
realize the N-to-M lossy aggregation of flex-offers and, based on the provided aggregation
parameters, allows controlling the trade-off between the loss of stimulus (Requirement 5)
and the preservation of response (Requirement 6). The techniques partition the set of
flex-offers into disjoint groups of similar flex-offers. This partitioning is performed in
two steps - grid-based grouping and bin-packing. The grouping of flex-offers ensures that
flex-offers in a group are sufficiently similar (in terms of chosen flexibility attributes).
The bin-packing ensures that the groups themselves conform to the given (aggregate)
criteria. After bin-packing, an (N-to-1) aggregation operator is applied to merge similar
flex-offers into aggregated flex-offers.

We now define the flex-offer aggregation problem and present the instant and incre-
mental aggregation techniques.

6.2 Problem of Flex-offer Aggregation
We now formalize the problem of flex-offer aggregation (and disaggregation). Our for-
malization includes (1) definitions of a flex-offer and a flex-offer assignment, (2) two
measures to quantify the amount of stimuli and responses, and (3) a correctness re-
quirement for the reduceA (aggregation) and mapA (disaggregation) functions.

A flex-offer from MIRABEL can be seen as a multidimensional object capturing
two essential components: (1) a start-time interval and (2) a data profile defined as
a sequence of consecutive slices each defined by (a) its duration (extent in time) and
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(b) the minimum and maximum energy amount bounds. We can formally define a
flex-offer as follows:

Definition 6.1. A flex-offer f is a tuple f “ pT pfq, P pfqq, where T pfq is the
start-time interval and P pfq is the data profile. Here, T pfq “ rtes, tlss, where tes

and tls are the earliest start time and latest start time, respectively. The P pfq
“ sp1q, . . . , spmq, where a slice spiq is a tuple pd, ramin, amaxsq, d ě 0 is a slice-
duration, and ramin, amaxs is a continuous range of energy amount. We use the
term profile duration to denote pdurpfq “

ř

sPPpf q s.d and the terms earliest end
time and latest end time to denote teepfq “ T pfq.tes` pdurpfq and tle “ T pfq.tls`
pdurpfq, respectively.

The corresponding flex-offer assignment (prescription model) for a given flex-offer
(flexibility model) can be defined as follows:

Definition 6.2. A flex-offer assignment fx of a given flex-offer f “ prtes, tlss, s
p1q,

. . . , spmqq is another flex-offer fx “ prts, tss,s
p1q
x ,. . . ,s

pmq
x q such that tes ď ts ď tls

and @i “ 1..m : spiq.d “ s
piq
x .d ^ spiq.amin ď s

piq
x .amin “ s

piq
x .amax ď spiq.amax. We

refer to ts as the start-time of the flex-offer assignment fx, and use seps
piq
x q to denote

an (absolute) end time of a slice spiqx , where seps
piq
x q “ fx.ts `

ř

j“1..i fx.s
pjq
x .d.

Example 6.1 (Flex-offer and flex-offer assignment example). Figure 6.1 de-
picts the example of a flex-offer having a profile with four slices: sp1q, sp2q, sp3q, and
sp4q. Every slice is represented by a bar in the figure. The area of the light-shaded
bar represents the minimum amount value (amin) and the combined area of the light-
and dark-shaded bars represents the maximum amount value (amax). There is an infi-
nite number of possible flex-offer assignments (instances of a flex-offer). One possible
flex-offer assignment is shown as the dotted line in Figure 6.1.

To be able to quantify stimulus and response losses, we need to measure amounts
of stimulus and response before and after aggregation with reduceA. The inputs and
outputs of reduceA are sets of flex-offers (multiple unit models as input and a single
multi-unit model as output), therefore, the measures of stimulus and response for sets
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Figure 6.1: An example of a flex-offer

of flex-offers are needed. However, due to continuous ranges used in a flex-offer, it is
impossible to count the (infinite) number of stimuli and responses represented by even
a single flex-offer. Instead, we can define “indirect” simplified measures allowing to
quantify the total amount of stimulus and response, represented either by a single flex-
offer or a set of flex-offers. To define such measures, we make a further simplification by
assuming that each flex-offer stimulus maps into a distinct response (i.e., the response
function R is injective) and then use a common measure to quantify both stimulus
and response. We use the flex-offer count, countpF q “ |F |, as the simplest measure of
stimulus and/or response, as exemplified below.

Example 6.2 (Flex-offer count as a measure of stimulus and response).
Given a flex-offer set F “ tf1, f2, f3u (a multi-unit flexibility model), the amount of
stimuli and/or responses represented by F is 3 (i.e., countpF q “ 3), each flex-offer
representing 1 unit of stimulus and/or response.

As more advanced measure of stimulus and/or response (among many others), we
define a measure of flexibility, which we first define for a (single) flex-offer and then
generalize it for the set of flex-offers.

Definition 6.3. The flexibility of a (single) flex-offer f is the product of start-time
flexibility and a profile flexibility, i.e., flexpfq “ flexT pfq ¨ flexP pfq. Here, start-
time flexibility, flexT pfq, is the difference between the latest and earliest start time,
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i.e., flexT pfq “ f.tls´ f.tes. Similarly, the profile flexibility, flexP pfq, is the sum
of the products of durations and the amount differences of all slices in the profile,
i.e., flexP pfq=

ř

sPP pfqps.dq ¨ ps.amax ´ s.amin q.

Definition 6.4. The flexibility of a flex-offer set F is the sum of flexibilities of
every individual flex-offer, i.e., flexpF q “

ř

fPF flexpfq.

Example 6.3 (Flexibility as a measure of stimulus and response).
Consider a flex-offer f=pr2, 7s, sp1q, sp2qq where sp1q “ p1, r10, 20sq and
sp2q “ p3, r6, 10sq. The start-time flexibility, flexT pfq, is equal to 7 ´ 2 “ 5.
The profile flexibility, flexP pfq, is equal to 1 ¨ p20 ´ 10q ` 3 ¨ p10 ´ 6q “ 22. Hence,
the flexibility of f is 110. Given two identical flex-offers f1 “ f2 “ f , the flexibility
of tf1, f2u is 220. Note, the flexibility of a corresponding flex-offer assignment and
flex-offer assignment set is always equal to zero, i.e., they are always “inflexible”.

Using the notations above, the reduceA and mapA – the flex-offer aggregation and
flex-offer assignment disaggregation functions from Section 3.6 – are defined as follows:

Definition 6.5. Let reduceA be a so-called lossy flex-offer aggregation function
which takes a set of flex-offers F (many unit flexibility models) and produces a set
of flex-offers A (a single multi-unit flexibility model) such that flexpAq ď flexpF q
(and countpAq ď countpF q). Every fa P A is called an aggregated flex-offer.

Definition 6.6. Let mapA be a so-called flex-offer disaggregation function which
takes a set of flex-offer assignments Ax (a single multi-unit prescription model) and
produces a set of flex-offer assignments Fx (many unit prescription models).
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We term the evaluation of the functions reduceA and mapA as flex-offer aggregation
and disaggregation, respectively. There exist many reduceA and mapA function pairs,
but we are primarily interested in such function pair that allows for the consistent views
of a physical system and prescriptions (Requirement 2). This correctness requirement
for the pair of reduceA and mapA can be formalized as follows:

Definition 6.7. Given A “ reduceApF q and Fx “ mappAxq where @f P F ô

Dfx P FX and @fa P A ô Dfx
a P AX , the energy balance at aggregated and non-

aggregated levels must be ensured, i.e., for all time units T “ 0, 1, 2, ... the following
equality must hold:

T
ÿ

t“0
rs.amin|@s P P pf

x
a q,@f

x
a P AX , sepsq ď ts “

T
ÿ

t“0
rs.amin|@s P P pfxq,@fx P FX , sepsq ď ts .

Due to this correctness requirement, disaggregation is, however, not always possible
for any arbitrary reduceA function. Depending on whether a disaggregation is possible
or not without violating this constraint, we distinguish two types of flex-offer aggrega-
tion: conservative and greedy, respectively.

The greedy aggregation produces aggregated flex-offers which might define more (time
and profile) flexibility compared to the original flex-offers (flexpAq>flexpF q). Obvi-
ously, the corresponding flex-offer assignments (flex-offer instances) might not be dis-
aggregated using mapA without violating the correctness requirement. The correctness
requirement might also be violated due to inconsistencies of flex-offers and flex-offer as-
signments occurring due, e.g., communication delays in PrescriptiveCPS. To disag-
gregate flex-offers in such cases or the case of the greedy reduceT , the solveM operation
is used (see Section 3.3). It performs disaggregation by solving an optimization problem
to resolve inconsistencies between adjacent aggregation levels (to an extent possible).
Greedy reduceT and solveM are out of the scope of this thesis (future work).

The conservative aggregation, on the other hand, produces aggregated flex-offers
which always define less (or equal) flexibility compared to the original flex-offers (flexpAq
ď flexpF q). It is, therefore, possible to disaggregate flex-offer assignments using mapA

without violating the correctness constraint. We now focus exclusively on a conservative
aggregation and present several flex-offer aggregation techniques allowing for a deter-
ministic disaggregation (requiring no optimization problem solving), while satisfying the
correctness requirement.
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6.3 N-to-1 Aggregation Technique
In this section, we first propose a basic N-to-1 flex-offer aggregation algorithm and
explain how to generalize for it a large set of flex-offers. Additionally, we explain how
the disaggregation can be performed while satisfying the correctness requirement.

The aggregation of flex-offers is somewhat similar to an aggregation (addition) of
(overlapping) time series, but it is (substantially) more complicated as there are many
ways to align (shift) flex-offer profiles within their allowed start-time flexibility intervals
before adding values of corresponding flex-offer slices. For three flex-offers, this issue is
demonstrated in the following example:

Example 6.4 (Aggregation of three flex-offers). Consider aggregating three
flex-offers f1, f2, and f3 with start-time flexibility values (tls - tes) equal to five,
three, and four respectively. Thus, we have 60 p5 ¨ 3 ¨ 4q different profile start-time
combinations, each of them realizing a different aggregated flex-offer. Three possible
profile start-time parameter combinations and the resulting aggregated flex-offers are
shown in Figure 6.2(a-c).

To overcome this issue, we can align (“fix in time”) flex-offer profiles before adding
their slices, leading to the following three step procedure of aggregating a set of flex-
offers F into a single aggregated flex-offer fa:

1. For each f P F , we choose a so-called profile shift sf such that f.tes ď sf ď f.tls.
We refer to the choice of profile shift as profile alignment.

2. For fa, set the start-time flexibility interval such that fa.tes “ minfPF psf q and
fa.tls “ fa.tes `minfPF pf.tls ´ sf q.

3. For fa, build a profile P pfaq by summing the corresponding (amin and amax)
amounts for each slice across all profiles, which are specially pre-partitioned (seg-
mented) to make slices adjacent and with equal durations across all profiles.

There are many ways to align profiles (by choosing the constants sf1 , sf2 , . . . ,
sf|F |). Each of these alignments determines where amounts from individual flex-offers
are concentrated within the profile of fa. We focus only on the three most important
alignment options: start-alignment, soft left-alignment, and soft right-alignment. Start-
alignment spreads out amounts throughout the time extent of all individual flex-offers,
making larger amounts available as early as possible. On the contrary, soft left-/right-
alignment builds shorter profiles with amounts concentrated early (left) or late (right)
in the profile. The impact of these alignments is demonstrated below.
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Figure 6.2: The effects of the three profile alignment options

Example 6.5 (Start-, soft left-, and soft right- alignments in MIRABEL).
In MIRABEL, start-alignment is suitable for the near real-time balancing of electric-
ity, where energy has to be available as early as possible. Soft left/right alignment
allows the consumption of anticipated wind production peaks with steep rises
(left-alignment) or falls (right-alignment).

The three alignment options are illustrated in Figure 6.2. Here, the crossed area in
the figure represents the amount of time flexibility that is lost due to aggregation with
different profile alignments. The alignment options are elaborated below:

Start-alignment. We set sf1 , sf2 , . . . , sf|F | so that @f P F : sf “ f.tes. This
ensures that profiles are aligned at their respective earliest start time values (see f1 and
f2 in Figure 6.2(a)).

Soft left-alignment. We set sf1 , sf2 ,..., sf|F | so that @f P F : sf “ minpf.tls
´ mingPF pg.tls ´ g.tesq,maxgPF pg.tesqq. Figure 6.2(b) illustrates the effect of soft left-
alignment. Here, f1 and f2 are left-aligned, meaning that their profile start times are
equal. However, the profile of f3 cannot be (strictly) left-aligned with respect to the
profiles of f1 and f2 as that would shorten the remaining time flexibility range of the
aggregate. f3 lacks one time unit (∆ “ 1) for its profile to (strictly) left-align.

Soft right-alignment. We set sf1 , sf2 , ..., sf|F | so that @f P F : sf “ minpf.tls ´
mingPF pg.tls ´ g.tesq,maxgPF pg.tes ` pdurpgqq ´ pdurpfq. Figure 6.2(c) illustrates the
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Figure 6.3: The effects of the profile segmentation and slice addition

effect of soft right-alignment. Here, f1 and f2 are right-aligned, meaning that their
profiles align at the right hand side (i.e., have equal tes ` pdur values). However, the
profile of f3 cannot be (strictly) right-aligned with respect to the profiles of f1 and f2
as this would shorten the remaining time flexibility range of the aggregate.

After the alignment (step 1), the time flexibility interval is computed for the ag-
gregated flex-offer (step 2). As illustrated in Figure 6.2(a-c), for all three alignment
options, the time flexibility of fa is equal to that of the flex-offer with the smallest time
flexibility in the set F , i.e., fa.tls´fa.tes “ minfPF pf.tls´f.tesq. However, other types
of alignment, e.g., strict left or strict right where all profiles are forced to align at the
left or right hand side, might reduce the time flexibility of the aggregated flex-offer.

Finally, the minimum and maximum energy amounts of adjacent slices in the aligned
profiles are summed to construct the profile of the aggregated flex-offer (step 3). If adja-
cent slices at any time unit have different durations, those slices are partitioned to unify
their durations. During the partitioning, minimum and maximum energy amounts are
distributed proportionally to the duration of each divided slice. This step is called seg-
mentation. The segmentation step reduces the profile flexibility, flexPpf q, as it imposes
more restrictions on the energy amount for each divided segment.

Example 6.6 (Flex-offer profile segmentation). Consider the slice sp1q of f1
in Figure 6.3, which illustrates the segmentation for two flex-offers. Originally, the
minimum energy amount is 3kWh and the maximum energy amount is 4kWh over
two time units. Thus, we can supply one amount unit in the first time unit, and three
units in the second time unit. However, this supply is not acceptable after dividing
the slice into two equal-sized slices sp1q and sp2q with minimum and maximum amount
of 1.5kWh and 2kWh, respectively.

After the segmentation, the addition of profiles is performed similarly to an addition
of time series. During the addition, amin and amax energy amounts are added for every
corresponded profile slice, as shown in Figure 6.3.
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It is always possible to disaggregate flex-offer assignments of a flex-offer produced
by this aggregation approach without violating the correctness requirement (see Sec-
tion 6.2). Consider the following disaggregation procedure. For a given flex-offer as-
signment fx

a of an aggregated flex-offer fa, we produce the set of flex-offer assignments
tfx

1 , f
x
2 , ..., f

x
|F |u such that @i “ 1..|F | : fx

i .ts “ sfi
` pfx

a .ts ´ fa.tesq. It is always possi-
ble to fix the start time of every fx

i , i “ 1..|F | because the time flexibility range of the
aggregate fa is computed conservatively, and the aligned profiles of f P F can always be
shifted within this range (see Figure 6.2). Also, the energy amount values from every
slice sx

a P P pf
x
a q are distributed proportionally to the respective slices of fx

i , i “ 1..|F |
so that minimum and maximum amount constraints are respected for every f P F .
This can always be achieved, and consequently, for any flex-offer assignment fa, it is
always possible to build flex-offer assignments for all flex-offers in F . The correctness
requirement is satisfied, as the newly built flex-offer assignments will collectively define
total amounts which, at every time interval, are equal to the corresponding amounts of
the initial flex-offer assignment fa

x .
To summarize, the N-to-1 aggregation approach can be used to aggregate flex-offers

in F . However, the time (and total) flexibility loss depends on a flex-offer with the
smallest time flexibility in the set F . Due to this issue, much of the flexibility will be
lost when aggregating flex-offers with distinct time flexibilities. To address this, we will
now propose an N-to-M aggregation approach.

6.4 N-to-M Aggregation Technique
As discussed in Section 6.3, aggregating “non-similar” flex-offers results in unnecessary
loss of time flexibility. This loss can be avoided, and the profile alignments can be better
enforced, by carefully grouping flex-offers and thus ensuring that their time flexibility
intervals overlap substantially. We now describe a so-called N -to-M approach to aggre-
gate a set of flex-offers, F , to a set of aggregated flex-offers, A, while satisfying the strict
correctness requirement (see Section 6.2) and allowing to control the loss of stimulus
and response (Requirements 5–6). The algorithm consists of three phases: grouping,
bin-packing, and N-to-1 aggregation:

Grouping phase. We partition the input set F into disjoint groups of similar
flex-offers. Two flex-offers are grouped together if the values of user-specified grouping
attributes differ by no more than user-specified tolerances. The tolerances and the
associated grouping attributes are called grouping parameters.

Example 6.7 (Grouping parameters). Suppose that a user chooses the earliest
start-time (tes) as a grouping attribute and specifies an earliest start-time tolerance
(EST) equals to 2 time units. Then, during the grouping phase the flex-offers f1, f2, ...,
and f5, shown in Figure 6.4, are assembled in two groups g1 and g2. Within g1 and
g2 flex-offers have earliest start-time values differing by no more than EST “ 2.
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Figure 6.4: The phases of flex-offer aggregation using the N-to-M aggregation approach

Note, different grouping attributes can be chosen, e.g., earliest start-time (tes), latest
start-time (tls), time flexibility (flexT pfq), and/or profile flexibility (flexP pfq).

As shown later, the choice of grouping parameters yields a particular flex-offer count
reduction (compression) and stimulus/response loss.

Bin-packing phase. This phase enforces a so-called aggregate constraint, which
is satisfied only if the value of a certain user-specified flex-offer attribute, e.g., total
maximum amount, is within given bounds. Each group g produced in the grouping
phase is either passed to the next phase (if g satisfies the constraint already) or further
partitioned into the minimum number of bins (groups) such that the constraint wmin ď

wpbq ď wmax is satisfied by each bin b. Here, wpbq is a weight function, e.g., wpbq “ |b|,
and wmax and wmin are the upper and lower bounds. We refer to wmin, wmax, and w
as bin-packing parameters. Such bin-packing is effective when aggregating many similar
(or equal) flex-offers, as demonstrated in the example below:

Example 6.8 (Aggregate constraint over a set of similar flex-offers).
Consider many similar (or equal) flex-offers. These cannot be grouped into disjoint
groups in the grouping phase and might result into aggregated flex-offers that are
“too-large” in terms of energy amount and thus violate the rules of the power grid,
BRP, and the energy market, or, simply, lose too much of stimulus and response.
By enforcing the aggregate constraint in the bin-packing phase (using bin-packing
parameters), “proper” groups are built, resulting into “proper” aggregated flex-offers,
e.g., flex-offers with bounded total energy amounts or built from a bounded number of
non-aggregated flex-offers.

Note that it may be impossible to satisfy a user-specified aggregate constraint for
certain groups.
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Example 6.9 (Aggregate constraint being too tight). Consider a group with a
single flex-offer, while we impose a lower bound of two flex-offers in all groups. Such
group is discarded from the output (see g22 in Figure 6.4), and, depending on the
use-case, respective flex-offers are either: (1) excluded from the N-to-M aggregation
output, or (2) aggregated with another instance of the N-to-M aggregation, but with
less constraining grouping or bin-packing parameters.

N-to-1 Aggregation phase. We assemble the output set A by applying N-to-
1 aggregation (see Section 6.3) for each resulting group g. The alignment option is
specified as an aggregation parameter. Every aggregated flex-offer satisfies the aggregate
constraint enforced in the bin-packing phase.

The complete N-to-M aggregation process is visualized in Figure 6.4. Here, given the
initial flex-offer set tf1, f2, ..., f5u and grouping, bin-packing, and aggregation parame-
ters, two aggregated flex-offers, fa1 and fa2, are produced. The grouping parameters
are exemplified in Example 6.7. The bin-packing parameters require that the number of
flex-offers in resulting groups is 2, i.e., wmin “ wmax “ 2, wpgq “ |g|. In the aggregation
phase, the start-aligned option is used. In the MIRABEL use-case, the aggregator agent
will use meaningful and pre-defined reduceA parameter settings, e.g., short/long profiles
or amount as early as possible.

6.5 Incremental Aggregation Technique
In the MIRABEL use-case, flex-offers are generated frequently (for every intent to use a
flexible appliance), and an aggregator agent has to handle all of them efficiently to main-
tain flexibility model up-to-dateness and inter-level consistency (Requirements 1–2). In
this section, we present an incremental version of the N-to-M aggregation approach,
allowing to achieve low latency and high throughput while repeatedly aggregating N
flex-offers to M aggregated flex-offers.

Consider two pools (sets) of flex-offers, F and A, that are maintained continuously
over time such that A “ reduceApF q. The pool F is updated using a sequence of
incoming updates: u1, u2,...,uk. Each update ui is of the form pf, ciq, where f is a
flex-offer and ci P t`,´u indicates insertion (‘`’) or deletion (‘´’) of f to/from F . Our
proposed incremental aggregation approach outputs a sequence of updates of aggregated
flex-offers in A resulting after applying u1, u2,...,uk to F . The approach has four phases:
grouping, optimization, bin-packing, and aggregation.

Grouping phase. We map each flex-offer into a d-dimensional point. This point
belongs to a cell in a d-dimensional uniform grid. Users specify the extent of each cell in
each dimension using tolerances T1, T2, ..., Td which are defined as the part of grouping
parameters (see Section 6.4). Every cell is identified by its coordinates in the grid. We
only keep track of populated cells, using an in-memory hash table, denoted as the group
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hash. This table stores key-value pairs, where the key is the cell coordinates and the
value is the set of flex-offers from F mapped to this cell. We combine adjacent populated
cells into a group. The group can be either created, deleted, or modified. Group changes
are stored in a list, denoted as the group changes list. Figure 6.5 visualizes the effect
of adding a flex-offer f1. First, f1 is mapped to a 2-dimensional point which lies in
the grid cell c2. The coordinates of c2 are used to locate a group in the group hash.
The found group is updated by inserting f1 into a flex-offer list associated to the group.
Finally, a change record indicating that the group was modified is inserted into the group
changes list. In the case when a group is not found in the group hash, a new group
with a unique id and a single populated cell c2 is created. Also, if the group changes list
already contains a change record for a particular group, the record is updated to reflect
the combination of the changes.

Optimization phase. This phase begins the “delta aggregation” and is only ex-
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ecuted when A updates are requested, i.e., either (1) periodically, (2) after a certain
number of updates, or (3) when the content of up-to-date A is requested. During this
phase, we consolidate the group changes list. For each update of a group g in the list,
we identify its adjacent groups ga

1 , ga
2 , . . . by probing the group-hash. Then, for each

adjacent group ga
i , a minimum bounding rectangle (MBR) is computed over all points,

which contains flex-offers from the groups g and ga
i . If the extent of the MBR in all

dimensions is within the user-specified tolerances, we combine the groups g and ga
i (see

merge in Figure 6.6). Otherwise, if the MBR of g in any dimension is larger than the
size of a grid cell, we perform a group split (depicted in Figure 6.6). Any over-sized
group is partitioned into groups of a single grid cell, and, for every individual group,
an MBR is computed. Then, the two groups with the closest MBRs are merged until
the grouping constraint is violated. Then, g is substituted the with newly built groups.
Groups changes incurred during merging and splitting are added to the group change
list.

Bin-packing phase. We maintain a hash table, denoted the bin hash, which maps
each group (produced in the grouping phase) to its bins (as described in Section 6.4). In
this phase, we propagate updates from the group change list to bins. We first compare
existing bins with an updated group to compute the deltas to obtain added and deleted
flex-offers, ∆added and ∆delete, respectively. Then, we discard from the bins the flex-
offers that are in ∆delete. Groups with the total weight less than wmin are deleted and
flex-offers from these groups as well as from ∆added are included into other existing bins
using the first fit decreasing strategy [50]. New bins are created, if needed. Figure 6.7
shows how the bins of the group g7 are updated when lower and upper bounds wmin

and wmax are pre-set. Finally, all bins changes are pipelined to the aggregation phase.
Flex-offers that did not fit any bin (due to their weight being lower than wmin or higher
than wmax) are stored in a separate list.
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Aggregation phase. We maintain a hash table, denoted as the aggregate hash,
which maps each individual bin to an aggregated flex-offer. Each aggregated flex-offer
has references to the original flex-offers. Thus, for every bin change, added and deleted
non-aggregated flex-offers (see ∆add and ∆delete in Figure 6.8) are found and used to
incrementally update an aggregate flex-offer. If there are no deletes, N-to-1 aggregation
is incrementally applied for every added flex-offer. Otherwise, an aggregated flex-offer
is recomputed from scratch by applying N-to-1 aggregation on all flex-offers in a bin.
Finally, all changed aggregated flex-offers together with a change type (added, removed,
modified) are provided as output.

6.6 Performance Study
In this section, we study the performance of our proposed incremental N-to-M aggrega-
tion approach (reduceA). For the study, we develop two implementations: stand-alone
and integrated. The stand-alone implementation performs aggregation of a given set
of flex-offers, as elaborated in Sections 6.2–6.5, and is independent of other Prescrip-
tiveCPS agent components. Additionally, the integrated implementation offers an
integrated scheduling of flex-offers (reduceB) and thus allows optimizing the BRP’s
costs by producing (good enough) flex-offer assignments after they are aggregated with
our N-to-M approach. The details and the results of the experiments with these two
implementations are elaborated in the two subsequent sections.

6.6.1 Stand-alone aggregation study
We now present the experimental evaluation of the full incremental N-to-M aggregation
approach, when used as the stand-alone implementation. As there are no other solutions
for flex-offer aggregation and disaggregation, we propose two rival implementations:
Hierarchical Aggregation and SimGB. In Hierarchical Aggregation, we use agglomerative
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Figure 6.9: The results of the scalability and incremental behaviour evaluation

hierarchical clustering for the grouping phase. First, the approach assigns each flex-offer
to individual clusters. Then, while no grouping constraints are violated, it incrementally
merges the two closest clusters. The distance between two clusters is calculated based
on the values of flex-offer attributes specified in grouping parameters. For SimGB, we
apply the similarity group-by operator [51] for one grouping parameter at a time, thus
partitioning the input into valid groups of similar flex-offers.

Experimental setup

For the evaluation, we use a synthetic flex-offer dataset from the MIRABEL project. The
dataset contains one million energy consumption flex-offers and the time is discretized
at every 15 min. The earliest start time (tes) is distributed uniformly in the range
r0, 23228s. The number of slices and the time flexibility values (tls´ tes) follow the nor-
mal distributions N p8, 4q and N p20, 10q in the ranges r10, 30s and r4, 12s, respectively;
the slice duration is fixed to 1 time unit for all flex-offers, thus profiles are from 2.5 to 7.5
hours long. Experiments were run on a PC with Quad Core Intel R©Xeon R©E5320 CPU,
16GB RAM, OpenSUSE 11.4 (x86_64), and Java 1.6. Unless otherwise mentioned, the
default values of the experiment parameters are:

• The number of flex-offers is 500k.

• EST “ 0 (Earliest Start Time Tolerance) and TFT “ 0 (Time Flexibility Tol-
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erance) are used as the grouping parameters. They apply on the Earliest Start
Time (tes) and Time Flexibility (tls ´ tes) flex-offer attributes, respectively.

• The aggregate constraint is unset (bin-packing is disabled). We also perform
experiments with bin-packing enabled (explicitly stated).

Results and discussion

Results of different experiment categories are presented below.
Scalability. For evaluating flex-offer count reduction (compression) performance

and scalability, the number of flex-offers is gradually increased from 50k to 1000k.
Aggregation is performed using two different EST and TFT parameter values: EST
equal to 0 or 250, and TFT equal to 0 or 6. Disaggregation is executed with ran-
domly generated flex-offer assignments of aggregated flex-offers. The results are shown
in Figure 6.9(a-d). Figure 6.9(a-b) shows that different aggregation parameter values
lead to different flex-offer count reduction (compression) factors and aggregation times.
Disaggregation is approx. 2 times faster than aggregation (see Figure 6.9(c)) regardless
of the flex-offer count and grouping parameter values. Most of the time is spent in the
bin-packing (if enabled) and N-to-1 aggregation phases (the 2 left bars in Figure 6.9(d)).
Considering the overhead associated with incremental behaviour, the amount of mem-
ory used by the approach is relatively small compared to the footprint of the original
and aggregated flex-offers. Memory usage increases when bin-packing is enabled.

Incremental Behaviour. When evaluating incremental aggregation performance,
we first aggregate 500k flex-offers. Then, for different k values ranging from 500 to 256k,
we insert k new flex-offers and remove k randomly selected flex-offers. The total number
of flex-offers stays at 500k. For every value of k, we execute incremental aggregation. As
seen from Figure 6.9(e), the updates can be processed efficiently, so our approach offers
substantial time savings compared to the case when all 500k flex-offers are aggregated
from scratch (the horizontal line in the figure). We then compare the total time to
process flex-offers with our incremental approach to the other two (inherently non-
incremental) approaches - Hierarchical Aggregation and SimGB. As seen in Figure 6.9(f),
our incremental approach is competitive to SimGB in terms of scalability. The overhead
associated with the change tracking in our approach is not significant in the overall
aggregation time. Additionally, the hierarchical clustering-based approach (Hier. Agg.)
incurs very high processing time even for small datasets (due to a large amount of
distance computations) and is thus not scalable enough for this aggregation problem.

Grouping Parameters Effect. As seen in Figure 6.10(a), the EST significantly
affects the flex-offer count reduction (compression) factor. For this dataset, increasing
EST by a factor of two leads to a flex-offer reduction by approximately the same factor.
However, the use of high EST values results in aggregated flex-offer profiles with more
slices. Aggregating these requires more time (see “aggregation time” in Figure 6.10(a)).
The TFT parameter has a significant impact on the flexibility loss (see “flexibility
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Figure 6.10: The results of the grouping, optimization, and bin-packing evaluation

loss” in Figure 6.10(b)). Higher values of TFT incur higher flexibility losses. When
it is set to 0, aggregation incurs no flexibility loss, but results in a larger amount of
aggregated flex-offers. When the number of distinct time flexibility values in a flex-offer
dataset is low (as in our case), the best compression with no flexibility losses can be
achieved when TFT “ 0 and the other grouping parameters are unset (or set to high
values). However, due to the long durations of profiles and high total amount values,
the produced aggregated flex-offer might violate the aggregate constraint.

Optimization and Bin-packing. We now study the optimization and bin-packing
phases. As seen in Figure 6.10(c-d), the optimization phase is relatively cheap (Fig-
ure 6.10(d)), and it substantially contributes to the aggregated flex-offer count reduction
(Figure 6.10(c)). For bin-packing evaluation, the aggregate constraint was set so that
the time flexibility of an aggregate is always at least 8 (wmin “ 8, equiv. to 2 hours). By
enabling this constraint, we investigate the overhead associated to bin-packing and its
effect on the flexibility loss. As seen in Figure 6.10(e), by bounding the time flexibility
for every aggregate, the overall flexibility loss can be limited. However, bin-packing
introduces a substantial overhead that depends on the number of flex-offers in groups
after the optimization phase (see Figure 6.10(f)). When this number is small (EST “ 0,
TFT “ 6), the overhead of bin-packing is insignificant. However, when groups are large
(EST “ 250, TFT “ 6), bin-packing overhead becomes very significant.

In summary, we show that our incremental aggregation approach scales linearly in
the number of flex-offer inserts. The overhead associated with incremental behaviour is
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insignificant. Our approach performs aggregation incrementally just as fast as efficient
non-incremental grouping approaches (SimGB). The flex-offer count reduction and flex-
ibility loss can be controlled using the grouping parameters. The count reduction can be
further increased efficiently by group optimization. Disaggregation is approx. 2 times
faster than aggregation.

6.6.2 Integrated aggregation study
We now present the experimental evaluation of the integrated implementation, where
the incremental N-to-M aggregation approach is coupled with flex-offer scheduling for
the aim of immediate energy balancing after flex-offers are aggregated. In the MIRABEL
use-case, such joint aggregation and scheduling workflow is pursued by aggregator and
BRP agents, respectively, as elaborated in Chapter 2, and corresponds to applying
reduceA and reduceB operations, elaborated in Section 3.6.

The use-case scenario

For the experiment, we assume the following typical MIRABEL scenario: on the day-
ahead market, the BRP buys a certain amount of energy for all 24 hours of the following
day and thus commits itself to balance the acquired production with the respective
consumption at every hour. If, for a particular hour, the energy bought by the BRP
does not match the consumed one, the BRP has to pay a penalty that is calculated
based on the amount of imbalance energy and its price. Therefore, one hour before
the energy delivery day starts, the BRP agent utilizes aggregated flex-offers (collected
from an aggregator agent) to balance energy demand and supply for the subsequent
24 hours with the objective to minimize the total imbalances and thus to maximize its
profit. In our experimental setting, we assume that the BRP agent collects flex-offers
of consumption only and is isolated from a TSO agent, i.e., there is no exchange of
flex-offers and flex-offer assignments with a TSO agent. The maximum scheduling time
is fixed to 10 min, leaving at least 50 min for propagation of flex-offer assignments back
to prosumer agents (incl., time for disaggregation and communication of all flex-offer
assignments).

Experimental setup

We use the implementation presented in Section 6.6.1 and integrate into it three existing
flex-offer scheduling algorithms [52]: evolutionary (EA), local optimization (LO), and
random search (RS). The scheduling algorithm was executed ten times in order to ob-
tain more reliable estimate. The maximum scheduling time is 10 min, but the algorithm
stops earlier if its best result has not been improved for one minute. The scheduling
was performed with and without the prior aggregation of flex-offers. When aggregation
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was used, three tolerances were used as grouping parameters: earliest start time toler-
ance EST , time flexibility tolerance, TFT , and profile duration tolerance PDT . These
tolerances were set to two extreme values, 0 and 8 (no bound is set), and to several
intermediate values. For the experiment, we use the same machine and configuration,
as presented in Section 6.6.1. The properties of the used flex-offer dataset are as follows:

• The dataset contains 100k flex-offers (a subset of the dataset from Section 6.6.1).

• Flex-offer attributes in a dataset follow these distributions and have the following
bounds: tes „ Up0, 96q, 1 ď tes ď 92; flexT pfq „ N p8, 4q, 4 ď flexT pfq ď 12;
and pdurpfq „ N p10, 10q, 1 ď pdurpfq ď 20.

• Profile slice durations are fixed to 1 time unit (15 min), i.e., @s P P pfq : s.d “ 1.

In other words, flex-offers start between 0:00 and 23:00, their start time flexibility
varies from 1 up to 3 hours, and their profile durations vary from 15 min to 5 hours.
We assume that the BRP buys an amount of energy equal to that defined by all 100k
flex-offers; this energy is distributed following the typical daily energy usage pattern
(more energy used in a day time, less at night). Additionally, we use real imbalance and
retail energy prices from the Slovenian electricity market.

Results and discussion

Figure 6.11 shows the average imbalance after multiple runs of scheduling were per-
formed with all of our chosen combinations of the aggregation parameters, in addition
to, with no aggregation performed (see the marks at 100k flex-offers). As we can see,
the flex-offer count has almost no direct influence on the scheduling result. Moreover,
the RS performs worse compared to the LO and the EA. The evolution principles of the
EA bring an advantage when more than 40 aggregated flex-offers need to be scheduled.
When there is no aggregation, the LO does not find a single solution in the given amount
of time, while the EA computes only the initial random population, achieving the same
results as the RS. This means that some aggregation is needed to produce good results.

The remaining imbalance in the non-aggregated case is compared to the best found
imbalance by the EA in Figure 6.12. The combination of aggregation and scheduling
successfully minimizes the cost for the BRP (and consequently the remaining imbalance),
leaving some imbalance only in the beginning and at the end of the 24-hour interval.
More specifically, if the flex-offers are favourably aggregated, the remaining imbalance
equals only 5% of the remaining imbalance in the non-aggregated case.

To study the effect of aggregation on the scheduling results, we need to take a closer
look at the aggregation parameters. Figure 6.13 presents the individual aggregation
parameter impact on the aggregated flex-offer count and the average scheduling results
found by the EA. As we can see, aggregation parameters EST , TFT , and PDT con-
tribute similarly to flex-offer count reduction, but they have a different impact on the
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Figure 6.13: Aggregation parameters impact on flex-offer count (left column) and average scheduling
result by the EA (right column)
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quality of results. Specifically, keeping the value of TFT as low as possible almost al-
ways guarantees better scheduling results compared to higher TFT values. This means
that in order to obtain better results, aggregation should preserve as much time flex-
ibility (flexT ) as possible, which is exactly what low TFT values achieve. The EST
parameter has a different impact depending on whether TFT “ 0 or TFT “ 8. When
TFT “ 8, then long aggregated flex-offer (obtained with high EST values) normally
result in worse scheduling results comparing to short aggregated flex-offers (obtained
with low EST values). However, when TFT “ 0, the scheduling result can be improved
by lowering EST value until the increased aggregated flex-offer count starts to domi-
nate and thus negatively influence scheduling. For example, the overall best scheduling
results were achieved with the EA when TFT “ 0 and EST “ 7 or 11. Finding the
best EST value is another (meta-) optimization problem. The third parameter PDT
has little impact on the scheduling result. While it decreases the aggregated flex-offer
count, this does not contribute achieving better scheduling results.

In summary, the aggregation parameters TFT and EST are the most significant for
scheduling. When tuned and set correctly, an aggregation allows improving scheduling
results by up to 20 times, compared to the case when no aggregation is performed.

6.7 Related Work
The research related to the flex-offer aggregation problem fall in several categories.

Clustering. Many clustering algorithms have been proposed, including density-
based (e.g., BIRCH [53]), centroid-based (e.g., K-Means [54]), hierarchical clustering
(e.g., SLINK [55]), and incremental algorithms such as incremental K-means [56] and
incremental BIRCH [57]. In comparison to our approach, clustering solves only the
grouping part of the problem, which is a lot simpler than the whole problem. For the
grouping alone, the closest work is incremental grid-based clustering [58–60], where we,
in comparison, improve the clusters across the grid boundaries and limit the number of
items per each cluster.

Similarity Group By. SimDB [61] groups tuples in a database based on the simi-
larity between tuple values, and is implemented as a DBMS operator in [51]. However,
SimDB again only solves the grouping part of the problem, and is (unlike our approach)
not incremental, which is essential for the low-latency high-performance processing of
flexibility models (Requirements 1–2).

Complex objects. Complex objects with multidimensional data exist in many
real-world applications [62] and can be represented with multidimensional data mod-
els [63]. Several research efforts (e.g., [64] and [65]) have been proposed to aggregate
complex objects. However, these efforts do not consider the specific challenges related
to aggregating flex-offers.

Temporal Aggregation. Several papers have addressed aggregation for tempo-
ral and spatio-temporal data including: instantaneous temporal aggregation [66], cu-
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mulative temporal aggregation [67–69], histogram-based aggregation [70] and multi-
dimensional temporal aggregation [71]. These techniques differ in the way how a time
line is partitioned into time intervals and how an aggregation group is associated with
each time instant. The efficient computation of these time intervals poses a great chal-
lenge and therefore various techniques that allow computing them efficiently are pro-
posed [72–74]. Unfortunately, these techniques only deal with simple data items without
flexibilities, making them unsuitable for aggregation of flex-offers.

6.8 Summary and Discussion

We focused on the lossy reduceA operation, which aggregates set of flex-offers (multi-
ple unit flexibility models) into a set of aggregated flex-offers (a multi-unit flexibility
model), and it is used by an aggregator agent in the MIRABEL use-case. We formally
defined relevant concepts, including measures for stimuli and responses, and provided a
novel and efficient grid-based reduceA approach while considering the grouping of flex-
offers, alternatives for computing aggregates, the disaggregation (mapA) process, and
the correctness requirement associated to these. The incremental variant of the aggrega-
tion approach was presented. It allows achieving low latency and high throughput when
flex-offers are aggregated repeatedly. Extensive experiments with a stand-alone reduceA

implementation and data from the MIRABEL project showed that the approach pro-
vided reasonable performance and is suitable for the use in the MIRABEL CPS setting.
Experiments based on the MIRABEL use-case and while using the prototype with inte-
grated aggregation and scheduling (reduceA and reduceB) showed that the aggregation
allows improving scheduling result up to 20 times (leaving up to 5 % of the imbalance of
the non-aggregated case) when scheduling time is limited and aggregation parameters
are set correctly. Here, TFT and EST are two most significant aggregation parame-
ters, allowing to group flex-offers with similar starting times and time flexibilities and
resulting into aggregated flex-offers with much time flexibility preserved.

Other similar instances of PrescriptiveCPS may also use similar lossy flexibil-
ity model aggregation approaches, during which flexibility models (e.g., unit model)
are firstly grouped based on their similarity, then additionally (re-)grouped to satisfy
some aggregate constraint applicable to each group (or an aggregate), and finally, for
each group, merged into the components of some “larger” flexibility model (e.g., multi-
unit model). Aggregation techniques presented in this chapter may support only the
grouping, re-grouping (bin-packing), but not the merging phase of the aggregation. For
the merging phase, additional merging (N-to-1 aggregation) functions must be specified
for the specific types of flexibility models used as inputs and outputs of reduce. An
incremental aggregation should be considered (1) to increase aggregation performance
and/or (2) to minimize communication between an aggregator agent and an adjacent
agent consuming output from reduce.
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Flexibility Model Forecasting

In this chapter, we consider PrescriptiveCPS agents in the forecasting role and focus
on the build operation allowing to build flexibility models based on context information
and/or historical measurements collected from other agents or external sources (see Sec-
tion 3.5). The chapter is split into two parts. The first part (Section 7.1) elaborates
on how flexibility models with invariant responses (see Section 3.2) defined as time se-
ries could be forecasted using traditional domain-independent forecasting methods (e.g.,
regression or exponential smoothing) inside a DBMS – used as part of the agent’s soft-
ware system (Chapter 4). The second part (Section 7.2) presents domain-dependent
techniques for converting (augmenting) forecasted invariant flexibility models into vari-
ant flexibility models with lots of stimuli and responses. In both parts, we use the
MIRABEL use-case example to demonstrate the proposed concepts.

7.1 Invariant Flexibility Model Forecasting in DBMS
In this section, we consider the design of a forecasting-capable DBMS used as part of the
agent’s software system (Chapter 4) and show how a standard DBMS technology can
be extended to support the forecasting of traditional time series with one time and one
or multiple measurement attributes. As demonstrated in Section 3.6, such time series
is a special type of a flexibility model with an invariant response (e.g., tscons`prod) and
may be used as a common building element of various more complex flexibility models
(e.g., the BG flexibility model). Our proposed DBMS design is based on the traditional
model-based time series forecasting process which, when integrated into a DBMS, allows
for additional optimizations and advanced DBMS functionalities that improve the effi-
ciency, consistency, and transparency of the overall forecasting process. The proposed
DBMS extensions are generic and can support invariant flexibility model forecasting for
the MIRABEL’s as well as in other instances of PrescriptiveCPS (Requirement 7).

101
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We first discuss the MIRABEL’s use-case of forecasting, summarize the requirements
entailed by this use-case, and shortly discuss related work for each of these requirements
(Section 7.1.2). We then present a general architecture of a forecasting DBMS allowing
to address the defined requirements and explain how such forecasting DBMS can be
used in the MIRABEL use-case to forecast energy consumption (Section 7.1.3). Finally,
we give a brief overview over remaining research topics and challenges in Section 7.1.5.
The content of this section is based on Publication [5].

7.1.1 Built-in forecasting in MIRABEL
In the MIRABEL use-case, a BRP agent takes the forecasting role, in which it uses the
buildB operation to forecast inflexible consumption and production loads in the form
of time series (tscons`prod). For forecasting, it uses historical energy consumption and
production as well as weather measurements collected from external data sources (e.g.,
DSO, meteorological stations). Accurate and timely forecasts are needed by the BRP
agent to “complete” instances of the BG flexibility model used for balancing demand
and supply and thus ensuring the stability and energy efficiency within a balance group
(see Section 3.6). To realize the buildB operation and to meet the requirements for
historical measurements storage (Requirement 8), measurement-based forecasting (Re-
quirement 7), efficiency (Requirement 1), and correctness (Requirement 2), we propose
the use of in-DBMS forecasting of time series.

Forecasting time series (tscons`prod) in MIRABEL can be seen as an instance of the
traditional model-based time series forecasting process (see Figure 7.1) that consists of
three main phases – model creation (identification and estimation), model usage (fore-
casting), and model maintenance (evaluation and adaption). First, the model creation
phase involves selecting and building a stochastic model that captures the dependency
of future on past data. This is an expensive process as parameter estimation of many
sophisticated models involves numerical optimization methods that iterate several times
over the base data. However, once a model is created and parameters are estimated,
it can cheaply be used over and over again to forecast future values of the time series
(model usage). The model maintenance phase evaluates new actual data of the time
series and triggers possible adaption of the forecast model. This is computationally
expensive as well, as most parameters cannot be maintained incrementally and thus,
again parameter estimation is required.

The tight coupling of the described forecasting process within a DBMS (1) ensures
consistency between data and models, (2) increases efficiency by reducing data transfer
and exploiting database related optimization techniques, and (3) enables declarative
forecast queries (see Section 4.3) for any user. In contrast to partial integration ap-
proaches that reuse statistical tools like R within the DBMS (e.g., Ricardo [75]), we
argue for a full integration approach that might require a higher initial effort but allows
for optimizations on the forecasting process itself.
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Figure 7.1: The general process of forecasting

7.1.2 Requirements and related work
Following the MIRABEL use-case, we now elaborate the general requirements for fore-
casting (Requirement 7), correctness (Requirement 2), and efficiency (Requirement 1)
using a number of more detailed requirements specific for forecasting in a database.
Additionally, we overview related work for each of these detailed requirements.

Advanced Forecasting Functionality First of all, the database system should pro-
vide advanced statistical forecasting functionalities that provide high accuracy for vari-
ous use-cases and time series data. For example, in the energy domain (the MIRABEL
use-case) multi-equation forecast models are often necessary to achieve reasonable ac-
curacy [76]. Also, new forecasting methods required by applications should be easily
addable. Major commercial DBMSs support only a limited amount of such forecasting
functionality. For example, Oracle offers linear as well as non-linear regression methods
or exponential smoothing as part of its OLAP DML [77]. The Data Mining Exten-
sion (DMX) in Microsoft SQL Server supports a hybrid forecast method consisting of
ARIMA and autoregressive trees [78].

Declarative Forecast Queries Forecast queries (see Section 4.3) should follow the
traditional SQL interface and offer a simple language extension usable for any user. For
example, Duan et. al. [79] proposed a simple FORECAST keyword to specify declarative
forecast queries.

Integrated into Relational Query Processing Forecast queries should be seam-
lessly integrated into standard relational query processing allowing arbitrary forecast
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queries as well queries on forecasted query results (e.g., joins of forecasted and histori-
cal data). Within commercial DBMSs, predictive functionality is usually implemented
as customized functions using proprietary languages [77, 78] and thus, cannot be uti-
lized with other relational operators. In contrast, Paris et. al. [80] developed a formal
definition of a forecast operator and explored the integration of forecast operators with
standard relational operators.

Transparent and Automatic Query Processing The processing of forecast queries
should be done transparently and automatically by the database system. This includes
automatic creation or reuse of forecast models for given forecast queries as well as
automatic maintenance of materialized forecast models. For example, within the Fa
system [79] an incremental approach was proposed to automatically build ad-hoc mod-
els for multi-dimensional time series, where more attributes are added to the model in
successive iterations.

Efficient Query Processing Complex forecast models or large amount of time series
data might lead to long execution time of forecast queries. Thus, optimization tech-
niques are required that efficiently process such forecast queries. Ge and Zdonik [81]
proposed an I/O-conscious skip list data structure for very large time series. In addi-
tion, techniques to efficiently reuse models exploiting multi-dimensional data have been
developed [82–84].

Efficient Update Processing Finally, a continuous stream of new time series values
requires efficient maintenance of computed models. General [85] and model-specific [86]
techniques to determine when a model requires maintenance have been proposed. In
addition, existing approaches speed up the computation process itself by paralleliza-
tion [87] or by using previous model parameters [88].

To summarize, existing research papers already identified and addressed individual
aspects of the requirements in the area of time series forecasting. However, no general
architecture addressing all these requirements and exploiting existing optimization ap-
proaches has been described so far. In the next section, we present a general architecture
that addresses this issue.

7.1.3 The architecture of a DBMS for forecasting
We now give a high level overview of the conceptual architecture of forecasting DBMS
and then elaborate extensions that are specific to a built-in forecasting functionality.
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Figure 7.2: The extension of the 3-layer ANSI/SPARC architecture

Overview
The basic idea underlying our forecasting DBMS approach is to develop a DBMS archi-
tecture that specifically supports and is optimized for the execution of forecast queries,
i.e., queries that involve forecasted values. For this purpose, we decided to base our
approach on the standard ANSI/SPARC architecture [89] and enhance it with specific
forecasting components. In particular, we propose specific changes and additions on
all three levels of the ANSI/SPARC architecture to allow a transparent and efficient
end-to-end execution of forecast queries. Figure 7.2 illustrates the ANSI/SPARC ar-
chitecture as well as our proposed additions. Our changes on the external schema level
mainly comprise the definition of a special Time Series View that ensures a representa-
tion of data in combination to a time axis. On the conceptual schema level, we define
a Composite Forecast Model that is a conceptual representation of a concrete (atomic)
forecast model. Composite models can define a forecast model composition, meaning
that the forecast model is decomposed into multiple individual forecast models. With
this approach, we can, on the one hand, achieve a higher accuracy by intelligently mod-
elling compositions. On the other hand, we are able to reduce maintenance costs by
reusing models in multiple compositions. The internal schema is divided into the Logical
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Access Path [90] and the Physical Access Path. The Logical Access Path comprises of
the Atomic Forecast Model that is a concrete realization of the forecast model defining
the forecast model type and characteristics. Further on this level, we propose a possible
materialization of forecast models and forecasting results to quickly provide results for
frequently repeating forecast queries. On the Physical Access Path, we suggest using
special Forecast Model Index Structures that further increase the efficiency when an-
swering forecast queries [83]. Additionally, specific time series data index structures [81]
might be introduced to speed up time series access. In the following, we describe our en-
hancements for the ANSI/SPARC architecture in more detail and show the application
of our proposed concepts using the MIRABEL use-case.

System architecture details
External Schema The external schema in the ANSI/SPARC architecture comprises
user-defined data views, which can be seen as virtual tables storing the results of specific
queries. A view can comprise attributes of multiple tables as well as pre-defined aggre-
gations or calculation results. Forecasts are typically calculated on time series data,
meaning a sequence of discrete values measured successively over time. To allow fore-
cast queries in a database system, we define a special type of a regular view that ensures
the representation of data as time series. Thus, the Time Series View comprises of an
obligatory time attribute containing discrete points in time in its natural order and one
or multiple attributes exhibiting measurements at these specified moments. Optionally,
these attributes can be tagged with forecasting-specific meta data, which, for example,
indicates whether an attribute represents a dependent variable to be forecasted or an
independent variable such as external influence having an impact on the main variable.
Typically, there is one main variable and many external influences. An example query
defining a Time Series View is denoted as:

CREATE TIMESERIESVIEW tv1 AS
SELECT date AS TIME, energy AS MAIN_VAR, temperature AS INFLUENCE
FROM measurements
ORDER BY TIME;

A time series view can represent both historical and forecasted values of time series.
Typically, after its creation only historic values are contained, but as soon as a query
requests future values, these values are forecasted and added to the view accordingly.
For predicted values, the view also contains further information such as the standard
deviation or confidence intervals, which clearly distinguishes future values from historic
values. Once real values are available, they replace the forecasted values. The time
series view is typically defined by a user or an application, and, once defined, it is
automatically managed by the DBMS (e.g., by automatically calculating forecasts or
adding new values). The view can be queried in an ad-hoc fashion at any time and
can be referenced by any other regular view or time series view. In some cases, as we
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Figure 7.3: Relationship between forecasting components

explain later, a time series view is generated automatically by the DBMS as the result
of forecast model decomposition.

Conceptual Schema The conceptual organization of the data in an ANSI/SPARC
compliant DBMS is defined in the conceptual schema level. This level comprises of a
data schema that describes available entities, their relationship and contained attributes
and can be seen as an abstraction from the logical and physical data representation.
Likewise, we define Composite Forecast Models as a conceptual abstraction from concrete
(atomic) forecast models and thus, it can be seen as some kind of transparency layer.
As illustrated in Figure 7.3, each composite forecast model in the hierarchy can either
reference multiple child composite forecast models or, on the leaf level, ultimately refer
to atomic forecast models defined in the internal schema layer of the ANSI/SPARC
architecture. Examples of simple and more complex conceptual forecast models are
given below.

Example 7.1 (Conceptual forecast model of a solar panel production).
In a simple case, a conceptual model directly refers to a single atomic forecast
model from the internal schema, representing a simple direct forecast, e.g., energy
production of a single solar panel.

Example 7.2 (Conceptual forecast model of production in Germany). In a
more complex case, composite forecast models can also describe a hierarchical forecast
composition. When forecasting the energy consumption of Germany, for example, the
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Figure 7.4: The hierarchy of forecast models for energy consumption in Germany

forecasting can be decomposed into forecasts of the energy consumption for all Ger-
man states, or further down in the hierarchy, the energy consumption of all German
districts and cities, as shown in Figure 7.4. In such case, the composite forecast model
can define a hierarchical forecast composition referring further composite forecast mod-
els on multiple hierarchy levels. The final forecast is later calculated by aggregating
the single results of the referenced atomic forecast models according to the defined
hierarchical composition.

It is important to note that the automatic determination of forecasting composi-
tions is a complex task with many prerequisites and constraints. For now, we assume
that compositions are pre-defined by the database administrator that is aware of the
database schema and the available data. We discuss the automatic composition creation
separately in Section 7.1.4.

Besides the definition of forecasting compositions, typically, one composite forecast
model references only one atomic forecast model (see Figure 7.3). However, for the sake
of forecasting accuracy it is also possible to employ ensemble forecasting [91,92], where
multiple atomic forecast models of different types and with different parameter com-
binations are executed in parallel. Afterwards, the results are combined in a weighted
linear combination, where the most accurate forecast model gains the highest weight.
In this case, a single composite forecast model might refer to multiple atomic forecast
models.

With respect to the external layer, each composite forecast model is linked with
a single time series view from the external schema. It further defines a single output
(“CFM Output”), which is a special table complying to the same rules as the introduced
time series view.
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Internal Schema The logical and the physical data access paths are defined in the
internal schema of an ANSI/SPARC architecture. Logical access paths refer to aspects
like partitioning and materialization while the physical access paths define low level ac-
cess structures like indexes. Likewise, we define Atomic Forecast Models that represent
a non-decomposable forecast model. A single atomic forecast model is represented by
1) an input, 2) the forecast model type, 3) forecast model parameters and 4) the current
forecast state (see Figure 7.3). Here, the input is the data as defined in the associated
time series view, referenced through the connected composite forecast model. The fore-
cast model type (e.g., exponential smoothing or ARIMA) is chosen from a forecast model
catalog that represents all forecast model types available in the DBMS and is pre-defined
with respect to the application domain and the common data characteristics. The cho-
sen forecast model type determines the forecast model characteristics (e.g., number of
lags) and defines the parameters of the forecast model. When creating an instance of an
atomic forecast model the parameters are estimated using local (e.g., LBFGS) or global
(e.g., simulated annealing) general purpose optimization algorithms. This estimation
involves a large number of simulations and thus, typically is very time consuming. We
show how such optimization algorithms can be integrated into a DBMS in Chapter 8.
Finally, the output of the atomic forecast model—predicted future values—is stored in
a special data structure called the atomic forecast model output (“AFM Output”). This
table comprises of at least a time column and exactly one value column that contains
the forecasted values. Optionally, additional attributes might be included in the atomic
forecast model output (e.g., prediction intervals).

Similarly to materialized views, composite and atomic forecast models can be com-
puted on the fly or materialized for faster query response times. Materialized forecast
models store the forecast model parameters and the forecast model state. This espe-
cially avoids the very time consuming estimation of the forecast model parameters and
thus, allows a very fast provisioning of forecasting results. As a result, the execution
time of forecast queries is greatly reduced. A further reduction is possible when directly
materializing the forecasting results, i.e., the forecast model output. Similarly to ma-
terialized views, materialized forecast models require maintenance after each appended
time series value. This includes either the simple update of the forecast (when the
model is still accurate) or a more expensive parameter re-estimation (when the model
violates the accuracy constraints). The maintenance of the materialized forecast models
can be conducted asynchronously to the execution of forecast queries, which allows for
fast forecast query execution at all times. For the physical access paths of the internal
schema, we define model index structures that allow an efficient storage and search for
materialized composite forecast models and connected atomic forecast models [83]. Such
index structures ensure efficient updates (or invalidations) of atomic forecast models on
time series updates as well as efficient access to instantiated atomic forecast models and
their outputs during the execution of forecast queries. We also enhance the classical
data index structures to allow efficient processing of time series data. First, we employ
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time index structures to ensure that the time series values can be accessed in a timely
subsequent order as it is required for forecast models. Second, it is also possible to em-
ploy more advanced indexing structures like skip-lists [81] or similarity indexes, which
would further increase the processing efficiency and decrease the forecast query response
times.

7.1.4 Processing forecast queries
Based on the introduced conceptual architecture, we now discuss the processing of a
forecast query. We first give a high level overview of the basic steps in forecast query
processing (Section 7.1.4) and then traverse the process in more detail using an energy
forecasting example from the MIRABEL use-case (Section 7.1.4).

Overview
We distinguish two main cases to process a given forecast query (Figure 7.5). First, if a
suitable composite forecast model exists, we compute or load (either model parameters
or materialized forecast values) the forecasts for each atomic forecast model within the
given composite model and compose the final forecasts according to the stored composi-
tion rule ((1) in Figure 7.5). Second, if no composite forecast model is available, we have
two choices. We can either return an error to the user or we can compute a composite
forecast model on the fly ((2) in Figure 7.5). In the latter case, we first enumerate dif-
ferent composition alternatives using a composition rule catalog or composition advisor
(3). Such a catalog might store meta data describing the hierarchical dependencies in
the data that can be used as composition rules. If no such rule catalog is available, we
do not create a forecasting composition, but create a single composite forecast model
that attaches exactly one atomic forecast model to the given time series view. For all
found composition alternatives, we then create all missing atomic forecast models that
do not already exist in the database (4). Such an atomic forecast model is created by
empirically evaluating different forecast methods that are stored in the forecast method
catalog and choosing the best one or by employing forecast model ensembles. Finally,
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Table 7.1: An example of the energy consumption relation (“measurements”)

Date Group Amount
2012-01-01 09:00 1 (households) 200
2012-01-01 09:00 2 (small industries) 500
2012-01-01 09:00 3 (large industries) 1500
2012-01-01 09:15 1 250
2012-01-01 09:15 2 525
2012-01-01 09:15 3 1600

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

after all atomic forecast models have been created, we choose the composition approach
with the lowest error and calculate the query result (5). The previously described fore-
casting process, including the model composition creation, is conducted transparently
to the user. The user simply requests a forecast for the user-defined time series view,
and the system automatically decides upon the necessary steps to provide the results.
Finally, to avoid expensive parameter estimation for future forecast queries, the system
might choose to materialize the final composite and corresponding atomic forecast mod-
els, including the model parameters and model state (6). In the following, we further
detail this process of automatic composite forecast model creation.

The example of energy forecasting in MIRABEL
We now show how our enhanced DBMS architecture can be utilized in the MIRABEL
use-case to forecast the total inflexible consumption within a balance group (tcons P

tcons`prod). Suppose that BRP’s collected data includes aggregated power measure-
ments from households, small, and large industrial consumers, consuming electricity
within the balance group, and such energy consumption data of different consumer
groups (households, small/large industries) is stored like shown in Table 7.1. Initially,
a time series view over this data, aggregating energy consumption measurements, is
created:

CREATE TIMESERIESVIEW tsBGconsTotal AS
SELECT Date AS TIME, SUM(Amount) AS MAIN_VAR AS Amount
FROM measurements
WHERE Group BETWEEN 1 AND 3
GROUP BY TIME ORDER BY TIME

Now, suppose a user submits the following query over this time series view:
SELECT TIME, Amount
FROM tsBGconsTotal
WHERE TIME IN (yesterday(), tomorrow())
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The system seamlessly determines if the query involves forecasting (accesses future
values) or not. As the user query in our example requests the total energy consumption
for the next day, the system automatically triggers a search for a corresponding compos-
ite forecast model in the DBMS. In our example, no corresponding model is found, and
the system seamlessly creates a new composite forecast model. The system has many
different alternatives to create this model, and it might spend some time on choosing
an alternative, which offers the best forecasting accuracy. Suppose the composition rule
catalog outputs a very simple composition rule that suggests aggregating the forecasts
of individual consumer groups (1, 2, and 3) to retrieve the overall energy consumption
forecast. Further assume that two composite forecast models, CM2 and CM3, already
exist in the database (as they are used by other time series views previously defined
by a user) to forecast the consumption of small and large industries. To evaluate this
composition rule, the system needs to create an additional composite forecast model for
energy consumption of private households CM1. This model CM1 requires an input,
defined by the following automatically generated time series query:

SELECT Date AS TIME, Amount AS MAIN_VAR
WHERE Group = 1 (i.e., households)
FROM measurements
GROUP BY TIME ORDER BY TIME

When creating CM1, the system creates underlying atomic forecast model AM1 and
empirically evaluates the forecast methods listed in the forecast method catalogue. For
AM1, in our example, the forecast method Triple Seasonal Exponential Smoothing [93]
is chosen as the most accurate solution for forecasting household consumption data for
a specific data set. Then, the models CM1, CM2, and CM3 are composed using the
following rule α ¨ CM1 ` β ¨ CM2 ` γ ¨ CM3. α, β and γ are the weights of the linear
combination describing the impact of the respective consumer groups. Typically, the
weights reflect the share of each consumer group on the total consumption, which is
computed from the history of the corresponding time series.

The accuracy of this composition rule might be compared to other composition
rules (e.g., create only one composite model for the overall energy consumption time
series tsBGconsTotal), which also require the creation of missing atomic forecast
models. Finally the composition rule producing the most accurate forecasts is chosen
(the aggregation of individual groups in our example) and the output to the query is
obtained by aggregating the forecast values from the outputs of CM1, CM2, and CM3
(see “LFM Output” in Figure 7.2) at respective time stamps. Then, the output is
merged with historical values of tsBGconsTotal from yesterday and the result set is
returned to the user.

Finally, the system might choose to materialize the composite and corresponding
atomic forecast models including, for our example, CM1 and the parameters of AM1,
to speed up the processing of future queries. Additionally, the forecasting result might
be materialized.
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7.1.5 Research topics & challenges
Realizing a forecast-enabled DBMS, which takes advantage of our proposed architecture,
is challenging. Some aspects were already addressed by individual research papers, as
discussed in Section 7.1.2. In this section, we focus on remaining challenges that either
nobody has addressed yet or that arise due to our novel architecture.

External Schema. Queries of different types have to be supported, processed, and
optimized to take advantage of the models stored within a DBMS. These include tra-
ditional ad-hoc as well as reoccurring and continuous forecast queries. Existing SQL
extensions [94] might be further refined to allow seamless querying of time series data
that does not require the specification of a FORECAST keyword, e.g., by restricting the
time in the where clause of a query (WHERE TIME IN (now(), tomorrow())). Now the
system additionally needs to detect if a certain time series query involves forecasting
or just demands the history of the time series. In addition, query constraints might be
specified on the desired accuracy or runtime. This requires anytime or online approaches
that progressively provide better forecast results over time.

Conceptual Schema. Each forecast query on time series view requires either the
use of an existing composite forecast model or a new model needs to be built. Large
databases might contain millions of time series [82], requiring efficient strategies to
search and build composite forecast models. The decomposition of composite forecast
models into a hierarchy of multiple composite forecast models can be either done man-
ually or automatically. Automatic approaches face two main challenges. First, they
need to determine what decompositions are possible and, second, they need to choose
the best decomposition. Suitable decompositions might be given by the database ad-
ministrator in terms of composition rules, derived automatically from the data (e.g., by
using foreign-key relationships) or given by meta data like data cubes or data hierarchy
information. The determination of the most accurate decomposition is quite a hard
problem as the number of possible decomposition might be very high and as the accu-
racy of decomposition cannot be determined without actually building all concerning
models [95]. First approaches in this area [84,96] are only suitable for a small number of
time series. Additionally, the system might transparently maintain composite forecast
models. Thus, the system can automatically switch to a new composition if it leads to
higher forecast accuracy.

Internal Schema—Logical Access Path. As forecast queries should be processed
transparently, atomic models have to be chosen and created automatically. Due to the
large variety of possible models and parameterizations, this process of model identi-
fication is challenging. Domain-specific model types can reduce the search space by
including only models from a given domain. Automatization approaches are required
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that automatically select the “best” model for a time series. First approaches automa-
tize the model selection process for ARIMA [97] or Exponential Smoothing [98] models.
Through the usage of ensemble models, i.e., combination of several individual atomic
models, the robustness and accuracy of such approaches might be improved. Once one
or several models have been selected, model parameters need to be estimated, requiring
an optimization problem to be solved. Chapter 8 of this thesis concerns formulation
and in-DBMS solving of such optimization problems.

To avoid expensive model creation, atomic forecast models might be materialized so
they can be used over and over again. However, due to evolving time series in many
domains, materialized models require maintenance in form of parameter reestimation.
Research in this area focuses on two main challenges, first, when to reestimate param-
eters and, second, how to speed up the reestimation itself. Existing research papers
already address both challenges (as discussed in Section 7.1.2) and might be extended
and improved.

Due to expensive model maintenance, materialized atomic forecast models have to
be selected carefully. The question arises how to intelligently reuse models in order to
keep maintenance costs as low as possible while enabling high accuracy (e.g., one atomic
forecast model might be used in several composite forecast models). Such a configu-
ration of atomic forecast models might be chosen offline by a system administrator or
online using automatic approaches, which, in addition to model maintenance, requires
continuous evaluation and adaption.

Internal Schema—Physical Access Path. Finally, specific index structures on
time series data or forecast models might be used to speed up model creation, usage
and maintenance – as discussed in Section 7.1.3. These initial approaches might be im-
proved by more advanced index structures, either for a specific model type or the general
case. In addition, partitioning the data with index structures might additionally enable
parallelization approaches that parallelize within or between parameter estimators and
models. One such parallelization approach was proposed for an energy-domain-specific
forecast model [87] and might be extended to other model types.

To sum up, multiple research aspects remain on all three layers of the ANSI/SPARC
architecture and open up many interesting research directions. In contrast to traditional
query processing, all forecasting relevant topics (e.g., selection, estimation, maintenance)
need to cope with a two dimensional optimization objective - forecast accuracy versus
runtime of forecast query processing.

7.1.6 Summary
In this section, we presented the design of a DBMS offering declarative, transparent,
and efficient forecast queries, which allow projecting historical data into future and thus



7.2. Variant Flexibility Model Forecasting 115

building instances of flexibility models (Requirement 7). A DBMS relying on our pro-
posed design can offer many optimization opportunities, which are not possible when
using the traditional (non-integrated) model-based time series forecasting process. Fol-
lowing the MIRABEL use-case, we first described a forecasting-capable DBMS using
a set of forecasting-specific requirements and, for each of these requirements, reviewed
related work. Then, we introduced the generic architecture of a forecasting DBMS al-
lowing to address the defined requirements. The architecture is based on the traditional
ANSI/SPARC architecture and includes a number of forecasting components at differ-
ent abstraction layers. We also explained how such forecasting DBMS can be used in
the MIRABEL use-case to forecast energy consumption. Finally, we briefly overviewed
remaining research topics and challenges.

Forecasting of traditional time series, as presented in this section, allows creating
simple flexibility models with invariant responses only (see Section 3.2), and it is suf-
ficient for the MIRABEL use-case, where inflexible consumption and production loads
(tscons`prod) need to be forecasted. Other instances of PrescriptiveCPS, in general,
may require forecasting of more complex flexibility models with lots of stimulus and re-
sponse variants, which need to be derived (forecasted) based on historical data. A simple
approach to forecast such (variant) flexibility models would decompose model instances
into a number of time series and apply (in-DBMS) forecasting for each of these time
series individually to produce a desired (variant) instance of a forecasted model. How-
ever, various (complex) constraints and/or dependencies over model attributes might
not be satisfied or captured using such approach. Consequently, in the next section, we
follow a different approach and demonstrate five domain-specific techniques, allowing to
convert (augment) invariant flexibility models to variant flexibility models.

7.2 Variant Flexibility Model Forecasting
In this section, we demonstrate how invariant flexibility models (like forecasted time
series) could be converted (augmented) into variant flexibility models defining lots
of stimulus and response variants. We demonstrate this conversion in the context of
MIRABEL when generating instances of the unit flexibility model, which is represented
as a (single) flex-offer and used by agents in the prosumer role (see Section 3.6). For the
conversion, we present five domain-specific techniques allowing to generate flex-offers
based on forecasted household’s (prosumer’s) energy consumption measurements, rep-
resented as time series (an invariant flexibility model). The content of this section is
based on Publication [6].

7.2.1 Generic flex-offer generation architecture
Suppose that the objective is to generate one or more flex-offers (i.e., instances of the unit
flexibility model) based on historical energy consumption in a single household. For this,
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Figure 7.6: The generic flex-offer generation architecture

we propose a two-step procedure. In the first step, we build a time series by forecasting
energy consumption in the household (e.g., using the technique from Section 7.1). In
the second step, we extract energy amounts (responses) and associated flexibilities for
changing these amounts (stimuli) an energy consumer affords in its (daily) energy con-
sumption in the household, and represent such amounts and flexibilities using flex-offers.
We now focus on the second step of this procedure and elaborate how such extraction
can be done.

In the general case, energy amounts and flexibilities of a household highly depend
on the types of appliances consuming energy and on individual energy consumer using
these appliances. For the realistic generation of flex-offers, the detailed model of indi-
vidual household (and a consumer) is required. We propose a general architecture for
a flex-offer generation, shown in Figure 7.6. Given a forecasted time series and context
information as input, the so-called flexibility extractor decomposes (disaggregates) the
given time series into flexible and inflexible parts, assuming that not all energy is flexi-
ble. These parts are returned as flex-offers and a (modified) time series in the output,
respectively. According to the provided context information, the extractor internally
builds and uses an instance of a household flexibility model, incorporating (context)
assumptions about the household’s energy flexibility patterns.

7.2.2 Flex-offer generation approaches
As shown in Figure 7.7, we propose two general classes of flexibility extraction ap-
proaches that are compatible with the general architecture (shown in Figure 7.6). The
first class includes approaches that operate at the level of total (aggregated) household
consumption and output flex-offers for the complete household. In contrast, the second
class includes approaches that operate at an individual appliance level and output flex-
offers for each flexible use of an appliance (e.g., dishwasher). We now elaborate (some
of the many possible) flexibility generation approaches in each of these classes.
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Figure 7.7: Proposed flex-offer generation approaches

Basic approach assumes that some percentage of the household consumption is
flexible, and this flexibility is available at any time of the day. The percentage of the
flexible energy part is specified as the context information, together with other flex-
offer-related information, e.g., the number of intervals in a flex-offer, interval duration,
minimum and maximum percentage of required energy, creation time, acceptance time,
assignment time, earliest start time, and latest start time (see Chapter 5 for more).

Peak-based approach assumes that an energy in a household is only flexible at
peaks of energy consumption (e.g., at 7-8 PM when a consumer is back from work). The
number of peaks within a day and the durations of all peaks are determined during the
analysis of time series. Energy extracted at peak intervals are represented as flex-offers,
where the percentage of the flexible energy part during the peak interval, together with
other information, is specified as the context information, like for the basic approach.

Multi-tariff approach assumes that information about each household’s energy
flexibility is known in advance and, in this case, is calculated by comparing household
energy consumption patterns before and after multi-tariff (or hour-tariff) billing system
is introduced to energy consumers. When a multi-tariff is introduced to the consumer,
it is then expected that the consumer consumes more during low-tariff periods and less
during high-tariff periods. Such household-specific consumption flexibility patterns are
then used to generate flex-offers accordingly.

Frequency-based approach generates appliance-level flex-offers based on pre-specified
appliance consumption profiles (e.g., obtained from manufacturers) and frequencies of
the excepted (daily or weekly) use of appliances, all specified as context information.
The approach detects activations of appliances (i.e., use of energy from appliances)
based on a provided frequencies and time series and then generates flex-offers for each
such detected activation.

Schedule-based approach generates appliance-level flex-offers based on pre-specified
appliance consumption profiles (like in the frequency-based approach) and detailed sched-
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ules of an appliance activation. For each consumer (or groups of consumers), a schedule
specifies when a particular appliance (e.g., a dishwasher) is expected to consume energy
in a household. Provided such schedules as context information, the schedule-based ap-
proach generates flex-offers for each appliance activation that are detected utilizing the
schedule.

The described flexibility generation approaches differ in terms of how realistic context
assumptions are (see Figure 7.8). Here, the basic approach is the easiest to implement,
requires little context information, but employs least realistic context assumptions lead-
ing to less accurate generated flex-offers. On the contrary, the schedule-based approach
is the most difficult to implement, requires detail appliance-level context information,
but generates flex-offers accurately describing complex household flexibility patterns.

7.2.3 Summary
In this section, we presented a general architecture, and demonstrated five domain-
specific approaches, for generating household-level flex-offers based on a time series of
forecasted energy consumption in the household. In the context of PrescriptiveCPS,
this generation can be framed as the generation (forecasting) of a variant flexibility
model instance based on a given (forecasted) invariant flexibility model instance. Dur-
ing the generation, stimuli and variant responses are introduced to flexibility model
instances according to a single response alternative (forecasted time series). The fore-
casting of flexibility models in other PrescriptiveCPS domains can be done based on
invariant model augmentation, like it was demonstrated in this section.
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7.3 Summary and Discussion
In this chapter, we showed how an agent in the forecasting role can, potentially, forecast
(generate) flexibility models based on historical measurements (Requirement 7). We
presented (1) one generic in-DBMS approach to forecast instances of (invariant) flexi-
bility models defining a single response variant as a tradition time series, and (2) five
MIRABEL-specific model-based approaches for forecasting flex-offers – more advanced
instances of the unit flexibility model with lots of stimulus and response variants. All the
presented approaches offer (and demonstrate) an important predictive analytics (Sec-
tion 1.3) functionality required for many other instances of PrescriptiveCPS. Here,
the in-DBMS approach relies on a forecasting-capable integrated DBMS. In compar-
ison to the traditional model-based time series forecasting process, this DBMS offers
many optimization opportunities and advantages (to users) such as increased efficiency,
increased consistency, and declarative forecast queries (Section 4.3). However, the re-
maining challenges still need to be addressed. When flexibility models with complex
stimuli and variant responses need to be forecasted, (invariant) model instances can be
decomposed into a number of time series (to be forecasted using the in-DBMS approach)
or processed with domain-specific forecasting approaches to produce desired instances
of a (variant) flexibility model. For accurate forecasting, the domain-specific approaches
have to incorporate detailed context information.

In the context of PrescriptiveCPS, the capability of flexibility model forecasting
is important when instances of a flexibility model are required for decision making
(solve, solveM or solveR) but are not collected from sensor agents (as opposed to flex-
offers). In such cases, forecasting is then used to infer stimuli and responses of various
physical systems (e.g., inflexible demand and supply). Although different use-cases
rely on different flexibility and forecasting models, forecasting can be realized using
approaches that are similar to those presented in this chapter. Irrespective to a specific
use-case, similar optimization opportunities and challenges may arise.

The next chapter focuses on built-in optimization problem solving. As the forecasting
often involves optimization problem solving (e.g., in the parameter estimation step), the
functionality and/or components (e.g., solvers) of the DBMS from the next chapter could
be greatly reused.
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Chapter 8

Decision Model Solving in a
DBMS

In this chapter, we consider a PrescriptiveCPS agent in one of the decision making
(global prescription, aggregator, or disaggregator) roles and focus on the optimization
problem solving-capable DBMS component used as part of the agent’s software sys-
tem (see Chapter 4). First, we argue that the traditional approach to formulate and
solve decision (optimization) problems, which rely on data from a database (like in the
PrescriptiveCPS case) requires combining an optimization software package with a
DBMS - leading to a workflow that is cumbersome, complex, inefficient, and error-prone.
Then, we show how a standard DBMS technology can be extended to support decision
model formulation and in-DBMS decision model solving (Requirement 10) by presenting
a so-called SolveDB - a DBMS system which seamlessly integrates data management and
optimization problem solving and allows for much simpler and more effective solutions of
database-based optimization problems. SolveDB is based on the 3-level ANSI/SPARC
architecture and allows formulating, solving, and analysing solutions of optimization
problems using a single so-called solve query. SolveDB provides (1) an SQL-based syn-
tax for optimization problems, (2) an extensible infrastructure for integrating SolveDB-
compliant solvers (each for a specific class of problems, e.g., linear programming), and
(3) query optimization techniques to achieve the best execution performance and/or
result quality. Extensive experiments with the PostgreSQL-based implementation show
that SolveDB offers both much higher tool usability/developer productivity and better
overall performance for specification-complex and data-intensive problems. The chapter
is structured as follows. Section 8.2 defines a solve query and the associated challenges.
Section 8.3 presents a relational solve operator and its workflow allowing to integrate
various solvers. Section 8.4 defines the syntax of solve queries, while Sections 8.5–8.6 de-
scribes how solve queries are processed and optimized. Section 8.7 presents the SolveDB
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architecture, while Section 8.8 describes the experimental evaluation. Section 8.9 dis-
cusses related work and Section 8.10 points to future research directions and discusses
the use of SolveDB in the context of PrescriptiveCPS. The content of this chapter
is based on Publication [7].

8.1 Built-in Optimization Problem Solving
In the context of PrescriptiveCPS, decision models are built by decision-making
agents (in the global prescription, aggregator, or disaggregator roles) based on flexibility
models and prescriptions from successor agents (if any) and, when solved, result into
prescription models (Section 3.2). The steps of decision model building and solving are
carried by the solve, solveM , and solveR operations (Section 3.2). Decision models
depend much on flexibility and prescription models as well as on business objectives
pursued by a particular agent. In the MIRABEL use-case, a decision model used by
a BRP agent defines the problem of minimizing imbalances (e.g., via BRP’s profit
maximization). In the general case, however, a decision model may be based on an
arbitrary flexibility model stored in a database (Requirement 4) and define an arbitrary
optimization problem, which an agent must be able to solve (Requirement 10).

As a running example of a basic optimization (decision) problem, consider the well-
known Sudoku puzzle, where a puzzle setter provides a partially filled 9ˆ9 matrix, and
the goal is to complete filling the matrix with the digits 1 to 9 so that each column, each
row, and each of the nine 3ˆ 3 sub-matrices have no duplicated digits (see Figure 8.1).
The initial Sudoku matrix can be represented by the relation shown in Table 8.1a,
where the NULL values of the val attribute represent Sudoku’s unknown digits (decision
variables). Then, the Sudoku problem can be viewed as replacing these NULL values with
concrete values so that all Sudoku constraints are respected, as shown in Table 8.1b. We
call these relations with NULLs (Table 8.1a) and concrete values (Table 8.1b) the input
relation and output relation, respectively. These input and output relations can be seen
as the representations of primitive flexibility and prescription models, respectively, used
by a PrescriptiveCPS (toy) instance, specialized for the Sudoku problem solving.

To solve the Sudoku optimization problem using existing optimization software (e.g.,
AMPL or IBM CPLEX), the following complex and I/O intensive workflow is required:

1. The optimization model (aka. the decision model) of the Sudoku problem must
be created in a modelling language (e.g., OPL, AMPL) with a syntax based on
mathematical notation, requiring carefully exploring, simplifying, and abstracting
the problem. The Sudoku model can be defined as the (linear) constraint satisfac-
tion problem shown in Figure 8.2 with 729 binary unknown (decision) variables
(x), |G| known variables (given elements in G), at least 243 constraint equalities
(depending on |G|), and a single objective function (the value of which is irrelevant
is this case).
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2 9 6 4 8 3 7 1 5
8 4 7 5 1 2 3 9 6
1 3 5 6 7 9 4 2 8
6 7 8 3 9 1 5 4 2
4 1 2 8 6 5 9 7 3
3 5 9 7 2 4 8 6 1
9 6 3 2 5 7 1 8 4
5 2 1 9 4 8 6 3 7
7 8 4 1 3 6 2 5 9

Figure 8.1: A Sudoku matrix with given (bold and underlined) and solution (other) digits

Table 8.1: Sudoku input (a) and output (b) relations in decimal format (81 tuples each)

row col val
1 1 2
1 2 NULL
... ... ...
1 9 NULL
... ... ...
9 9 9

row col val
1 1 2
1 2 5
... ... ...
1 9 4
... ... ...
9 9 9

(a) input relation (in_d) (b) output relation (out_d)

Table 8.2: Sudoku input (a) and output (b) relations in binary format (729 tuples each)

row col val giv sel
1 1 1 0 NULL
1 1 2 1 NULL
... ... ... ... ...
1 1 9 0 NULL
... ... ... ... ...
9 9 9 1 NULL

row col val giv sel
1 1 1 0 0
1 1 2 1 1
... ... ... ... ...
1 1 9 0 0
... ... ... ... ...
9 9 9 1 1

(a) input relation (in_b) (b) output relation (out_b)
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Minimize: 0T x (values are irrelevant)
Subject To:

ÿ

j“1:9
xi,j,k “ 1, k, i “ 1 : 9 (only one k in each row)

ÿ

i“1:9
xi,j,k “ 1, k, j “ 1 : 9 (only one k in each column)

ÿ

xi,j,k “ 1,
i “ 3l ` 1 : 3l ` 3
j “ 3m ` 1 : 3m ` 3

k “ 1 : 9, l,m “ 0 : 2
(only one k in each sub-matrix Ml,m)

xijk “ 1, @pi, j, kq P G (given elements G are set to “on”)

xijk “

#

1, if the matrix element (i, j) is k
0, otherwise

Figure 8.2: The mathematical optimization model of the Sudoku 9 ˆ 9 puzzle

2. Data bindings (SQL-based) linking the model elements with database relations
must be provided. As the Sudoku model (see Figure 8.2) relies on binary vari-
ables (0/1 values) but the relations shown in Table 8.1(a-b) uses decimal variables
(values 1–9), additional transformations are included in the data bindings, trans-
forming the input relation in Table 8.1a to the input relation in Table 8.2a, and
the output relation in Table 8.2b to the output relation in Table 8.1b.

3. The optimization software processes the model and data bindings, reading input
relation data, invoking a solver, obtaining a solution from the solver, and writing
the solution back to the database output relation.

4. The solution in the output relation may be validated and recomputed, if needed.

This workflow exhibits a number of complexities and inefficiencies. First, users must
have significant expertise in both a database query language (e.g., SQL) and an opti-
mization modelling language (e.g., AMPL), dealing with different types of fundamental
structures: relations, tuples, and attribute values in databases versus parameters, vari-
ables, constraints, and objectives in optimization models. Second, as data is shipped
back and forth between the two systems, significant performance overhead is inevitable.
Third, users must manually perform multiple error-prone actions (create a model and
queries, edit data, and execute the model) with different types of software. This is
cumbersome and ineffective, particularly, when used as part of a larger decision-making
(PrescriptiveCPS) workflow, resulting in frequent changes of the data (and optimiza-
tion model). Finally, as data, model, and solution are stored in separate and hard-coded
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locations, it becomes difficult to version models and data so that a particular model
version can be used with a particular version of the data.

To address all these problems, we present SolveDB - a DBMS that allows performing
all these activities using a single so-called solve query. The Sudoku problem above can
be defined and solved using the following intuitive solve query:

1 SELECT out_b.row, out_b.col, out_b.val FROM (
2 SOLVESELECT sel IN
3 (SELECT col, row, v AS val, (val=v) as giv, NULL::boolean AS sel
4 FROM in_d, generate_series(1,9) AS v) AS in_b
5 SUBJECTTO
6 (SELECT sum(sel)=1 FROM in_b GROUP BY val, row),
7 (SELECT sum(sel)=1 FROM in_b GROUP BY val, col),
8 (SELECT sum(sel)=1 FROM in_b GROUP BY val, (col-1) / 3, (row-1) / 3),
9 (SELECT sel = giv FROM in_b WHERE giv),
10 (SELECT sum(sel)=1 FROM in_b GROUP BY row, col)
11 WITH solverlp.cplex() ) AS out_b
12 WHERE out_b.sel

The solve query defines the discussed transformations of the input relation from
decimal (in_d) to binary (in_b) format (lines 3-5) and the output relation from bi-
nary (out_b) to decimal format (lines 1, 14). Here, generate_series is a library function
generating the series 1, 2, ..., 9. The constraints of the binary Sudoku problem (see
Figure 8.2) are defined as sub-selects in the SOLVESELECT clause (lines 7-12). To
resolve these constraints, the query specifies the use of a SolveDB-compliant solver
(solverlp.cplex) for linear programming (LP) problems.

In general, the novel SOLVESELECT clause produces an output relation from an
input relation according to the problem formulations in the inner SUBJECTTO block
and an additional inner MINIMIZE/MAXIMIZE clause defining objective functions (not
used in the Sudoku query). The SOLVESELECT clause supports multiple attributes
with unknown variables of various types (e.g., integers, doubles, or composite types)
allowing to represent any imaginable solution as an output relation. To process prob-
lem formulations, SolveDB relies on an extensible infrastructure of solvers dealing with
optimization problems formulated as views over an input relation (as in the example
above) and other relations in the database. Each new solver registered in SolveDB is
either defined in a declarative manner using solve queries based on other existing solvers
or developed as a (low-level built-in) function tackling a specific class of optimization
problems.

In this chapter, we address a number of challenges related with solve query enabling,
formulation, processing, and optimization (not to be confused with the optimization
problem solving) and the design of the SolveDB DBMS. To enable solve queries, we
present the two-part multi-level workflow to map input and output relations to and
from the formats required by various solvers. To formulate solve queries, we define
the complete syntax of the SOLVESELECT clause and propose a view-based approach
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Figure 8.3: SolveDB-targeted types of optimization problems

to formulate optimization problems in a convenient and intuitive way. To process solve
queries, we propose an overall SolveDB workflow and the workflow of a typical SolveDB-
compliant solver to process SOLVESELECT. We show that solve queries often lead to
complex workflows that are expensive to process. Therefore, we propose techniques to
tune (optimize) the workflow with the respect to the best execution performance or
result quality. Then, based on the introduced concepts, we present the ANSI/SPARC-
based architecture of SolveDB. Finally, we perform an experimental evaluation of the
PostgreSQL-based implementation of SolveDB with proof-of-concept solvers for LP,
black-box, and domain-specific optimization problems, which, compared to traditional
tools, demonstrates significantly (1) better tool usability/developer productivity for
problems that are complex to specify and (2) increased overall solving performance for
problems that are intensive in I/O. Figure 8.3 shows the types of optimization problems
which SolveDB is aimed at.

8.2 Solve Queries
We now define the concept of a solve query and the associated challenges we will address.
As for PrescriptiveCPS (flexibility and prescription) models, we assume the common
notion of a problem model, where the model is a generic entity (structure) that must be
instantiated to a model instance [28] before obtaining a problem solution. Following this
notion, a solve query is a database query that, as a part of its evaluation in SolveDB,
invokes a solver, defined as follows:

Definition 8.1. Let S be a so-called solver of some optimization problem class.
Given the pair pd, pq, the solver produces the solution s in some format (e.g., as a
sequence of values of unknown variables) by building and processing (solving) the
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model instance of an optimization problem such that s “ Spd, pq. Here, d is a
so-called model instance descriptor (descriptor for short) representing all informa-
tion needed to build the model instance, and p are configuration parameters (e.g.,
parameter-value pairs) used for tuning the model instance building and solving pro-
cess.

Essentially, the solver (S) is capable of “completing the model” by building a model
instance (from the supplied d) and solving it with some solving methodology. This gen-
eral description encompasses most existing types of solvers specialized either for specific
or broad optimization problems. At one extreme, S might be specialized for a specific
instance of an optimization problem, thus expecting an empty d (less interesting). At
the other extreme, S might employ a special format of d (e.g., AMPL) completely defin-
ing both the model and the model instance (e.g., the Sudoku model in Figure 8.2 and
G). Alternatively, S might be specialized for optimization problems with interchange-
able data, where all required data is represented in d (e.g., the built-in Sudoku model
from Figure 8.2 with G in d). Although SolveDB is targeted for specification-complex
and data-intensive problems (complex and large d), it supports solvers of any of prob-
lem classes (e.g., linear programming) exhibiting various properties with regards to the
nature of equations, solving technique, permissible variable types, and other aspects
(see Figure 8.3). The conceptual and practical integration of solvers into a DBMS leads
to a number of interesting challenges:

Challenge 8.1. How to enable solve queries – map input and output relations to and
from descriptors and solutions (d and s) in solver-specific formats?

Challenge 8.2. How to formulate solve queries – define descriptors using high-level
SQL-based constructs (the desired common language for queries and models) that are
intuitive and user-friendly?

Challenge 8.3. How to process solve queries – handle descriptors, invoke solvers, and
utilize solutions in larger database workflows?

Challenge 8.4. How to optimize solve query execution – tune solve query processing
to achieve the best execution performance or result quality?

Challenge 8.5. How to integrate solve query concepts into existing DBMSs, supporting
the full variety of solvers for different optimization problem classes?

We now show how SolveDB addresses these challenges.
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8.3 SolveDB Translation Workflow
To enable solve queries (Challenge 8.1), SolveDB relies on a two-part multi-level (ě 3
levels) translation workflow to provide a link between user-specific input and output
relations and solver-specific descriptors and solutions. We term these two parts the
adaptation workflow and abstraction workflow, respectively. Initially, we focus on the
adaptation workflow as it is mandatory for every solve query. Then, we explain how
building the abstraction workflow based on the adaptation workflow can further abstract
the details and reduce the complexity of problem formulations (and solutions). We
conclude the section by defining a relational solve operator.

8.3.1 The three-level adaptation workflow
The three-level adaptation workflow produces an output relation denoted as Rout from
an input relation denoted as Rin based on a sequence of views (V ) additionally supplied
together with Rin. The complete adaptation workflow is shown in Figure 8.4 and
involves three types of solvers, namely a physical solver, a relational solver, and a view
solver.

The physical solver (e.g., cplex) supports the broadest class of optimization problems,
consumes a (physical) descriptor dp and produces a (physical) solution sp; dp and sp

are represented in internal/native formats, e.g., MPS/SOL.
The relational solver translates a descriptor dr (relational representation) to dp (in-

ternal format), and sp (internal format) to the solution sr (relational representation).
Here, dr is a sequence of relations, R1, ..., RN , where each relation (potentially) rep-
resents different parts of the model and employs different solver-specific schemas. sr is
a binary relation Rspvar_nr, valueq representing the numbers (var_nr) and the found
values (value) of unknown variables. Depending on if dr completely represents all in-
formation in di, the relational solver may offer all or only some of the physical solver’s
capabilities.

The view solver uses (all or some of) the capabilities of the relational solver to solve
the problem instance defined by the descriptor dv to produce a solution sv, both dv and
sv in a so-called view-based (view for short) representation. Here, sv is an output relation
Rout which is a special view over Rin as exemplified earlier. The descriptor dv is a 3-tuple
(Rin, U , V ), where Rin is an input relation, U is the set of attribute names representing
unknown variables (e.g., {val} in Table 8.1a or {sel} in Table 8.2a), and V “ V1, V2,
..., VL is the sequence of view definitions (e.g., queries in SQL) over the relation Rin

and, potentially, other relations in the database. To make the translation of dv possible,
these views as well as the attributes in U must comply with the requirements specific
to a particular view solver, e.g., setting a limit on the number and the data types of the
U attributes, and requiring that each view definition Vi, i=1..L, represents a relation in
some solver-specific schema. We later elaborate on how such views are defined.
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Figure 8.4: The three-level adaptation workflow to build and solve a model instance defined by dv

Example 8.1 (Sudoku query adaptation workflow). SolveDB invokes such an
adaptation workflow when processing the SOLVESELECT clause (lines 2-13) from the
Sudoku solve query in Section 8.1. First, a descriptor dv = (Rin, {sel}, V1, V2, ..., V5)
is generated. Here, Rin is the binary Sudoku relation (in_b) from Table 8.2a and V1,
V2, ..., V5 are the five select statements from the SUBJECTTO block. Later, dv is
consumed by the view solver solverlp which builds the relational descriptor dr based on
Rin, U , and V such that dr = R1, R2, ..., R5. The relational solver uses dr to produce
di in the internal matrix-based format (e.g., MPS) and then, by using di as input,
invokes the physical solver cplex for LP problems. Finally, if a solution is found, it
is propagated backwards through all the solvers, leading to the binary Sudoku output
relation (out_b) from Table 8.2b. This process is further elaborated in Section 8.5.2.

To summarize, view solvers offer a relational view-based approach to supply descrip-
tors to and obtain solutions from various physical solvers, leading to the three-level
adaptation workflow. However, descriptors and solutions may still be too detailed and
too hard to deal with for users having insufficient understanding of how to define cumber-
some constraints (and objectives) supported by the underlying physical solver (consider
all 243 Sudoku constraints in the format of the LP solver). Thus, SolveDB also offers an
additional problem description and solution abstraction layer, leading to the multi-level
abstraction workflow, described next.

8.3.2 The multi-level abstraction workflow
To provide a problem formulation that is convenient for a user and not just for a
solver, so-called composite view solvers are used by SolveDB. As an example, consider
the composite Sudoku view solver (sudoku_composite_solver) used in the following solve
query:
SOLVESELECT val IN (SELECT col,row,val FROM in_d) AS r
SUBJECTTO(SELECT val!=4 FROM r WHERE row=2 AND col=4)
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(and solving)

WITH sudoku_composite_solver()

As seen in the query, the composite solver hides all the details of problem formula-
tion, solving, and solution reverse transformation (see Section 8.1). Moreover, it allows
intuitively describing an additional constraint requiring that the Sudoku matrix element
(2,4) should not be equal to 4. As the matrix is in decimal (and not binary) format, this
description is more convenient for the user. Internally, the Sudoku composite view solver
involves the discussed view solver (solverlp), which we now term an atomic view solver as
it performs no further transformations to the view-based format, but instead, performs
direct translations to and from the relational format as explained in Section 8.3.1.

Composite view solvers used in SolveDB support optimization problems that can
be mapped (or relaxed) to other problems supported by existing (composite or atomic)
view solvers. Figure 8.5 shows the multi-level abstraction workflow encountered when a
composite view solver SM

v (e.g., sudoku_composite_solver) utilizes the solving capabilities
of other existing view solvers (e.g., solverlp) from the levels 1 to M -1 to transform the
descriptor dM

v into a solution sM
v . Here, SM

v translates the descriptor dM
v (compact)

into the descriptor dM´1
v (detailed). The processing of dM´1

v with SM´1
v might lead to

intermediate view descriptors dM´2
v , ..., d1

v to be processed with the view solvers SM´2
v ,

..., S1
v . Among these solvers, S1

v is an atomic view solver (such as solverlp). When S1
v

finds the solution s1
v, it is propagated through the levels 1 toM by all respective solvers,

resulting in SM
v .

Alternatively, a composite solver (like FS in Section 8.8) might apply a heuristic,
as part of which (traditional) optimization problems needs to be solved. Here, the
capabilities of multiple view solvers are utilized through view descriptors da1

v ,..., daP
v

leading to the intermediate solutions sa1
v ,..., saP

v .
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To summarize, SolveDB supports composite view solvers letting users employ simpler
constructs to formulate optimization problems or solutions in desirable formats (e.g.,
the decimal Sudoku output relation), employing the multi-level abstraction workflow is
to produce an output relation.

8.3.3 Relational solve operator
The presented two part workflow involves a chain of solvers to process a particular
view descriptor dv. Often, several choices of (composite/atomic view, relational, and
physical) solvers exists to establish such a chain. SolveDB aims to choose such solvers
automatically, e.g., by matching the schema of Rin against those supported by the
view solvers (see more in Section 8.6). When this is not possible, or to override the
SolveDB choice, the user can explicitly specify all or some of the solvers to be used
when processing dv. To encompass the steps of solver selection and the resulting two-
part multi-level workflow, we employ the relational solve operator, defined as follows:

Definition 8.2. Let SP be a so-called relational solve operator mapping the view-
based descriptor dv (Rin, U , V ) into the view-based solution sv (Rout) such that sv “

SP pdvq. Here, P is a set representing all or some of the solvers (composite/atomic
view, relational, and physical solvers) to be used when processing dv, along with
configuration parameters for each solver. Every p P P is a pair (name, p), where
name indicates the solver name and p indicates additional parameter-value pairs
to be passed to the solver to control the instance building and solving process (like
in Definition 8.1).

8.4 Solve Query Formulation
We now show how Challenge 8.2 is addressed in SolveDB. First, we explain how SQL
is extended to define a view descriptor and the predicate of the solve operator. Then,
we show how user-defined views (V ) from view descriptors can be formulated in a user-
intuitive manner.

8.4.1 Extending SQL for optimization problems
As exemplified earlier, SolveDB extends SQL with a new SOLVESELECT clause with
the following syntax:
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SOLVESELECT col_name [, ...] IN ( select_stmt ) AS input_alias
[MAXIMIZE | MINIMIZE ( select_stmt ) ]
[SUBJECTTO ( (select_stmt) [, ...] ) ]
[WITH solver_name [. ...][(param[:= expression] [, ...])]

The clause defines a view descriptor dv=(Rin, U , V ) and the predicate P of the
solve operator SP . Specifically, the keyword SOLVESELECT is succeeded by the list
of attribute names representing unknown variables (U). The first select statement (se-
lect_stmt between IN and AS) defines the input relation (Rin) with the alias input_alias
assigned. This alias is used to reference the input relation in all subsequent select state-
ments in the MAXIMIZE/MINIMIZE clause and the SUBJECTTO block. This clause
and the block are optional, and they serve as a “syntactic sugar” to define V1, V2, ...,
VL in the sequence V . The mutually exclusive MAXIMIZE and MINIMIZE define V1
or V2 which specify one or more objective functions to be maximized or minimized,
respectively. The SUBJECTTO block defines V3, V4, ..., VL and represents all remain-
ing optimization model elements such as constraints. Depending on the solver, each
V1, V2, ..., VL P V in SUBJECTTO is specified in either a solver- or a user-friendly way,
which we elaborate in the next section. Finally, the WITH clause represents P and
specifies names (solver_name) of all solvers to be involved when processing dv. Solver
names are given in the order such that names of composite view solvers are succeeded
with the names of atomic view solvers and so on. The specified solvers can optionally
be configured by providing the list of parameter-value pairs, where the value is either
undefined or computed according to a user-specified SQL expression.

The SOLVESELECT clause has the semantics of the relational solve operator SP . As
the clause results in a relation, it can be used as a sub-query in larger and more complex
SQL queries, as shown in Section 8.1.

8.4.2 User-friendly view descriptors
As mentioned earlier, a view solver Sv poses requirements on how view definitions V1,
V2, ..., VL P V from the view descriptor dv (Rin, U , V ) should be specified and it is
up to the solver developer to decide what V1, V2, ..., VL actually represents and how
they are formulated in the SOLVESELECT clause. In one extreme, Sv can be a simple
“wrapper” over a relational solver such that the view definitions V1, V2, ..., VL specify
the relational solver input, i.e., dr = R1, R2, ..., RN where N “ L. In the other extreme,
Sv can be specialized for a very narrow class of problems and, by using the 3-tuple (Rin,
U , H), it can build a (relational or view) descriptor only from data in Rin, as in the
example of sudoku_composite_solver. In the first case, the view solver allows utilizing
the full solving capability of a relational (and physical) solver, but requires the detailed
(and potentially complex) specification of the relational input dr. In the second case,
the solver uses a very simple input (Rin and U only), but is only targeted for a narrow
class of problems to be instantiated from Rin. To address the limitation of these two
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extremes and to establish a common user-friendly formulation of views in V , SolveDB
uses an additional level of indirection over Rin.

In SolveDB, each Vi, i “ 1..N , represents a view (query) over a dummy relation
Ralias

in , where Ralias
in is an alias for Rin (input_alias). This separation of Vi and Rin is

exploited in SolveDB to introduce an additional level of indirection, in which unknown
variables in Rin are substituted with values of a user-defined data type that is specific to
the solver. This data type offers a set of operators that are used to assign and constrain
unknown variables. The set of supported operators depends on the capabilities of the
solver, and, among others, may include both common comparison (ă, ă“, “, ą“,
ą), equality (“), negation (!“), and similarity („), and specialized (e.g., is_instance,
belongs) operators.

Example 8.2 (Substitution of Sudoku relation attributes). The attribute val
in the query “SELECT val!=4 FROM r WHERE row=2 AND col=4” from Section 8.3.2 is
used to reference unknown variables as if they were variables of the mathematical
optimization problem. When processing such a query (as we explain later), SolveDB
transparently substitutes the val attribute with the attribute of a solver-specific data
type supporting the !“ operator to bind unknown variables with concrete values from
a database (or constants).

We term this substitution-based formulation. It is intuitive, user-friendly, and yet
powerful as it allows mixing unknown variables with known variables (from other at-
tributes) when constraining and binding data to unknown variables. Depending on the
needs, all or some of the capabilities of underlying (view or relational) solvers can be
exposed to users through views (V ) employing substitution-based formulation.

8.5 Solve Query Processing
We now show how SolveDB addresses Challenge 8.3. We first present the overall
SolveDB solve query processing workflow, then focus on SolveDB-compliant view solvers
offering substitution-based formulation, and present the common workflows of atomic and
composite view solvers.

8.5.1 Overall solve query processing workflow
Like a standard DBMS, SolveDB prepares, optimizes, and executes a solve query as a
single relational workflow involving the standard relational operators and the relational
solve operator. To prepare (establish) a solve query, SolveDB performs the following
actions for each SOLVESELECT clause:
1. Forms a view descriptor dv and a predicate P (Section 8.4.1).
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2. Establishes a valid chain of solvers (Section 8.3).
3. Instantiates and inlines the two-part multi-level translation workflow according to

the solver implementation.
The formation of dv and P is straightforward. To establish the chain of solvers,

SolveDB uses P and dv to look-up in a solver catalogue containing information about
all registered (composite/atomic view, relational, and physical) solvers and then chooses
(if possible) a subset of those to be used when processing dv. For choosing, SolveDB
relies on a solver advisor (explained in Section 8.6) or performs a simple matching of
the names and data types of the unknown variable attributes and the operators in the
views (V ), against those supported by the solvers. When no or multiple solver choices
are feasible, SolveDB reports an error and the user is required to explicitly specify (in the
WITH clause) the solvers to be used. To instantiate the translation workflow, SolveDB
consults the solver catalogue and then recursively unfolds the individual workflows of
each (composite and atomic) view solver in the chain, resulting in a detailed relational
workflow, which is then inlined (embedded) into the overall solve query workflow. This
process is similar to SQL function inlining, reducing function call overhead and allowing
the query optimizer to “see inside” the function. Once the complete solve query workflow
is established, it is then optimized (as explained in Section 8.6) and executed.

Individual relational workflows of view solvers can be very different and complex
depending on the type of an optimization problem and on if the solver is atomic or
composite. As SolveDB encourages (but is not restricted to) solvers supporting sub-
stitution-based formulation (see Section 8.4.2), we now present the common workflows
for the substitution-based atomic and composite view solvers used by SolveDB.

8.5.2 The workflow of an atomic view solver
As explained in Section 8.3.1, atomic view solvers expose the capabilities of relational
solvers through view descriptors. We now present the common workflow of atomic view
solvers supporting the substitution-based formulation. To exemplify relevant concepts,
we explain how a general-purpose LP view solver can be designed to process the solve
query of the binary Sudoku problem (see Section 8.1).

The workflow to transform dv (Rin, U , V ) to sv (Rout) is shown in Figure 8.6. For
each view definition Vi P V , the atomic solver Sa

v establishes the three-level nested views
over Rin, namely Ro

in, Rs
in, and Rm

in to represent (build) the input of the relational solver
Sr. Different view solvers might employ various alternatives of the views Ro

in, Rs
in, and

Rm
in. Some of these alternatives are depicted in Figure 8.7.
The order level viewRo

in establishes the logical order of tuples inRin so that unknown
variables are referenced consistently when building the problem instance from Rin as
well as when embedding the solution back to Rin. For simplicity of presentation, we
introduce an explicit order attribute with unique integer values (see order in Table 8.3).
To establish order in practice, any existing single or multi-attribute key would suffice.
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To reference the variables, (logical) variables numbers are employed, and these are
computed from the values of the order attribute for every u P U .

The substitution level view Rs
in represents Ro

in, but with solver-specific values em-
bedded at the unknown variable positions (at every u P U).

Example 8.3 (Substitution level view of the LP solver). In the Sudoku case,
the LP solver builds a view Rs

in as shown in Table 8.3 by applying a solver-specific
function (UDF) fLP : ZÑ LpExp that maps unknown variable numbers to instances
of the LP solver-specific data type LpExp. This data type represents the expression of
unknown variables in the linear combination a1v1 ` a2v2 ` ... ` atvt, where a1, a2,
..., at are numerical constants and v1, v2, ..., vt are numbers of unknown variables.
The LpExp type supports various linear operations such as expression addition, scalar
multiplication, negation, etc., all together offering the rich formulation of expressions
to be supported by the LP solver.

In the general case, Rs
in may have values that are (1) same as in Ro

i (Ordered Input)
or are (2) the numbers of unknown variables (Variable), (3) values obtained from an
array (Array) or another relation by joining a table on unknown variable numbers (Join),
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Table 8.3: A substitution level view (Rs
in) over the binary Sudoku matrix

order row col val giv sel
:: integer :: LpExp

1 1 1 1 0 (1¨[1])
2 1 1 2 1 (1¨[2])
... ... ... ... ... ...
9 1 1 9 0 (1¨[9])
... ... ... ... ... ...
729 9 9 9 1 (1¨[729])

or (4) values returned from a function (UDF) applied on unknown variable numbers (as
in the LP solver case) or a whole tuple in Ro

in (Function Substitution).
The model level view Rm

in represents a relation to be used as part of the relational
solver input, dr. The view Rm

in is established from Vi by substituting Ralias
in (the alias for

Rin) in Vi with the substitution level view Rs
in. As a result, all operations with unknown-

variables in Vi will be transparently applied on the instances of the solver-specific data
type, e.g., LpExp. For example, suppose that LpExp supports an aggregation operator
sum on LpExp instances as well as the equality operator “: LpExp ˆ R Ñ LpEqu
allowing to bind an instance of LpExp with a real number. Then, Vi from Section 8.1,
formulated as “SELECT sum(sel)=1 FROM in_b GROUP BY val, row”, leads to Rm

in shown
in Table 8.4. This relation represents the 81 (out of 243) binary Sudoku constraints
(from Figure 8.2) ensuring that each Sudoku matrix column has no duplicated digits.
In the general case, Rm

in characterises various optimization model components and may
represent, for example, an objective function (Objective), constraints (Constraint), or
pre-assigned values (those that are not NULL) of variables in Rin (Value).

In the workflow, all model level views, produced from Vi P V , i “ 1..|V |, represent
the relational input (dr) to be used by the relation solver Sr. The solution from Sr in
the relational format (var_nr, value) is embedded back to Ro

in at unknown variable
positions by building another substitution level view (of the Join type from Figure 8.7)
to join two relations on variable numbers. Finally, the projection is applied to remove
the order attribute (order) and to produce the output relation Rout in the schema of
Rin.

Order, substitution, and model level views are standardized within SolveDB and
used by different view solvers through an API to realise various translation workflows of
substitution-based view descriptors. The LP solver is such a solver, producing relational
problem descriptors as linear expressions according to user-defined (substitution-based)
views.
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Table 8.4: A model level view (Rm
in over Rs

in) representing 81 constraints for each Sudoku matrix
column to have no duplicated digits

column1 :: LpEqu
((1¨[1]+1¨[10]+1¨[19]+...+1¨[82]), 1)

((1¨[91]+1¨[100]+1¨[109]+...+1¨[154]), 1)
((1¨[163]+1¨[172]+1¨[181]+...+1¨[235]), 1)

...
((1¨[657]+1¨[666]+1¨[675]+...+1¨[729]), 1)

8.5.3 The workflow of a composite view solver
As explained in Section 8.3.2, a composite view solver hides solver-specific details of
problem solving by offering high-level user-intuitive constructs to (re-)define model el-
ements such as constraints. We now show how such a composite view solver can be
specified in a single solve query using the introduced order, substitution, and model level
views. Then, we elaborate and generalize the resulting composite view solver workflow.

Consider the Sudoku solve query from Section 8.3.2 invoking the composite view
solver sudoku_composite_solver. Suppose that the solver uses a descriptor dc

e (Rc
in, U c,

V c) as input, and that the constraint formulated as “SELECT val!=4 FROM r WHERE row

=2 AND col=4” (included in V c) leads to a model-level view m (val, op, row, col) with
a single tuple (4, ’!=’, 2, 4). Then, sudoku_composite_solver can be specified as the
following solve query relying on m and Rc

in (in_d):
1 SELECT out_b.row, out_b.col, out_b.val FROM (
2 SOLVESELECT sel IN
3 (SELECT col, row, v AS val, (val=v) as giv,
4 NULL::boolean AS sel
5 FROM in_d, generate_series(1,9) AS v) AS in_b
6 SUBJECTTO
7 -- All inherent (internal) Sudoku constraints
8 (SELECT sum(sel)=1 FROM in_b GROUP BY val, row),
9 (SELECT sum(sel)=1 FROM in_b GROUP BY val, col),
10 (SELECT sum(sel)=1 FROM in_b GROUP BY val,
11 (col-1) / 3, (row-1) / 3),
12 (SELECT sel = giv FROM in_b WHERE giv),
13 (SELECT sum(sel)=1 FROM in_b GROUP BY row, col)
14 -- All user-defined (external) constraints
15 (SELECT sel = 0 FROM in_b, m
16 WHERE m.col=in_b.col AND m.row=in_b.row AND
17 m.val=in_b.val AND m.op = ’!=’)
18 WITH solverlp.cplex()
19 ) AS out_b WHERE out_b.val

Like the solve query from Section 8.1, this query defines the transformations of the
initial and final Sudoku matrices (in_d Ñ in_b and out_b Ñ out_d). Additionally, this
query incorporates (external) constraints (user-specified in V c and represented in m)
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that are included as the additional select statement (lines 15-17) mapping the constraints
into an LP solver compatible binary format. This Sudoku solver employs a workflow
that is an instance of the general composite view solver workflow in Figure 8.8.

In the general case, a composite view solver first builds an order-level view Ro
in to be

able to consistently refer to the unknown variables. The Sudoku solver, however, relies
on the unordered Rc

in, in which unknown variables are referenced indirectly through
the Sudoku matrix column and row numbers (represented by the m relation). Then,
model-level views (one or more) are built to encode model components (e.g., constraints)
according to V c from dc

v. In the Sudoku case, it is m. Such model views are referenced
in (detailed) view descriptors da{c

vi defining (detailed) problems for solving with other
atomic/composite view solvers Sa{c

vi , i “ 1..N . Each such da{c
vi is built by transforming

Rc
in to Ra{c

in (at T c
in) and defining V a{c views over (an alias of) Ra{c

in and all model-level
views. In the solve query above, Ra{c

in is defined at lines 3-5 and V a{c
1 ,..., V a{c

6 at lines
8-17. Then, the view solvers are invoked to produce (detailed) solutions, which are then
transformed (at T a{c

s ) into the solution of the original (compact) problem. Finally, the
solution is embedded to Rc

in to produce Rc
out.

As for atomic view solvers, SolveDB offers an API to build order, substitution, and
model level views allowing to simplify the specification of composite view solvers.

8.5.4 Summary of solve query processing
To summarize, SolveDB processes a solve query as a single relational workflow. For
each SOLVESELECT, SolveDB selects and configures the set of solvers according to
the user’s request in the solve query. Each view solver specifies a sub-workflow that
is embedded into the overall solve query workflow. Such a sub-workflow produces an
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output from the input relation based on a descriptor. The descriptor is either provided
in the query or built along the solving chain. After the workflow is prepared, it is
optimized and executed. Atomic and composite view solvers supporting substitution-
based formulation are preferred, therefore, SolveDB offers an API for easily realising
them. Such a realisation leads to a specific translation workflow, which was generalized
and elaborated in this section. In the next section, we focus on techniques to optimize
the overall solve query workflow.

8.6 Solve Query Optimization
Solve queries can often be very expensive to process as they rely on (physical) solvers
tackling NP-complete problems with no efficient algorithms to find solutions. SolveDB
is not optimizing these algorithms, but instead tunes (optimizes) problem descriptor
and solution transformation workflows and chooses solver and solver parameters for a
particular problem instance leading to the best performance or result quality. We now
present query optimization techniques both for one-time and repeating solve queries,
thus showing how Challenge 8.4 is addressed in SolveDB.

As presented earlier, solve queries might lead to complex relational workflows due to
the applied chains of solvers for each SOLVESELECT. To reduce the processing time of
these, SolveDB first uses standard query optimization techniques employed by existing
DBMSs. Furthermore, in some cases, SolveDB is able to completely avoid invoking an
(expensive) solver or select a solver and/or its parameters to achieve either the best
performance or result quality.

Consider a projection on the output of the solve operator S discarding the attributes
with unknown variables. In this case, the input relation can be used in place of the
output relation thus avoiding the burden of (view, relational, and physical) solvers,
leading to the following equivalence rule:

ΠApSP pRin, U, V qq “ ΠApRinq, if AX U “ H (8.1)

For repeating solve queries, SolveDB uses materialization [99] of the solver result (view-
based and relational), allowing to look-up the solution in a materialized view using a
descriptor instead of invoking a solver. For some problems, incremental optimization
algorithms [100] are used to update the solution when the underlying data changes.

Finally, when solver invocation cannot be avoided, SolveDB builds a (valid) chain
of solvers by automatically choosing solvers and solver parameters, in addition to those
specified by the user (in P from theWITH clause), to achieve either the best performance
or result quality. This case leads to the following equivalence rule:

SP1pdvq „ SP2pdvq, if P1 Ď P2 (8.2)

To choose valid solvers, SolveDB matches the descriptor against those supported by
solvers (details in Section 8.5.1). When multiple solver choices exist, SolveDB utilizes
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a solver advisor, like DrAmpl [101], allowing to choose an appropriate solver for some
types of problems. When multiple choices of solver parameter values exist, SolveDB
uses default values or the values obtained by meta-optimization [102], which involves
another solver to finds the best parameter values for repeating solve queries.

8.7 Architecture of SolveDB
In this section, we address Challenge 8.5 and present the architecture of SolveDB sup-
porting a variety of solvers.

SolveDB is based on the standard three-level ANSI/SPARC architecture (the left
of Figure 8.9) with a number of additions on all three levels (the right of Figure 8.9).
These additions, elaborated in Sections 8.3–8.6, allow separating the user’s view of the
optimization problem from the way the problem is physically formulated and solved,
like the user’s view of a database is separated from the way the database is physically
represented by an ANSI/SPARC-based DBMS.

The additions at the internal schema level include a number of physical solvers
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(e.g., cplex from Section 8.1) dealing with physical descriptors and solutions in internal
(native) formats. Relational solvers from the same level hide the details of the internal
representation and provide the relational representation of descriptors and solutions.
Further on this level, the materialization of solve query results is used to provide quick
answers for frequently repeating solve queries.

At the conceptual level, atomic view solvers (e.g., solverlp from Section 8.1) allow
abstracting the details of the relational representation through high-level SQL-based
constructs and an output relation. As these solvers use more abstract but powerful
representations (schemas), the corresponding view descriptors and solutions are denoted
as conceptual.

At the external level, composite view solvers (e.g., sudoku_composite_solver from Sec-
tion 8.3.2) allow describing a problem and obtaining a solution in formats that are
relevant to a particular user. Consequently, the corresponding view descriptors and
solutions in user-specific formats are denoted as external. Finally, users define different
customized (SolveDB) views over the underlying data and view-based solutions from
the current level or the level below.

Similar to the data independence provided by standard DBMSs, SolveDB offers solver
independence meaning that a user’s external view descriptor can be processed by differ-
ent (valid) combinations (chains) of view, relational, and physical solvers and a user does
not necessarily need to know the combination that was actually used and how the prob-
lem was actually solved. A database administrator can change atomic view, relational,
and physical solvers, while potentially affecting the query evaluation performance and
the quality, but not the semantics of a user’s problem solution.

8.8 Experimental Evaluation
We now demonstrate the versatility of SolveDB and experimentally evaluate its perfor-
mance and usability/developer productivity. We show that integrating a solver into a
DBMS allows significantly increasing the overall solving performance for I/O intensive
problems. We also show that our proposed multi-solver approach and the substitution-
based realization of a common language for queries and models are applicable for a
wide range of optimization problems and offer significantly better tool usability/devel-
oper productivity for problems that are complex to specify. To show that SolveDB is
versatile, we developed six proof-of-concept view solvers – two general-purpose atomic
view solvers and four composite view solvers – and used them to solve eight optimization
problems – four classical linear/mixed integer (LP/MIP) programming problems, three
global optimization (GO) problems, and one domain-specific energy planning problem.
To evaluate performance, we compared SolveDB against the existing tools by measuring
(1) the solution quality (in terms of error or imbalance) and (2) the total time required
to read initial data, solve the problem, and write the solution back to the database. Fi-
nally, to evaluate the productivity/usability, we measured the number of effective source
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lines of code (eLOC) and compared SolveDB and existing tools in terms of the sizes of
problem descriptors (incl. SQL-based data bindings) and solver implementations (where
relevant). We now describe our PostgreSQL-based SolveDB implementation and present
the settings and results of the experimental evaluation.

8.8.1 PostgreSQL-based implementation
We implemented SolveDB based on PostgreSQL 9.3.1. Our implementation employs a
simplified solve query processing workflow where each SOLVESELECT clause is handled
by a special user-defined function. The function establishes and invokes a solver chain
in a single (execution) step, rather than in two (parsing and execution) steps, as ex-
plained in Section 8.5.1. Thus, the present implementation supports manual (but not
yet automatic) meta-optimization and solution materialization.

To implement SolveDB, the PostgreSQL parser was extended to support the new
SOLVESELECT syntax. Extensions (supported by PostgreSQL ě9.1) were used to en-
capsulate the rest of the SolveDB functionality. The function handling each SOLVES-
ELECT was included as a part of a so-called SolveAPI extension. The extension addi-
tionally defines the solver catalogue and a number of data types and functions allowing
to develop atomic and composite view solvers as user-defined functions (in C/C++ or
PL/pgSQL) in a common and simplified manner (see Sections 8.5.2–8.5.3). By utiliz-
ing SolveAPI, we implemented two atomic view solvers (abbr. as LP and BB) in C
and packaged them as PostgreSQL extensions together with the underlying relational
(logically integrated) and physical solvers.

The LP view solver delivers an exact solution after a finite sequence of operations by
invoking a built-in physical solver from the GNU Linear Programming Kit (GLPK) for
either LP or MIP problems. To process inputs and outputs of the physical solver, the
LP view solver uses the technique described in Section 8.5.2. In contrast, the BB view
solver, after a number of iterations, delivers an approximate solution for the class of
black-box global optimization (GO) problems. To produce a solution, it uses 1 of 15 ap-
plicable physical solvers from the integrated SwarmOps optimization library [103], e.g.,
Simulated Annealing (SA) or Particle Swarm Optimization (PSO). The BB view solver
prepares (the model view of) an objective function defined in the MAXIMIZE/MINIMZE
clause (see Section 8.4.1), and then a SwarmOps solver repeatedly re-evaluates the query
to produce a new fitness value based on a candidate solution. The physical solvers from
GLPK and SwarmOPS were patched to use PostgreSQL’s hierarchical memory man-
agement, and all the view and physical solvers run completely in the process (address)
space of the DBMS.

SolveDB with all view solvers was compared to the existing tools by solving a number
of optimization problems, covering all combinations of specification complexity and I/O
intensity, as shown in Table 8.5.
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Table 8.5: Optimization problems solved with SolveDB and existing tools

Nr. Problem Name

Spec. complex
Data 
intensiveP1, P2 P3 ,P4

P5, P5 P5',P6 # of
Vars

P1.1 Maximum independent set (619 edges) 50
P1.2 Maximum independent set (928 edges) 50
P1.3 Maximum independent set (1140 edges) 50
P2.1 Linear model fitting (10 regr. coef., 100 points) 111
P2.2 Linear model fitting (10 regr. coef., 1000 points) 1011
P2.3 Linear model fitting (10 regr. coef., 2000 points) 2011
P3.1 Sudoku 9x9 (23 initial values) 729
P3.2 Sudoku 16x16 (97 initial values) 4096
P3.3 Sudoku 36x36 (672 initial values) 46656
P4.1 Stigler diet (77 foods) 77
P4.2 Stigler diet (923 foods) 923
P4.3 Stigler diet (9923 foods) 9923
P5.1 Neural network black-box training (1x4x3x1 neurons, 10 points) 27
P5’.1 Neural network training and output generation 27
P̂5.1 Meta-optimization of PSO solver parameters 31
P5.2 Neural network black-box training (1x4x3x1 neurons, 100 points) 27
P6 Energy planning – forecasting (3000 measurements) and scheduling (500

planning objects)
7983

8.8.2 Results of the experimental evaluation
Classical LP/MIP We used SolveDB with LP, GLPK, and GNU R to solve two
LP problems, Linear Model Fitting (by least absolute deviations) and Stigler Diet, and
two MIP problems, Maximum Independent Set (MIS) and Sudoku. These problems,
denoted as P1, P2, P3, and P4 according to Table 8.5, were solved in three different
sizes leading to 12 problem instances (P1.1, ..., P4.3). For each problem instance,
we prepared a database with initial data and an empty table for the solution. Then,
we described each problem, incl. SQL-based data bindings, as (1) a solve query for
SolveDB, (2) a MathProg (mod) program for GLPK, and (3) an R program based on the
lpSolveAPI library. The sizes of these descriptors (formulations) are given in Figure 8.10.
Then, we solved each problem instance and measured total time and solving time, and
calculated I/O time (total time - solving time). The results of the experiment are shown
in Figure 8.11. This figure and Figure 8.10 show that SolveDB allows defining the
problems much more compactly (approx. 1.5-3 times less code) and processing them
much more efficiently (I/O time is 2-18 times smaller). As expected, the solving times
(and total times for solving-intensive cases) of SolveDB and GLPK are similar as they
share the same physical solvers. The R lpSolveAPI could not find solutions for the
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Sudoku instances P3.1, P3.2, and P3.3 within 10 hours (increasing the number of given
Sudoku digits from 23 to 62 in P1.1, yielded a solution after 11.6 sec, denoted by R*).

Black-box optimization We used SolveDB with BB (PSO), SwarmOPS (PSO), and
R to train a neural network with a sigmoidal activation and four and three nodes in the
two hidden layers, respectively. To train the network, we formulated an optimization
problem (derivative-free), denoted as P5, minimizing the sum of squared error (SSE) of
the training data. To solve the problem, we considered two datasets with 10 and 100
data points (P5.1 and P5.2 respectively) and two solving configurations relying on in-
terpreted and native machine code, respectively. For the interpreted variant, we defined
the problem as (1) a solve query using a recursive SELECT in the MINIMIZE clause
and (2) an R program using the optim function for general-purpose optimization. For
the native variant, we defined the problem as (1) a solve query specifying (in MINI-
MIZE) the use of a C function (from an external library) for computing network output
based on provided network input and neuron weights, and (2) a C++ program relying
on SwarmOPS and ODBC. Then, by using these two configurations and default solver
parameters, we solved the two problem instances (P5.1 and P5.2) 6 times by varying
the total number of solving iterations and measured the average resulting error (SSE)
and total time. The results are shown in Figure 8.12(a). We see that the C++ imple-
mentation performs somewhat better (in terms of error) compared to SolveDB using
the native function, but at a very substantial expense of usability/productivity (286
versus 89 lines). Compared to R (with optim), SolveDB (with BB) performs (approx.
30-100 times) better, considering that it repeatedly executes the query plan of a (pre-
pared recursive) objective query, which can further be optimized (future work). In both
configurations, SolveDB problem formulations have substantially less code (23 versus
38 and 59 versus 286 lines).
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Figure 8.11: The performance of SolveDB, GLPK, and R when solving LP/MIP problems

Materialization/meta-optimization We used P5.1 as a basis for evaluating the
materialization and meta-optimization query optimization techniques (see Section 8.6).
We considered the joint problem of both (1) training a neural network (P5.1) and
(2) computing network output values based on test inputs and optimized weights. To
solve this joint problem, denoted as P5’.1, we built two composite view solvers both
taking test inputs as the input relation and producing network outputs as the output
relation. The first solver solves P5.1 each time it is invoked. In contrast, the second
solver uses a materialized view over the corresponding SOLVESELECT for P5.1. As seen
in Figure 8.12(b), when materialization is used, the total P5’.1 solving time is reduced by
2–3 orders of magnitude when training with MSE “ 0.001 and using 1000 input (test)
points, both for interpreted and native configurations. Compared with existing tools
(the R and C++ impl. bars), computing network outputs using SolveDB takes approx.
11–62 times(!) less time compared to reading materialized weights and network inputs to
the external tools and writing outputs back to the database. As a one-time investment
which could pay-off after a number of view refreshes, we considered the problem of
meta-optimization, denoted as P̂5.1, for tuning P5.1 solver parameters for smaller error
(and time for a desired error). We formulated P̂5.1 as a nested solve query with the
inner SOLVESELECT for P5.1 and the outer SOLVESELECT for PSO solver parameter
(S,ω,φp,φg) tuning. We used SolveDB with BB and Local Unimodal Sampling [103]
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with standard parameters as an overlying meta-solver, which was run 5 times for 100
iterations, solving P5.1 6 times in each iteration (3000 times in total). The meta-
optimization results for each of the P5.1 SolveDB solving instances seen in Figure 8.12(a)
show that meta-optimization is very effective (approx. 10-100 times smaller error) for
time-consuming (above 10 seconds) cases with larger numbers of P5.1 solving iterations,
while being very easy to specify in SolveDB.

Energy planning in MIRABEL Lastly, we used SolveDB to solve the BRP’s energy
planning problem, where the objective is to balance supply and demand from electricity
producers and consumers according to hourly load forecasts for a 24 hour horizon.
This problem inherently requires solving complex interlinked energy forecasting and
scheduling sub-problems (see Section 3.6). We forecasted household consumption using
a multi-equation EGRV model [76] which produces accurate hourly load forecasts based
on historical power measurements and temperature forecasts used as external influences.
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To balance the (inflexible) household consumption, we used joint loads from flexible
consumers and producers, e.g., electric vehicles or gas-turbines. To represent loads
of a single flexible consumer (and producer), we used flex-offers (aka. unit flexibility
models). By choosing concrete amounts and a time shift, i.e., by scheduling, a flex-
offer becomes a flex-offer assignment (aka. unit prescription model), defined as a time
series (see Section 2.1). The objective is to schedule flex-offers so that all time series
(incl., forecasted) add up to a (balanced) time series with (close to) zero values. To
forecast loads and schedule flex-offers, we implemented two composite view solvers based
on PL/pgSQL, SolveAPI, and SOLVESELECT: a forecasting solver, abbr. FO, and a
scheduling solver, abbr. FS. The FO solver uses the LP solver to minimize least absolute
deviations (like in P2) to estimate EGRV model parameters and then produces forecasts.
The FS solver uses a heuristic technique, where the BB (with SA) and LP atomic
view solvers finds time shifts and the amounts for all planning objects, respectively.
The solvers are interlinked using the following SolveDB query, previously denoted as
prescription query (Section 4.3):
SOLVESELECT fa IN (SELECT fo::flexoffer, NULL::flexofferassignment AS fa

FROM flexoffers) AS t
SUBJECTTO (SELECT is_instanceof(fa, fo) FROM t),

(SOLVESELECT load IN (SELECT time, load
FROM hist_load) AS s

SUBJECTTO (SELECT time, temp FROM temp_data)
WITH solverFO)

WITH solverFS(rndseed:=12345, sn:=3176)

For solving the planning problem, we also considered the traditional configuration,
abbr. R&Java. We implemented a Bash script, an R program (based on the model
fitting function lm) to realize EGRV forecasting, and a Java program based on a third-
party solver, previously used in the aggregation experiments (see Section 6.6.2). This
solver realizes an evolutionary flex-offer scheduling technique [52] in Java. The R&Java
and the SolveDB configurations together with component dependencies (lines), sizes,
and invocation order (numbers in circles) are shown in Figure 8.13(a), respectively. We
evaluated the performance of these configurations using 3000 (load/temperature) mea-
surements and 500 planning objects representing supply and demand loads with complex
flexibility patterns, and the results are shown in Figure 8.13(b). As seen in Figure 8.13(a-
b), SolveDB required approx. 15 times (237 versus 3571 lines!) less total solver and
descriptor code for solving the planning problem. It also allowed to obtain comparable
forecasts (10% ˘ 2 of Mean Absolute Percentage Error) and a better schedule (plan)
in less time, due to substantially reduced I/O time (>4 times!) and a higher-latency
scheduling technique providing better immediate (first) solution due to exact solving
with LP. It can be seen that forecasting-alone performs better in R (due to the efficient
lm), but, due to solver independence (see Section 8.7), the FO solver could easily be
improved by substituting the underlying (reused) LP solver with, e.g., the least-square
solver used in R (lm).
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The results are summarized in Figure 8.14 and they show that SolveDB is a compet-
itive and versatile problem solving system offering a significantly increased (more than
one order of magnitude less code) developer/user productivity, tool usability while at the
same time providing comparable, or in many cases much increased, overall performance.

8.9 Related Work
The advantages of an integrated data management and problem solving system have
already been recognised [104,105], but previous efforts were only at the conceptual level,
and did not address the issues of designing, realising, and evaluating an efficient and
easy-to-use integrated system suitable for different classes of optimization problems.

Most previous efforts of bringing problem solving capabilities into a DBMS focus on
LP/MIP problems. The approaches supporting the block-schematic view [106] of a LP/
MIP problem require users to specify either a stored procedure [107] or multiple SQL
views [108] to define the “blocks” of a matrix, which is directly used by the simplex
method [109] (one particular physical solver). This problem formulation (in the solver
format) is very inconvenient for the user. In contrast, SolveDB (with LP) uses this rep-
resentation only at the intermediate translation step when processing algebraic problem
descriptors defined as solve queries and does so transparently to the user. SQLMP
(SQL for Mathematical Programming) [110] offers an SQL-like syntax to define objec-
tives and constraints and extract data from the database, similarly to a solve query.
However, unlike the SOLVESELECT clause, SQLMP’s COMPUTE statement cannot be
nested or used in a single query (e.g., Sudoku query in Section 8.1) to transform data
and solution between user-convenient formats. A similar limitation is encountered in
DGQL [111] (Decision Guidance Query Language), where each problem formulation
leads into an excessive number of SQL views. These must be specifically annotated to
express the optimization semantics to enable the translation, by a pre-defined reduction
procedure, into the solver format. In comparison, SolveDB problem descriptors are pro-
cessed using a DBMS query processor and the translation procedure can be extended
and customized, depending on the problem type or the user’s perspective of it. Most
importantly, SQLMP and DGQL only support LP/MIP problems, and they mainly
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propose just the query languages, with little or no consideration of query processing,
optimization, and DBMS integration, and no significant experimental evaluation, which
are all considered by SolveDB.

Existing in-DBMS analytics tools and techniques, including MADlib [112], Oracle
Data Mining, Microsoft SQL Server Data Mining, and statistical [113] and forecast-
ing [94] methods, either implement or rely on specific (non-linear) problem solvers such
as simulated annealing or conjugate gradient. Similarly to SolveDB, Bismarck [114] aims
to unify the architecture of these in-DBMS tools and techniques. Bismarck does this
by exploiting that a good deal of common data analytics tasks can be formulated and
solved as convex optimization problems, and to this end proposes an efficient incre-
mental gradient descent (IGD) solver based on user-defined aggregates. In comparison,
SolveDB is much more general, as it supports all these types of physical solvers and ex-
poses the capabilities (but not the complexities) of the various solvers to the query level
so that database users and developers can deal with almost any kind of an optimization
problem in a simplified, relational, and consistent way.

8.10 Summary and Discussion
In this chapter, we focus on the PrescriptiveCPS agent in one of the decision mak-
ing (global prescription, aggregator, or disaggregator) roles and, for the realization of
their solve, solveR, and solveM operations (see Section 3.3), we encourage the use of
SolveDB – the first DBMS integrating data management and problem solving capabil-
ities. SolveDB allows users to easily define and solve optimization (decision) problems
from many different problem classes (e.g., linear programming). Users can define, solve,
and process the solution of a problem using a single solve query with an intuitive SQL-
based syntax, similar to mathematical notation. Solve queries can be nested and mixed
with traditional database queries, allowing to define complex prescription and prescrip-
tion adaptation queries (Section 4.3). To process such prescription and prescription
adaptation queries or any other solve query, SolveDB uses one or more (of the many sup-
ported) SolveDB-compliant solvers (automatically or manually selected). Each solver
supports a multi-level translation workflow that provides the problem formulation and
solution in formats that are convenient for the user rather than for the underlying solv-
ing technique. We presented the overall solve query processing workflow and elaborated
on how SolveDB-compliant solvers – the general-purpose (LP/MIP) and the problem-
specific (Sudoku) solvers – solve optimization problems. Finally, we discussed solve
query optimization techniques and presented the ANSI/SPARC-based SolveDB archi-
tecture and our PostgreSQL 9.3.1 based SolveDB implementation. The experimental
evaluation, considering eight database-based optimization problems – four LP/MIP,
three black-box global optimization, and one domain-specific problem – showed that
SolveDB significantly reduces the number of lines of code (by 1.3-15 times), I/O time
(by 1.7-18.6 times), and total time (up to 62 times with optimizations applied) compared
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with existing optimization software.
Future work on in-DBMS problem solving will investigate further solve query op-

timizations, including new types of solvers that incrementally update solutions, are
massively parallel, support automatic differentiation, or compile solve query problem
formulations into efficient code (e.g., JIT-compiled Java), offering much better perfor-
mance for repeated queries.



Chapter 9

Flexibility and Prescription
Model What-If Analysis in a
DBMS

In this chapter, we consider a PrescriptiveCPS agent in one of the decision making
(global prescription, aggregator, or disaggregator) roles and focus on the “what-if” capa-
bility of the DBMS component used as part of the agent’s software system (see Chap-
ter 4). Unlike in Chapters 7–8) where we introduce new DBMS technology, here we pri-
marily use examples to demonstrate simplified powerful ways to analyse past, current,
and future data based on flexibility and prescription models and so-called hypotheti-
cal scenarios, which, as we elaborate later, can be supported by the agent’s analytical
DBMS. We start by introducing the concept of what-if scenario and reviewing related
work in Section 9.1. Then, in Section 9.2, we propose a simple and intuitive SQL exten-
sion for being able to specify scenarios utilising SQL constructs. Then, in Section 9.3,
we use the proposed extended SQL syntax to demonstrate advantages such scenarios
bring when analysing measured/forecasted data, planning energy, and studying previous
versions of data in the MIRABEL use-case. As we conclude in Section 9.4, hypothetical
what-if scenarios bring simplicity to complex analytical activities.

9.1 What-If Analysis and Related Work
In a human-based (manual) decision-making or decision model adaptation (Require-
ment 9), users often want to understand implications of various human- or machine-made
decisions, expected or hypothetical conditions, and realistic or artificial circumstances.
To accomplish this, what-if analysis can be utilized.
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Traditionally, the what-if analysis is used to simulate and inspect the behaviour
of a complex system under some given hypotheses, called a scenario. In the what-
if analysis, an analyst first formulates a scenario (e.g., as hypothetical data inserts,
modifications, and deletes), then uses the scenario to derive a hypothetical “world”, and
then explores the world by querying and navigation. There are few commercial tools
capable of supporting what-if analysis (incl., Excel spreadsheet) and some papers [115,
116] describing relevant applications in different fields. The capabilities of DBMSs can
also be utilized to perform what-if analysis in cases when access to a data source is
either unrestricted or restricted.

In the unrestricted case, the what-if analysis can be performed using conventional
means, e.g., by building a replica of a database and/or running multiple variants of a
query and performing transactional updates (and then rollbacks) if needed. However,
building replicas or performing updates/rollbacks are expensive and cumbersome. To
avoid transactional updates, Heraclitus/HQL [117, 118] and SESAME [37] (1) rely on
query rewriting techniques that rewrite (hypothetical) queries according to hypothet-
ical update scenarios, and (2) investigate hypothetical query languages that combine
querying with hypothetical updates, and their implementation over data warehouses.

In the restricted case, Caravan [119] considers a client-server approach, where
the what-if analysis is performed using a resource-limited device (e.g., tablet) on the
client-side, supported by a relational DBMS and a specialized query rewriting system
on the server-side. When a user activates one of more of pre-defined scenarios on the
resource-limited device, results are efficiently re-computed on the client-side using a
parametrised data instance, termed a provisioned autonomous representation (PAR).
Such data instances (PARs) are compiled on the server-side out of the data, initial
analysis queries, and what-if scenarios.

In the context of PrescriptiveCPS agent, a user (owner) of an agent has an
unrestricted access to a data managed by the underlying analytical DBMS. Therefore,
for a what-if analysis in PrescriptiveCPS context, the query rewriting approach,
pursued by Heraclitus/HQL and SESAME, is the most suitable and therefore will be
further extended (with SQL notations) and used to demonstrate potential applications
and the power of what-if analysis in the PrescriptiveCPS context.

9.2 SQL Extension for What-If Scenarios
For our demonstrations, we now propose a simple and intuitive SQL extension over
the existing Hypothetical Query Language [118] (HQL) for being able to specify what-
if scenarios using the SQL constructs. Our proposed SQL extension comprises of the
following commands/clauses:

• CREATE SCENARIO name AS ( cmd_1; cmd_2; ...; cmd_k; ) - the command creates
a scenario termed name in a database. The scenario is specified using a sequence
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of data manipulation language (DML) commands cmd1, cmd2, ..., cmdk, each
of which is either of INSERT, DELETE, or UPDATE type. These commands
describe how the state of the database is (hypothetically) modified to produce a
new hypothetical database state (world).

• CREATE SCENARIO name AS OF sn_1, sn_2, ..., sn_k - the command creates a com-
posite scenario termed name in a database. It allows a simplified way of creating
a scenario by sequentially composing individual DML commands of scenarios sn1,
sn2, ..., snk.

• DROP SCENARIO name - the command removes a scenario termed name from a
database (if scenario exists).

• SELECT ... FOR sn_1, sn_2, ..., sn_m - the clause specifies a selection (SELECT)
query that is to be evaluated on a hypothetical database state obtained by sequen-
tially applying (executing) commands of scenarios sn1, sn2, ..., snk on the current
database state (real or hypothetical). This statement has the semantics of the
following hypothetical HQL query (...((Q when U1) when U2)...) when Um, where
Q is a relational algebra query represented by the SELECT clause and U1, U2, ...
Um are update expressions (ins, del) represented by the scenarios sn1, ..., snk.

Here, the CREATE SCENARIO commands allows defining (atomic or composite) sce-
narios as a sequence of INSERT, DELETE, and UPDATE commands, similarly to how
user-defined functions are defined. The SELECT ... FOR is similar to the traditional SQL
SELECT statement. Unlike the latter, it allows querying data under the presence of
hypothetical updates specified by scenarios. Like hypothetical HQL queries, it can be
evaluated using eager, lazy, or hybrid approaches [118], requiring the full, no, or partial
materialization of hypothetical physical state (or the corresponding delta), respectively.
A DBMS evaluating such query ensures that a base data in a database is not affected
by hypothetical updates.

Note, the SELECT ... FOR statement is similar (and complementary) to that of time
travel queries. Time travel queries [38], first pioneered by Oracle with Flashback [120]
and later standardized in SQL 2011 [121], allow navigating old versions of data as if
an application (business) or a system time is (hypothetically) set to that specified in a
query, e.g., as in SELECT ... FOR SYSTEM_TIME AS OF ’2014-01-01’. Consequently, the
time-travel functionality of existing bi-temporal databases can be seen as the special case
of scenario-driven querying where application or system time is (hypothetically) updated
(e.g., by pruning irrelevant tuple versions). Therefore, as shown later, we allow mixing
hypothetical scenarios and time travel predicates (BUSINESS_TIME and SYSTEM_TIME) in a
single SELECT ... FOR query.

The presented SQL extension as well as the discussed what-if and the time travelling
functionality can potentially be supported by the agent’s DBMS. In the next section,
we use the proposed SQL extension to demonstrate what-if queries in MIRABEL.
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Table 9.1: Tables for energy consumption measurements and flex-offers/flex-offer assignments

(a) hist_load table

time load
... ...
12:00 10.9
12:15 11.3
12:30 12.4
12:45 13.3
13:00 12.1
13:15 11.6

(b) flexoffers table

id fo fa sids
1 (startTime:21:00-07:00, NULL {}

values: [2-3, 3-4, 5-6, 1-3])
2 (startTime:20:30-06:15 NULL {}

values: [3-4, 5-5.5])
3 (startTime:21:00-04:30 (startTime:22:00 {1,

values: [3-4, 5-6, 3-4]) values: [3.5, 6, 3.4]) 2}
... ... ... ...

9.3 What-If Queries in the MIRABEL Use-Case
An agent’s DBMS with the proposed SQL extension for what-if scenarios can be effec-
tively used to study implications of various decisions/conditions/circumstances based on
flexibility and prescription models. We demonstrate this using the MIRABEL use-case.

9.3.1 Hypothetical scenarios in measurement analysis
Suppose that historical consumption load measurements are stored in a database table,
shown in Table 9.1(a), and an analyst (BRP) wishes to study future measurements as
if they (1) followed forecasts exactly or (2) were 10% higher than forecasts produced
from 5% lower measurement values. The analyst would then create the following two
scenarios, representing the two cases respectively:
CREATE SCENARIO con_follows_forecasts AS (

INSERT INTO hist_load(time, load)
SELECT time, load FROM (

SOLVESELECT load IN (SELECT time, load FROM hist_load) AS s
WITH solverFO ) AS measurements_with_forecasts

WHERE time BETWEEN now() AND now() + INTERVAL ’24 hours’
);

CREATE SCENARIO con_off_forecasts AS (
INSERT INTO hist_load(time, load)
SELECT time, 1.1 * load FROM (

SOLVESELECT load IN (SELECT time, 0.95 * load FROM hist_load) AS s
WITH solverFO ) AS measurements_with_off_forecasts

WHERE time BETWEEN now() AND now() + INTERVAL ’24 hours’
);

Here, the scenarios con_follows_forecasts and con_off_forecasts are based on solve
queries relying on the forecasting solver (FO) introduced in Section 8.8. Note, to define
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these scenarios, alternatively, forecasting queries over a pre-defined time series view
for measurements (hist_load) can be employed (see Section 7.1.3). The presented two
scenarios can be used, for example, to contrast day-ahead consumption measurements
in those two hypothetical cases, using the following declarative what-if query:
SELECT f1.time, f1.load - f2.load
FROM (SELECT time, load FROM hist_load FOR con_follows_forecasts) AS f1,

(SELECT time, load FROM hist_load FOR con_off_forecasts ) AS f2
WHERE (f1.time = f2.time) AND

(f1.time BETWEEN now() AND now() + INTERVAL ’24 hours’)

The query results into a relation with differences in consumption loads in those
two hypothetical cases. It is more compact and intuitive compared to the following
equivalent non-hypothetical query relying on the common table expression (CTE) and
the forecasting solver (FO):
WITH
con_follows_forecasts AS (

SELECT time, load FROM (
SOLVESELECT load IN (SELECT time, load FROM hist_load) AS s
WITH solverFO ) AS measurements_with_forecasts

WHERE time BETWEEN now() AND now() + INTERVAL ’24 hours’
),
con_off_forecasts AS (

SELECT time, 1.1 * load FROM (
SOLVESELECT load IN (SELECT time, 0.95 * load FROM hist_load) AS s
WITH solverFO ) AS measurements_with_off_forecasts

WHERE time BETWEEN now() AND now() + INTERVAL ’24 hours’
)
SELECT f1.time, f1.load - f2.load
FROM (SELECT time, load FROM con_follows_forecasts) AS f1,

(SELECT time, load FROM con_off_forecasts ) AS f2
WHERE (f1.time = f2.time)

9.3.2 Hypothetical scenarios in energy planning
Hypothetical scenarios enable easy-to-use prescription queries (and prescription adap-
tation queries) allowing to study (potential) prescriptions (or their feasible changes)
derived “on-the-fly” during the query evaluation (see Section 4.3). We now demonstrate
prescription queries that are based on what-if scenarios.

Suppose that an analyst wishes to study potential flex-offer assignments resulting
after the complex workflow that involves flex-offer aggregation, flex-offer scheduling,
and flex-offer assignment disaggregation, performed by aggregator and BRP agents as
presented in Section 2.2 and Section 3.6. Suppose flex-offer assignments and input
flex-offers (used to generate these flex-offer assignments) are represented as composite
(PostgreSQL) data types and stored as pairs in the database table flexoffers, shown
in Table 9.1(b). Initially, flex-offer assignments are not available and, thus, values of the
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fa attribute are set to NULL, as shown in the id “ 1 and id “ 2 cases in Table 9.1(b).
When a flex-offer is aggregated, the value of the sids attribute is not NULL and it
specifies an array with ids of flex-offers that were aggregated to produce the current
flex-offer, as shown in the id “ 3 case. The objective is to generate flex-offer assignments
(values of the fa attribute) for all non-aggregated flex-offers (those with sids IS NULL).
This can be encapsulated in the following composite scenario:
CREATE SCENARIO assignments_generated AS OF

flexoffers_aggregated,
flexoffers_scheduled,
assignments_disaggregated;

Here, flexoffers_aggregated, flexoffers_scheduled, and assignments_disaggregated

are individual (non-composite) scenarios specified below.
CREATE SCENARIO flexoffers_aggregated AS (

INSERT INTO flexoffers (fo, sids)
SELECT agg.fo, (agg.fo).sids
FROM (SELECT reduceA(fo) AS fo

FROM flexoffers
WHERE sid IS NULL) AS agg;

);

The scenario flexoffers_aggregated specifies (hypothetical) insertions of aggregated
flex-offers, which are produced from non-aggregated flex-offers (inner SELECT) using a
user-defined aggregation function reduceA that realizes the lossy flex-offer aggregation
(reduceA), presented in Chapter 6.
CREATE SCENARIO flexoffers_scheduled AS (

UPDATE flexoffers
SET fa = s.fa
FROM (SOLVESELECT fa IN (SELECT fo, NULL::flexofferassignment AS fa

FROM flexoffers
WHERE sid IS NOT NULL) AS t

SUBJECTTO (SELECT is_instanceof(fa, fo) FROM t),
(SOLVESELECT load IN (SELECT time, load FROM hist_load) AS s
SUBJECTTO (SELECT time, temp FROM temp_data)
WITH solverFO)

WITH solverFS(rndseed:=12345, sn:=3176) ) AS s
WHERE id = s.id;

);

The scenario flexoffers_scheduled specifies (hypothetical) updates of aggregated
flex-offer assignments. To generate assignments, the scheduling solver (FS) and the
solve query from Section 8.8.2 are used.
CREATE SCENARIO assignments_disaggregated AS (

UPDATE flexoffers
SET fa = (SELECT mapA(a.fa, a.fo, i.fo)

FROM flexoffers AS i,
flexoffers AS a
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WHERE (i.id = ANY (a.sids)) AND (i.id = u.id))
FROM flexoffers u;

-- Assignments updated, now delete aggregated flex-offers
DELETE FROM flexoffers
WHERE sids IS NOT NULL;

);

Finally, the scenario assignments_disaggregated specifies (hypothetical) updates of
non-aggregated flex-offer assignments. To generate assignments, a user-defined disaggre-
gation function mapA is used. It deterministically converts aggregated flex-offer assign-
ment into non-aggregated flex-offer assignments using the approach discussed in Sec-
tion 6.3. Additionally, the pairs of aggregated flex-offers and their assignments are
(hypothetically) deleted after flex-offer assignments are generated, as they were used
just as an intermediate result.

The composite scenario assignments_generated, encompassing all the presented indi-
vidual scenarios, can be used in various queries involving flex-offer assignments (prescrip-
tions). For example, the following simple query computes the total expected balance
between consumption and production resulting after the scheduling:
SELECT SUM(unnest(fa.values))
FROM flexoffers
FOR assignments_generated;

Here, the (PostgreSQL) library function unnest expands an array with energy values
to a set of rows. Furthermore, the generated flex-offer assignments can be physically
stored in a database (materialized) using the following query:
UPDATE flexoffers
SET fa = (SELECT fa

FROM flexoffers as h
WHERE h.fid = f.fid
FOR assignments_generated)

FROM flexoffers f

As seen in the examples above, scenarios allow hiding the (complex) details of flexibil-
ity and prescription model processing, and offer simplified ways to ask what-if questions
about, for example, (invariant) flexibility models and prescriptions that are forecasted
or computed by optimization on-the-fly.

9.3.3 Time travelling in energy planning
The time travel feature [38] of temporal databases may further simplify the analysis
of historical flexibility and prescription model instances. Suppose an analyst wants to
compute the difference between expected and actually metered inflexible consumption
for the last 24 hours. By utilizing both the time travel predicate (see Section 9.2) and
the previously introduced con_follow_forecasts scenario, the corresponding query can
be formulated as follows:



158 Chapter 9. Flexibility and Prescription Model What-If Analysis in a DBMS

WITH forecasts_yesterday AS (
SELECT time, load
FROM hist_load
FOR SYSTEM_TIME AS OF (now() - INTERVAL ’24h hours’), con_follows_forecasts)

SELECT time, (t.load - y.load) AS ’difference’
FROM hist_load AS t INNER JOIN forecasts_yesterday AS y ON t.time=y.time
WHERE time BETWEEN (now()-INTERVAL ’24 hours’) AND now()

As seen in the examples above, hypothetical what-if scenarios, when combined with
forecasting, optimization, and time travelling, allow for simplified ways to ask questions
about past, presence, and future.

9.4 Summary and Discussion
In this chapter, we demonstrated how a scenario-based what-if analysis involving flex-
ibility and prescription models can be used to study implications of various human- or
machine-made decisions, expected or hypothetical conditions, and realistic or artificial
circumstances. For the demonstration, we used the MIRABEL use-case and, for being
able to use SQL constructs, proposed a simple and intuitive SQL extension for in-DBMS
what-if queries based on the existing hypothetical query language. The extended SQL
together with the presented what-if and the time travelling functionality can, poten-
tially, be integrated into the DBMS of an agent in one of the decision making roles
(global prescription, aggregator, or disaggregator). The presented use-cases of scenario-
based measurement analysis, energy planning, and time travelling witness the increased
simplicity of the complex analytical activities involving past, current, and future data.

This chapter covered what-if query specification aspects only. Potential future work
would investigate different approaches for materialising hypothetical database states (or
state deltas) incurred by various scenarios, particularly those involving forecast or/and
solve queries. Another future work would investigate sessions, where a particular what-
if scenario is activated at the beginning of the session and then it persists until changed
(with another scenario) or the session ends. During the session, standard SQL queries
are to be used for querying a hypothetical database state.



Chapter 10

Flexibility, Decision, and
Prescription Model Processing
in Real-Time

In this chapter, we focus on the planning components of a PrescriptiveCPS agent
software system (Section 4.1) and show how it can be designed to offer the desired
near real-time agent performance (Requirement 1). Our proposed real-time (RT) archi-
tecture of the planning component supports both analytical and operational workflows
involving measurements and flexibility/prescription model instances and, for the real-
time setting, enables many storage and query processing optimizations and offers useful
features such as model-specific, approximate, and subscription-based queries. Results of
initial experiments witness significant performance improvements with regards to (his-
torical) measurement storage, flexibility model aggregation, and forecast model main-
tenance. The chapter is structured as follows. Section 10.1 discusses the limitations of
the discussed DBMS with built-in analytics when processing analytical and operational
workloads with (soft or hard) constraints over a processing time. Then, Section 10.2
proposes the architecture of the planning component and Sections 10.3–10.5 discuss
optimizations enabled by this architecture. Finally, Section 10.6 presents experimental
results and Section 10.7 contrasts the RT-ready agent software system to existing work
and concludes the chapter. The content of this chapter is based on Publication [8].

10.1 Analytical and Operational Agent Workflows
As presented previously, a PrescriptiveCPS agent software system processes two
kinds of workloads: operational and analytical. Here, operational workloads transform
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instances of a flexibility model into instances of a prescription model (Section 3.4).
Analytical workloads, on the other hand, are submitted by (human) users to analyse
and tweak the processes of planning and plan realization (Section 4.2). Operational
workloads typically have (loose or strict) constraints on the processing time and of-
ten require low-latency and high-throughput data processing. In contrast, analytical
workloads typically have less strict (or no) constraints on the processing time and often
tolerate high-latency and low-throughput data processing.

Example 10.1 (Two types of workloads in the MIRABEL use-case). In the
MIRABEL use-case, a BRP agent conducts various data processing tasks with or
without constraints on the processing time. Real-time grid balancing, for example,
requires fast flex-offer processing to be able to meet user-specified deadlines (e.g., latest
start time) as well as other deadlines such as electricity market closing times. Risk
analysis, long term planning, and invoicing, in contrast, have loose (or no) constraints
on the processing time.

The presented DBMS with built-in (forecasting, optimization, what-if) analytics
(Section 4.2) can be used for both analytical and operational workloads, but only those
that have no constraints on the processing time. When time-bounded and/or low-latency
and high-throughput workloads are involved, the presented DBMS is insufficient, and
a new real-time engine for flexibility and prescription model processing is required. To
address this, we now show how the planning-component of the agent software system
(Section 4.1) can be transformed (extended) into such real-time processing engine al-
lowing many optimizations. The extended planning component is inter-operable with
the other agent components (incl., DBMS, control, GUI) and can provide new types of
model-specific, approximate, and subscription-based queries suitable for real-time (RT)
model processing and beyond this. We now present the design of such RT-ready plan-
ning component.

10.2 Planning Component Architecture for Real-time
Processing

We design the software architecture of the planning component for (near) real-time
processing of flexibility and prescription models (Requirement 1). The architecture is
shown in Figure 10.1, additionally denoting the main (sub-)components involved when
processing operational and analytical workloads, as well as the types of information
exchanged with the control/GUI and the DBMS components (see Section 4.1). We
now elaborate each (sub-)component individually and then discuss optimizations this
architecture allows for real-time processing.
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Figure 10.1: The planning component architecture for real-time (RT) processing

Core planning operations component includes agent-specific (or role-specific) re-
alisations of required set of core planning operations such as build, reduce, and solve
(see Section 3.3 for more). For real-time processing, incremental variants of these oper-
ations are adopted, e.g., like the incremental reduceA presented in Section 6.5.

Storage Manager component provides a dedicated store for caching and/or short-
term storage of latest (operational) measurements (see measurement store) and flex-
ibility and prescription models – those that are not yet prescribed and expired (see
F/P model store). The component offers direct data input and output (I/O) and may
process basic I/O commands (e.g., put/get). It is realised as a main-memory heap, an
in-memory DBMS, or a disk-based DBMS with a dedicated storage.

Model-specific query processor component offers the object-relational mapping
(ORM) abstraction over the content of the storage manager (with a dedicated store)
and the underlying analytical DBMS (elaborated in Chapters 7–9). The component
processes so called model-specific queries which offer imperative and object-oriented
constructs for managing instances of flexibility and prescription models. Due to object-
oriented syntax, model-specific queries are often more convenient than SQL as they hide
model representation and storage details, offer additional model-specific optimizations,
and provide increased productivity of (human) operators monitoring, analysing, and
managing the state of an agent in real-time.

Example 10.2 (A model-specific query for flex-offer retrieval). Suppose that
the flex-offer Nr. 12345 (the instance of a unit flexibility model) needs to be retrieved
from the underlying DBMS (see Chapter 5). To accomplish this, the following three
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queries (at least three) have to be issued for retrieving flex-offer header, energy profile,
and other related data scattered across multiple tables:
SELECT * FROM F_flexOffer WHERE flexOfferId=12345;
SELECT * FROM F_enProfileInterval WHERE flexOfferId=12345;
SELECT * FROM F_aggregationMeta WHERE flexOfferId=12345;

Instead, the following model-specific ORM-based query in the syntax of R can be
used to retrieve the flex-offer:
unitFM <- getFlexOffer(12345);

The retrieved flex-offer (referenced by unitFM) can then be analysed like a tradi-
tional class object, e.g., by invoking methods as in unitFM.getEarliestStartTime().

Subscription processor component allows (un-)subscribing (from) to notifications
that are generated every time the result of a so-called subscription-based continuous
query changes by more than a user-specified threshold. To produce such notifications
the component processes measurements and (flexibility and prescription) model updates
received from sensors-actuators, successor/predecessor agents, or external data sources.

Example 10.3 (A subscription-based flex-offer retrieval query). The follow-
ing continuous subscription-based query allows requesting flex-offers from the dedi-
cated store and then be notified every time flex-offers in the dedicated store changes
by more than 10kWh (from the previously reported flex-offers):
NOTIFY ON energy_delta > 10000

IN getFlexOffersInDedicatedStore()

Notifications are caused by flex-offer inserts and deletes in the dedicated store (the
storage manager), resulting after they are received from other agents or expire due to
their inherent deadlines (e.g., latest assignment time or latest start time).

Furthermore, the core planning operations as well as the content of the dedicated
store might be exposed to the underlying analytical DBMS, e.g., using DBMS extensi-
bility features such as user-defined types/functions/aggregates, stored procedures, views,
view solvers (see Chapter 8), or scenarios (see Chapter 9). This allows accessing latest
(operational) measurements and model instances in various analytical workflows relying
on traditional SQL queries, forecasting queries (see Section 7.1), solve queries (see Chap-
ter 8), and/or what-if queries (see Chapter 9), and not only using model-specific queries.

We now discuss potential optimizations this architecture allows for real-time pro-
cessing.
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10.3 Data Storage Optimizations
The proposed architecture allows the following (traditional and novel) optimization
techniques related to the incoming data storage: caching, data locality, bulk-loading,
measurement-model substitution, and model-compression. We now discuss these opti-
mization techniques.

Caching (traditional) allows making measurements and instances of flexibility and
prescription models available for querying as soon as they are received from other (suc-
cessor, predecessor, external) agents. Arriving data is first recorded in an intermediate
dedicated store (see storage manager in Figure 10.1), while making data available for
querying like in RiTE [122], before it gets materialized in a database.

Data locality (traditional) offers an increased I/O performance when accessing
recent measurements and model instances from the dedicated store. The data locality
is ensured by the dedicated storage manager which organizes incoming data compactly
and effectively (e.g., in a required order).

Bulk-loading (traditional) offers an efficient way to populate a database managed
by the analytical DBMS (see Chapter 5). Measurements and models from the dedicated
store are inserted in a database in “large chunks”, which can be done much faster than
inserting one tuple at a time.

Measurement-model substitution (novel) allows coping with extremely large
number of updates (that might occur sporadically). Incoming measured values can be
ignored completely if, within a bounded error, they follow existing prescriptions (e.g.,
flex-offer assignments) or invariant flexibility models (e.g., forecasted time series). If not,
the new measurements can be used to update (re-forecast) invariant flexibility models
while storing only new model instances or forecast model parameters – those that are
used to compute these model instances. As shown in Figure 10.2, the (evolving) series
of such model instances can replace the complete series of measurements, which, as we
show in Section 10.4, can be exploited [123] when processing queries approximately.
Since only model instances or parameters are stored, there are (in total) less data values
to be retrieved from a disk and therefore the processing is much faster.

Example 10.4 (Substituting measurements with prescriptions). Suppose
that in the MIRABEL use-case a prosumer reports (factual) energy consumption
measurements from each of its flexible appliances. These measurements can be
ignored by an aggregator agent if the prosumer “behaves as expected” and resulting
measurements precisely follow previously issued flex-offer assignments (prescriptions).

Example 10.5 (Substituting measurements with flexibility models). In the
MIRABEL use-case, a BRP agent uses measurements from external sources to fore-
cast inflexible consumption (and production) – instances of the invariant flexibility
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Figure 10.2: Measurements and associated invariant flexibility models

model (tscons`prod, see Section 3.6). These measurements can be ignored by the
BRP agent if an existing instance of the invariant flexibility model describes (pre-
cisely enough) these measurements. If not, measurements can be used to update the
flexibility model instance while only materializing new model instances or parameters
used to compute them (and ignoring the measurements).

Model-compression (novel) may be very effective when fitting (operational) flex-
ibility and prescription models in main memory (or a dedicated disk-based store) with
limited capacity. The model-based storage of measurements (especially when forecasting
parameters are stored) can also lead to (very) compact representations.

10.4 Approximate Query Processing
We use the term an approximate query to denote either an imperative model-specific
or SQL-based declarative query that returns approximate results and can, potentially,
be processed within a bounded user-specified time. An example of such approximate
query is a declarative solve query relying on an iterative (black-box) solver returning
approximate result after a limited number of iterations (see Chapter 8). The pro-
posed planning component architecture allows additional types of approximate queries
for achieving much faster (and time-bounded) processing of (1) measurements and (2)
flexibility model instances, respectively.

Example 10.6 (Approximate queries in MIRABEL). In the MIRABEL use-
case, trend-analysis and long term energy planning (analytical) tolerate approximate
results. Grid load balancing (operational) tolerate some imprecision in query results.
However, billing and risk analysis (analytical) require very precise results. For the first
two use-cases, approximate queries can be utilized to increase overall performance.
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In the use-case of measurement analysis, the model-based representation of mea-
surements (see Section 10.3) can be utilized to speed-up the processing of queries that
tolerate some amount of imprecision. Provided a maximum allowed processing time or
an explicit error (absolute error or confidence) describing how large imprecisions are
allowed to be, historical measurements can be reconstructed from (in-memory or ma-
terialized) instances of prescription or invariant flexibility models (as explained in Sec-
tion 10.3). If these model instances cannot guarantee a required precision, actual mea-
surement values can be retrieved (either from the dedicated store or the DBMS). An
example of such approximate SQL-based query on measurements is given below.

Example 10.7 (A query for approximate measurement retrieval). The fol-
lowing SQL query retrieves an energy consumption time series for the previous 24
hours with at most 5% error:
SELECT RELATIVE_ERROR(0.05),

TIME_WINDOW (now() - INTERVAL ’24 hours’, now());
SELECT hour(time), SUM(energy) AS energy_per_hour
FROM GetApproximateInflexibleConsumption()
GROUP BY hour(time) ORDER BY hour(time);

Here, the utility functions RELATIVE_ERROR and TIME_WINDOW set the error threshold
and the desired 24 hour time window, respectively. Alternatively, the utility function
MAX_TIME specifies the maximum allowed time for a time series retrieval.

To efficiently process approximate queries involving measurements and to estimate
expected costs, each model instance representing different segments of a measurement
series (see Figure 10.2 can be specially annotated (providing statistics) and indexed.

In the use-case of flexibility model analysis, a lossy aggregation of flexibility models
(the reduce operation) can be utilized to lower the amount of stimulus and response
combinations needed to be explored, as shown in the example below.

Example 10.8 (A query for approximate nominal response calculation).
The following model-specific approximate query defines the use of the lossy flex-offer
aggregation operation (reduceA from Chapter 6) to speed-up the computation of a
nominal response, requiring to enumerate and to average (lots of) feasible responses.
multiUnitFM <- reduceA(getFlexOffers(), MAX_FLEXIBILITY_LOSS := 1000);
nominalResponse <- getNominalResponse(multiUnitFM, MAX_TIME := 10);

Here, the bounds for the flexibility loss (MAX_FLEXIBILITY_LOSS) and the maximum
allowed time for the nominal response calculation (MAX_TIME) are provided. Note, the
time of computing reduceA() is insignificant compared to getNominalResponse().

Approximate queries, as exemplified above, may increase query processing perfor-
mance and allow meeting deadlines encountered in operational workloads.
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10.5 Subscriptions and Incremental Planning
In the continuous operation of an agent, various actions (e.g., a message exchange
or a decision-making) need to be triggered when outputs of agent-specific planning
operations (e.g., reduce or map) change (marginally or significantly), e.g., due to new
measurements and/or flexibility and prescription model updates received from successor
and predecessor agents and/or external sources.

Example 10.9 (Action triggering in MIRABEL). In the MIRABEL use-case,
an aggregator agent needs to aggregate flex-offers (using reduceA) and then commu-
nicate the resulting aggregated flex-offers to successor BRP agents only if these aggre-
gated flex-offers change significantly due to newly received flex-offers from predecessor
agents. Similarly, a BRP agent needs to (re-)schedule flex-offers (using reduceB) and
then communicate the resulting prescription model instances to predecessor aggrega-
tor agents every time flex-offers (fmulti) or forecasts of inflexible consumption and
production (tscons`prod) changes significantly.

The traditional approach for detecting changes in planning operation (function)
output requires repeatedly re-estimating the output as well as continuously polling a
database for input data. This is very inefficient if instances of flexibility (or prescription)
models change only marginally leading to high application costs. To prevent the polling,
the proposed RT-ready planning component allows for continuous subscription-based
queries (shown in Example 10.3), which can be registered and then efficiently processed
utilizing the subscription processor (see Figure 10.1). Such subscription-based queries
can be either model-specific or SQL-based, as exemplified below.

Example 10.10 (Aggregated flex-offer notifications). The following continu-
ous subscription-based query allows requesting aggregated flex-offers and then be no-
tified about new aggregated flex-offers each time they change by more than 10kWh
(from the previously reported flex-offers):
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NOTIFY ON energy_delta > 10000
reduceA(getFlexOffersInDedicatedStore());

Notifications are caused by flex-offer inserts and deletes resulting after they are re-
ceived from other agents or expire due to inherent deadlines (e.g., latest assignment
time or latest start time). These flex-offer inserts and deletes can be easily processed
using the proposed incremental aggregation technique (Section 6.5), allowing to update
aggregated flex-offers incrementally as shown in Figure 10.3.

Example 10.11 (Forecast notifications). Similarly to the subscription-based ag-
gregation query, the following continuous subscription-based forecast query (similar to
that from Section 7.1.4) allows requesting forecasts for the next 24 hours and then be
notified when they change by more than 10%:
NOTIFY ON error_threshold >= 0.1

SELECT hour(time), SUM(energy) energy_per_hour
FROM InflexConsumption_TSview
WHERE time IN (tomorrow())
GROUP BY hour(time)

To efficiently process this query, a DBMS with the forecasting capability (see Chap-
ter 9) must be further enhanced to support the continuous maintenance of associated
forecast models (see Figure 10.4). For each new measurement, a model update (1) is
initiated. First, the model evaluation (2) checks a forecast model error with regard to
the new measurement. If the error exceeds a given threshold, the model adaptation
(3) is triggered in order to re-estimate the model parameters. In many cases, model
parameters can be maintained incrementally, which is less expensive than recomputing
them from scratch. A notification is generated by the DBMS only if forecasted values
differ from the previously reported by more than the given threshold.

When a notification is generated, the RT-ready planning component then invokes an
associated handler (e.g., from the control or the GUI component), which can also process
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an updated query result incrementally for efficiency reasons, as exemplified below.

Example 10.12 (A notification-driven incremental decision-making).
When flexibility (or prescription) model instances change and associated notifications
are generated, a decision-making handler is invoked for building and solving a
decision model instance (solve, solveM , or solveR), which is costly. In many cases,
an existing solution to a decision problem can be incrementally maintained using
some incremental optimization technique [100] (see Section 8.6). Such techniques
can, potentially, be integrated into SolveDB (see Chapter 8) such that the specifics of
incremental solution maintenance are transparent to a user and encapsulated under
the following data manipulation language (DML) statement:

REFRESH MATERIALIZED VIEW some_solve_query_view;

Here, some_solve_query_view is a materialized view over a user-specified solve query
(see Section 8.6) representing a solution to a decision problem.

In summary, subscription-based queries allow timely (not too early or late) notifica-
tions about changes of flexibility and prescription model instances, requiring no repeated
requests, polling of a database, and the blocking of an executing process. The frequency
of such notifications depends on a desired error, which can be freely chosen depending
on a particular use-case. A use-case where subscriptions are very useful is given below.

Example 10.13 (Model propagation in the MIRABEL ICT system). In
the MIRABEL use-case, aggregator and BRP agents need to exchange flex-offers
and flex-offer assignments. Instead of pulling such model instances, an agent can,
potentially, register a corresponding subscription-based query and then push deltas
(see Figure 10.3) when flex-offers and/or flex-offer assignments change (from the
previously communicated ones) by more than a desired error, thus optimizing agent’s
communication costs.

10.6 Experimental Results
We developed the initial prototype of the RT-ready planning component for the MIRABEL
use-case. In the prototype, we integrated (1) a dedicated disk-based store for measure-
ments, (2) a dedicated memory-based store for flex-offers, (3) flex-offer aggregation
techniques from Chapter 6, and (4) forecasting functionality tailor-made for the en-
ergy domain [93]. We used this prototype to explore the impact of (1) the dedicated
disk-based store for measurements, (2) flex-offer caching in main-memory prior-to an
aggregation, and (3) different forecast model maintenance strategies. Results of the
experimental evaluation are given in the corresponding sections below.
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Figure 10.5: The impact of storing measurements as database table (solid line) and as a disk-block
array (dotted line)

10.6.1 Experiments on dedicated storage
We now evaluate the impact of using the dedicated disk-based store for measurements
(see Section 10.2). For experiments, we used a real-world time series dataset with
110,000 measurements and a computer with Intel Core i7 CPU, 8 GB of RAM, and
Ubuntu (x86_64) OS. We represent the time series as (1) a database table and as (2) a
native disk-block array where time series values are stored sequentially. By varying the
selectively from 0.1% to 100% of the dataset, we measure the total time of: (1) evaluating
a simple query that only accesses the materialized time series data (see Figure 10.5(a))
and (2) building an instance of a forecast model which requires accessing the base data
multiple times (see Figure 10.5(b)).

As seen in Figure 10.5(a), the dedicated disk-based store allows achieving 4.5 time
speed-up for small time series ranges (selectively of 0.1%) and up to 1.8 time speed-up
for almost the entire dataset. This is achieved by keeping the heap organized, while
only accessing the needed pages and thus minimizing the disk bandwidth. Furthermore,
as no additional sorting is required, the dedicated store allows achieving up to 100
time speed-up for small time series ranges (i.e., selectively of 0.1%) and up to 1.3 time
speed-up for almost the entire dataset when building an instance of a forecast model.

10.6.2 Experiments on aggregation input caching
We now study the impact of caching (discussed in Section 10.3) applied prior-to the
lossy flex-offer aggregation (reduceA). In this experiment, we evaluate the throughput of
flex-offer updates that can be processed with our proposed single-time and incremental
flex-offer aggregation techniques from Chapter 6 when different levels of caching are
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Figure 10.6: The impact of caching flex-offer aggregation input

employed. For the experiment, we use exactly the same experimental setup and the
dataset as in Section 6.6.2 and set aggregation parameters so that the best scheduling
result is obtained (TFT “ 0 and EST “ 7). Like in the experiment from Section 6.6.1,
we initially aggregate 500000 flex-offers. Then, we continuously feed new and remove
existing flex-offers while keeping the total number of micro flex-offers equal to 500000. In
contrast to the experiment from Section 6.6.1, here we first cache (store) such flex-offer
inserts and deletes in the dedicated main-memory store and then process them in bulks,
where the size of a bulk determines the level of aggregation result up-to-dateness, i.e.,
small bulks yield up-to-date results while larger bulks yield slightly outdated results.
When the bulk of a certain size is formed, we trigger the aggregation. We evaluate
throughputs when the bin-packing (BP) feature is on and off. The BP-on means that
macro flex-offers are guaranteed to have the time flexibility of no less than 2 hours.

Figure 10.6(a) shows the 500000 flex-offer aggregation performance. When the BP
is off, 500000 micro flex-offers are aggregated into 90 macro flex-offers. When the BP
is on, the number of macro flex-offer is only 50 as some of the micro flex-offers are
excluded since they result in macro flex-offers with time flexibility lower than 2 hours
(which is not allowed by the aggregate constraint). Times spent aggregating with BP-
off and BP-on are 3 and 58 seconds, respectively. Figure 10.6(b) shows throughputs
of updates when the BP is off and (1) aggregating 500000 flex-offers from scratch for
each a new bulk (line with circles) and (2) incrementally maintaining macro flex-offers
using bulks of flex-offers (line with crosses). The throughputs of updates when the BP
is on are shown in Figure 10.6(c). As seen in the figures, the caching allows to speed-up
the aggregation in all cases (singe-time/incremental, BP-on/off), but always results in
(slightly) outdated results, where the level of result up-to-dateness is determined by the
size of a bulk (see Figures 10.6(b)–10.6(c)). Caching is more effective when flex-offers are
aggregated from scratch. When bulks are sufficiently large, caching may allow achieving
a throughput that is comparable to that of the incremental aggregation. Note that when
no caching is used, as seen in the figures, the throughput of the incremental aggregation
is by two orders of magnitude higher compared to the single-time aggregation.
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10.6.3 Experiments on forecast model maintenance
We now evaluate the influence of different forecast model evaluation and adaption strate-
gies (for the use-case from Example 10.11) using a publicly available energy production
data set [124]. It consists of a single aggregated wind energy time series from 2004
to 2006 in 10 min resolution. The experiment is conducted using Holt-Winters Triple
Seasonal Exponential Smoothing, which is a forecast model tailor-made for the energy
domain [93]. To measure the forecast accuracy, we use the symmetric mean absolute
percentage error (SMAPE), which is a scale-independent accuracy measure and takes
values between 0% and 100%. The following experiments were executed on an IBM
Blade (Suse Linux, 64 bit) with two processors and 4 GB RAM.

In a first experiment, we explore the influence of different model evaluation strategies.
A first model evaluation strategy never adapts the model parameters, while a second
strategy always adapts the forecast model after each new measurement. Finally, our
third strategy triggers a model adaption based on a combined time- and threshold-based
approach. For this last approach, we set the time limit to 24 hours and the threshold
to 2.5%. Figure 10.7(a) shows the development of the model accuracy for a series of
inserts on the time series for each of the three strategies, while Figure 10.7(b) shows the
estimated number of inserts per second we can achieve with the corresponding strategy.
First of all, we can observe that model adaption always leads to a lower forecast error
compared to no adaption at all and thus is required to achieve the best possible accuracy.
However, if we adapt the model after each new measurement we achieve a much lower
throughput compared to no adaption. In comparison, our time- and threshold-based
approach still leads to a low forecast error but increases the throughput.

In a second experiment, we examine a single model adaption step more closely by
comparing the error development of three important parameter estimation strategies
(Figure 10.7(c)). In detail, we measure the accuracy over time of a single adaption step
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using Simulated Annealing, Random Search, and Random Restart Nelder Mead. As it
can be seen, all algorithms converge to a result having similar accuracy, where Random
Restart Nelder Mead requires much less time than, for example, Simulated Annealing.
Thus, the model adaption strategy has a high impact on the required time and needs
to be set accordingly.

10.7 Summary and Discussion
We have presented the architecture of the agent’s planning component (Section 4.1)
for the real-time setting. The architecture enables storage and query processing op-
timizations and offers many useful features such as model-specific, approximate, and
subscription-based queries. Experiments with our initial MIRABEL-specific prototype,
integrating (some of) the proposed techniques, witness significant performance improve-
ments when storing/accessing (historical) measurements, aggregating flexibility models,
and maintaining forecast models.

In order use the proposed optimizations and features when designing other Pre-
scriptiveCPS instances for the real-time setting, tailor-made customizations and adap-
tations have to be made in order to adapt to and to exploit properties and specifics of
flexibility and prescription models employed by a concrete PrescriptiveCPS instance.
Note, tailor-made customizations and adaptations, in contrast, are not required by the
generic DBMS with built-in analytics (Chapters 7–9).

When such a tailor-made RT-ready planning component is combined with the generic
analytical DBMS (Chapters 4–10) and carefully integrated into a single joint system of
an agent, the agent is equipped with a very powerful prescriptive analytics technology
allowing to meet all the stated flexibility and prescription model management require-
ments (Requirements 1–10), which is not possible with existing systems. We now briefly
contrast the capabilities of such integrated agent software system to existing work.

Event engines [125], for example, do not support complex analytical queries and
advanced analytics (e.g., forecasting or optimization problem solving). Pure data stream
management systems [126] can cope with high-rate input streams and rather complex
queries, however, ad-hoc data analysis and advanced analytics on historical, present,
or future data are impossible. From the more traditional DBMS side, read-optimized
data organization such as column-oriented data management or hybrid OLTP/OLAP
solutions [127] provide efficient ad-hoc data analysis but exhibit drawbacks with regard
to write-intensive applications. In the traditional (descriptive) data warehouse area,
real-time data warehouse approaches try to cope with a continuous stream of write-only
updates and read-only queries at the same time [128]. However, they still lack many
prescriptive analytics tools (e.g., forecasting or optimization problem solving) and none
of them natively support flexibility, decision, and prescription models.
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Flexibility and Prescription
Model Visualization

In this chapter, we focus on the graphical user interface (GUI) component of a Pre-
scriptiveCPS agent software system and show how flexibility and prescription models
can be visualized and graphically analysed. In general case, the required model anal-
ysis and visualisation is specific to a PrescriptiveCPS agent and/or agent role, and
depends on the employed types of flexibility and prescription models, users, business
processes, etc. For specificity, we focus on the MIRABEL use-case and aim to design and
implement a visual model analysis framework, considering agents in the BRP role and
their used BG flexibility and prescription models (see Section 3.6). First, in Section 11.1,
we formulate high-level requirements for such a visualization framework, considering the
MIRABEL use-case. Then, in Section 11.2, we present our initial results implementing
visual model analysis framework for the BRP role. Finally, in Sections 11.3–11.4, we
discuss related work and generalize the proposed model visualization ideas for other
instances of PrescriptiveCPS. This chapter is based on Publication [9].

11.1 Model Visualization and Analysis in MIRABEL
Consider the MIRABEL use-case and a potential BRP enterprise using the discussed
PrescriptiveCPS agent software system (Chapter 4). The BRP’s system (potentially)
integrates the most of the analytical capabilities, compared to corresponding systems
of other MIRABEL actors. As shown earlier, such agent system manages BG flexibility
and prescription model instances represented as sets of flex-offers, flex-offer assignments,
and time series (Section 3.6). To perform online and offline analysis of all such data,
(human) users require model visualization and visual analysis tools, e.g., for decision
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Figure 11.1: The structural elements of flex-offers/flex-offer assignments

models building and adaptation (Requirement 9) and other use-cases.

Example 11.1 (Flexibility and prescription model analysis). To find out the
reason behind the shortage of electricity, it is important for BRP to be able to see
relevant geographical areas on a map with an option to drill down to the level of
individual flex-offers.

We now consider such a BRP enterprise and present the essential types of views over
flex-offer data in the form of requirements for a BRP-specific graphical user interface
(GUI) – referred as visual model analysis framework. We assume flex-offers with the
complete (rich and realistic) set of attributes discussed in Chapter 5.

Given flexibility and prescription model (BG) instances stored in a database (Chap-
ter 5), the framework must allow for an in-depth analysis of individual model parts
(time series and flex-offers) and summaries over models as the whole (e.g., the amount
of stimulus). When visualizing individual model parts, the discussed elements of a
flex-offer and a flex-offer assignment (shown in Figure 11.1) must be clearly visible.
For time series data, traditional time series visualization techniques (to be surveying
in Section 11.3) must be provided. When visualizing model summaries, the following
statistics, among others, are essential and must be provided:

Flex-offer count defining the total number of accepted, assigned, or rejected flex-
offers.
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Flex-offer attribute value summarizing the values of a particular flex-offer attribute,
e.g., minimum/maximum/average energy or time flexibility defined by flex-offers.

Scheduled energy defining the amount of energy that is planned utilizing flex-offers.

Amount of stimulus and response providing an estimate on how well energy can
be balanced utilizing flex-offers (see Section 6.2).

Forecast/plan deviations specifying the difference between the amounts of forecast-
ed/scheduled energy and actually (physically) consumed or produced energy, con-
sidering that the flexibility model captures the (invariant) measurements of actu-
ally consumed amount of energy.

For all flex-offer elements and statistics, the framework must support filtering and
grouping on the following types of flex-offer attributes:

Temporal allowing to select data for a particular time interval and to analyse data at
different time granularities.

Spatial geographical allowing to select data for (or group on) a spatial object, e.g.,
country, city, or district. A user-friendly view (see an example in Figure 11.2) to
explore and filter flex-offer data on a map must be provided.
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Figure 11.3: The example of the schematic view of flex-offers
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Figure 11.5: The example of the dashboard view of flex-offers

Spatial topological allowing to select data for (or group on) the topological or elec-
trical structure the electricity grid, e.g., for a particular 110kV transmission line.
A user-friendly view (see an example in Figure 11.3) to explore and filter flex-offer
data on a topological map must be provided.

Energy type allowing to select data associated with a particular energy type, e.g.,
renewable energy from hydro power plants.

Prosumer type allowing to select data associated with a particular prosumer type,
e.g., small industrial power plants.

Appliance type allowing to select data associated with a particular appliance type,
e.g., electric vehicles.

In addition, the nesting of multiple filtering and grouping operations must be sup-
ported.

Example 11.2 (Multiple grouping attributes). Counts of accepted flex-offers in
the west Denmark in the period from Jan-2013 to Feb-2013 grouped by cities and
energy type are interesting and must be retrieved by the framework.

Moreover, to support filtering and grouping tasks, intuitive dimension hierarchies as
those in OLAP has to be created for all these types of attributes. A convenient OLAP-
based “pivot-table” view to explore flex-offer data must be provided (see an example
in Figure 11.4). In the view, a user must be able to choose a preferred dimension
hierarchy (e.g., prosumer type), navigate (drill up and down) hierarchy members from
the most summarized (e.g., all prosumers) to the most detailed (e.g., household), and
analyse the preferred elements or the measures (e.g., flex-offers, see above for more) on
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multiple swimlanes in the view. For the view, a possibility to manually formulate a
query (e.g., SQL or model-specific, as shown in Chapter 10) must be provided. Finally,
a view to summarize the complete flex-offer data for the selected time interval (see an
example in Figure 11.5) must be offered.

In the next section, we describe our initial results when implementing the BRP-
specific visual model analysis framework.

11.2 Initial Results When Implementing Visual Model
Analysis Framework

We have built a visualization tool offering only the subset of the described features (de-
fined in Section 11.1). The tool is capable of visualizing a large number of flex-offers on a
computer screen and it allows interactively performing an in-depth analysis of individual
flex-offers. It currently supports the flex-offer aggregation, the disaggregation, and the
basic filtering functionality. Time series are visualized as flex-offers with no flexibility
(stimulus). In the rest of the section, we provide a walk-through of its functionality by
starting with the data loading and ending with its useful graphical enhancements.

Figure 11.6: The flex-offer loading tab in the main window

First, the tool reads flex-offers and related data from a database employing the
MIRABEL DW schema, presented in Chapter 5. When the tool connects to a database
(PostgreSQL), a user can choose a specific legal entity (a prosumer), whose flex-offers
the user wishes to visualize (see Figure 11.6). The user can also select an absolute time
interval, for which flex-offers needs to be selected.

When flex-offers are read, a new flex-offer view tab is created in the main application
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Figure 11.7: The basic view of flex-offers

window (see additional tabs for two read operations in Figure 11.7). There are two flex-
offer views currently supported: the basic and the profile view. Both these views show
the set of flex-offers in a graph with the abscissa axis corresponding to time. Depending
on the view, the ordinate axis in the graph is unit-less (see Figure 11.7) or shows energy
(see Figure 11.8). As flex-offers are temporal object which may potentially overlap in
time, boxes representing flex-offers (see Figures 11.7–11.8) are stacked on each other
thus occupying one of several ordinate axes in the graph.

The basic view (see Figure 11.7) is used to show a large numbers of flex-offers by
visualizing only the most essential properties of a flex-offer: (1) duration of energy
profile (light blue or red rectangles), (2) time flexibility interval (grey rectangles); (3)
scheduled starting time of a respective appliance (red solid lines). Aggregated (light
red rectangles) and non-aggregated (light blue rectangles) flex-offers are distinguished
by a colour. Such flex-offer view allows observing abnormalities in both individual flex-
offers (e.g., unexpectedly long energy profiles) and large flex-offer sets (e.g., missing
assignments in some time interval).

The profile view (see Figure 11.8) is used to provide the detailed flex-offer represen-
tation (see Section 11.1). The view is effective for a smaller flex-offer set with less than
few thousands of flex-offers. It allows exploring the actual (minimum and maximum)
energy bounds at every profile interval (slice), and, thanks to the synchronized scales
of all ordinate axes, comparing them across multiple flex-offers. In addition to energy
bounds, it shows the scheduled amounts for every profile interval (red solid lines).

Irrespectively for the selected view, the visualization tool provides additional in-
formation about flex-offers when pointing their representations with a mouse pointer
(see Figure 11.9). This includes the markers (yellow lines) for user-specified creation/ac-
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Figure 11.8: The profile view of flex-offers

ceptance/assignment times of a flex-offer as well as indications (red dashed lines) on
which flex-offers were aggregated to produce the pointed flex-offer. The mouse action
can be changed to allow the interactive selection of flex-offers. Flex-offers can be se-
lected one-by-one or by drawing a rectangle (see dashed red rectangle in Figure 11.7).
The selected flex-offers can be shown on a different tab, removed from the current view,
or processed with the tools from the main menu.

The visualization tool integrates the flex-offer aggregation and disaggregation func-
tionalities, presented in Chapter 6. This allows reducing the count of flex-offers shown on
a screen by aggregation, and interactively tuning values of the aggregation parameters.

Finally, the tool offers useful graphical enhancements such as automatic selection
of “pretty scales” of the axes, as well as the incremental rendering of flex-offers, which
allows executing actions when a flex-offer rendering is in progress.

As mentioned before, the presented flex-offer visualization tool offers only the subset
of the functionality of the complete the visual flex-offer analysis framework. As the next
immediate enhancement, the basic and the detailed views will be integrated into the
pivot view (see the description of Figure 11.4), where the flex-offer aggregation will be
applied to produce inputs for the flex-offer visualization on swimlanes (see Figure 11.4).
Later, the remaining functionality of the framework will be implemented.

In the next section, the related work is reviewed.

11.3 Related Work
The information visualization is an active and still emerging field offering approaches
to see, explore, and understand large amounts of information in intuitive ways. Con-
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Figure 11.9: On-the-fly information about flex-offers

sequently, much work has been done in this broad discipline, and there is a number of
publications surveying the accomplished results [129–131] and guides on how one should
properly display [132] and visually analyse [133] information. In this context, flex-offers
being special instances of flexibility models are novel concepts and thus the visualization
of flex-offers has not been addressed yet. Nevertheless, flex-offers can also be seen as
instances of multi-dimensional, spatial, temporal, spatio-temporal, and energy data and
methods for effectively visualizing such type of data has already been proposed.

First, the well-known OLAP (Online Analytical Processing) techniques to manage
multidimensional data leaded to the research field of Visual OLAP [134]. There, the tra-
ditional 2D interface for analysing multidimensional data is a pivot table (or cross-tab)
view [135]. The current state-of-the-art (the survey [135] is available) enhances the pivot
table view via providing the set of popular visualization techniques, such as bar-charts,
pie-charts, and time series, as well as more sophisticated visualization layouts such as
scatter plots, maps, tree-maps, cartograms, matrices, grids, and vendors’s proprietary
visualizations (e.g., decomposition trees and fractal maps). Recently, 3D interfaces for
OLAP were explored [136].

Second, more general approaches to visualize multidimensional data exist [137,138].
According to the survey [139], existing multidimensional visualization techniques are
classified as pixel-oriented (map data value to a coloured pixel), geometric projection
(e.g., parallel coordinates), iconography (map each data item to an icon), and hierar-
chical display techniques (e.g., dimensional stacking, tree-maps).

In addition, a variety of methods for visualizing time-oriented data have been pro-
posed. The survey [140] and the categorization [141] (systematic view) on the diversity
of all these methods exist. According to the categorization, methods are classified ac-
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Figure 11.10: Available tools for interactively managing flex-offers

cording to the (1) characteristics of time axis (e.g., time points v.s. intervals), (2) data
type (e.g., univariate v.s. multivariate), and (3) data representation (e.g., still images
v.s. animations). Time-series is the special case of a time-oriented data, and a number
of visualization techniques were proposed [142–144].

For spatial data, a number of cartography/geo-visualization [145], topology-based [146],
and domain-specific [147] techniques were developed. In addition, techniques to visual-
ize spatio-temporal data [148] are classified according to (1) the types of spatio-temporal
data they are applicable to, and (2) the exploratory tasks they can potentially support.
Finally, techniques to visualize data of the regular [149,150] as well as of the smart [151]
electricity grid were proposed, but those - do not consider the visualization of flex-offer.

In the context of the surveyed work, our implemented flex-offer visualization tool em-
ploys the variation of histograms plot based on the dimensional stacking method [138],
where 2-dimensional subspaces are stacked onto each other. For the complete vi-
sual model analysis framework, existing visualization techniques, particularly those for
OLAP, geo-visualization, time series, and electricity data will have to carefully adapted
and integrated to support comprehensive visualization and analysis of flex-offers.

11.4 Summary and Discussion
In this chapter, we elaborated the graphical user interface (GUI) component of a Pre-
scriptiveCPS agent software system using the MIRABEL use-case and considering an
agent in the BRP role. First, we argued that the visualization of flexibility and prescrip-
tion models is important and is required by (human) users acting on behalf of a BRP,
for example, for a decision model building and adaptation (Requirement 9). Then, we
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have formulated high level requirements for BRP-specific visual model analysis frame-
work, which supports various visual analytic activities within the MIRABEL enterprise.
Such framework is required to provide (1) detail and summarized views over instances
of flexibility models (flex-offers) and (2) convenient OLAP-inspired approaches to nav-
igate and explore model data. Then, we have presented the flex-offer visualization tool
as our initial result implementing the complete framework. The flex-offer visualization
tool meets only the subset of all requirements for the framework, but it offers a novel
approach to visualize a large number of individual flex-offers. The approach employs
the variation of the histogram plot where 2-dimensional (time and energy) subspaces
are stacked onto each other. We have also discussed the immediate extensions of the
tool as milestones developing the full-featured visual model analysis framework. Finally,
as flex-offers can be seen are instances of multi-dimensional, spatial, temporal, spatio-
temporal, and energy data, we have reviewed the related work on the visualization of
those particular types of data.

In other instances of PrescriptiveCPS, flexibility and prescription models may,
potentially, be complex multi-dimensional entities exhibiting temporal, spatial, spatio-
temporal characteristics. For visualization of these, we encourage the use of the visual-
ization techniques introduced and surveyed in this chapter, of course, customized and
adapted accordingly to suite a particular use-case, agent role, or an individual agent.

The future work developing the BRP-specific visual model analysis framework en-
compasses the implementation of all the remaining functionality of the visualization
framework with a sufficient quantitative evaluation on how well the functionality serves
the end-user needs. Furthermore, an interesting future work is the development of the
integrated energy planning and control platform offering high level qualitative informa-
tion such as alerts about expected shortages or over-capacities and an option to drill
down data to find out a reason behind this. The platform might couple the function-
alities of the existing SCADA, ERP, planning, and auction bidding systems, and, in
addition to flex-offers, might integrate other types of data such as costs, prices, en-
ergy measurements and constraints as well as the forecasts of energy, weather, and the
flexibility of different types.
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Chapter 12

Conclusion and Future
Research Directions

This thesis addressed the problem of (1) designing a CPS for mixed-initiative (human
and machine-based) distributed continuous planning, (2) applying such a design in a
concrete real-world use-case, and (3) developing a software that supports the plan-
ning and control activities and offers (human) users prescriptive analytics tools. While
addressing this problem, the thesis presented a so-called PrescriptiveCPS – which
is (the conceptual model of) a multi-agent, multi-role, and multi-level CPS with dis-
tributed continuous planning capabilities. PrescriptiveCPS was demonstrated in the
use-case of the MIRABEL project, where a large-scale CPS, shown to be a specialized
instance of PrescriptiveCPS, was designed and prototyped for balancing electricity
consumption and production in the power grid with a large number of renewable energy
sources (e.g., windmills). The thesis proposed and demonstrated software that can (po-
tentially) be used by PrescriptiveCPS agents to support their pursued planning and
control activities. The proposed agent software integrates many data management and
prescriptive analytics techniques (incl., model aggregation/disaggregation, problem solv-
ing, real-time processing, and visualisation techniques), which were demonstrated in the
thesis, together with the results of their experimental evaluation. PrescriptiveCPS
was described at the three levels of scale: (1) the level of system of agents (CPS), (2)
the level of an agent, and (3) the level an agent software component. Contributions at
all these levels are summarized in the individual parts of the next sections.

185
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12.1 Contributions
We now overview the contributions of this thesis by using the notations and elaborating
on (where relevant) the initial summaries of contributions from Section 1.6.

Contributions at the CPS level
1. In Section 3.1, the definition of PrescriptiveCPS was provided. Prescrip-

tiveCPS was defined as the system of interacting physical and cyber (sub-)systems,
where the cyber system is a system of systems, consisting of a set of inter-connected
agents that form a hierarchy based on their obedience to each other. Agents collec-
tively manage instances of so-called flexibility (world), decision, and prescription
models, which are short-lived, focus on the future, and represent (1) capability,
an (2) (agent owner) intention, and (3) actions to change the behaviour (state) of
a physical system, respectively.

2. In Section 3.2, the definition of flexibility, decision, and prescription models was
presented, by showing how these models are related and formally defined.

3. In Section 3.3, the semantics of PrescriptiveCPS was given in terms of core
planning operations (e.g., map, reduce, solve), which transform flexibility, deci-
sion, and prescription model instances.

4. In Section 3.5, the set of agent roles were defined. An agent can, potentially,
take one or more of such roles depending on the set of core planning operations it
supports.

5. In Section 3.6, the defined concepts were elaborated using the specialized Pre-
scriptiveCPS instance from the MIRABEL project.

Contributions at the agent level
6. In Section 3.7, data management functional and non-functional requirements were

specified separately for all PrescriptiveCPS agents and specific agent roles.

7. In Section 4.1, the architecture of an agent software system was proposed. The
architecture integrates the number of components specially designed or enhanced
to satisfy the agent-specific functional and non-functional requirements. Addi-
tionally, the overviews of capabilities and functionality of these components were
provided.
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Contributions at the agent component level
8. In Chapter 5, the schema of a multi-dimensional data warehouse for the

MIRABEL use-case was proposed and generalized for other PrescriptiveCPS
instances. The proposed MIRABEL data warehouse schema can be used for stor-
ing MIRABEL-specific instances of flexibility and prescription models (and re-
lated data). It has a number of interesting complexities such as facts about facts
and composed non-atomic facts. Alternatives schemas using denormalization and
arrays were considered and experimentally evaluated, but based on the perfor-
mance and space usage, the chosen design is favourable. Other similar instances
of PrescriptiveCPS may reuse the modelling strategies and/or schema elements
applied for the MIRABEL use-case, e.g., the modelling of roles and time series.

9. In Chapter 6, the techniques to aggregate flexibility model instances and disag-
gregate prescription model instances were demonstrated in the MIRABEL use-case
and generalized for other PrescriptiveCPS instances. Utilizing extensive ex-
periments, it was shown that an efficient (lossy) aggregation allows (substantially)
reducing the complexity of decision problems and thus obtaining (up to 20 times)
better quality decisions (solutions) in cases when solving (decision-making) time
is limited. An efficient incremental aggregation technique was presented, allowing
to update aggregated model instances incrementally (after changes in input) and
requiring no complete re-computation.

10. In Section 7.1, the design of a DBMS with built-in time series forecasting
functionality was presented. The DBMS is based on the standard ANSI/SPARC-
based architecture and supports so-called forecast queries allowing to compute
forecasted (future) time series values (to be used as part of flexibility models) based
on historical measurements in a database. The DBMS allows transparent, efficient,
and end-to-end execution of forecast queries and offers increased tool usability, user
productivity, and forecasting performance compared to the traditional forecasting
process. Various integration aspects, requirements, and challenges associated to
built-in time series forecasting were discussed.

11. In Section 7.2, the domain-specific (MIRABEL-specific) software architecture
and the approaches for forecasting instances of flexibility models were presented.
The demonstrated approaches utilize detailed information about a domain to con-
vert (augment) forecasted time series into flexibility model instances specific to
the MIRABEL use-case.

12. In Chapter 8, the design of a DBMS with built-in optimization problem solving
functionality was presented. The DBMS enables so-called solve queries that offer
a common language for queries and optimization models, both expressed using
Structural Query Language (SQL) constructs. As part the contribution, the ex-
tensible solver infrastructure was presented. It allows integrating (into a DBMS) a
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variety of solvers, each of which tackles a specific class of problems, e.g., linear pro-
gramming. Additionally, query optimization techniques were presented, allowing
to increase the execution performance and/or result quality. The presented results
of extensive experiments with the PostgreSQL-based implementation showed that
the integrated DBMS significantly reduces the number of lines of code (by 1.3-15
times), I/O time (by 1.7-18.6 times), and total time (up to 62 times with optimiza-
tions applied) compared with existing optimization software, leading to increased
user productivity and problem solving performance.

13. In Chapter 9, a what-if analysis based on hypothetical what-if scenarios and
flexibility and prescription models was demonstrated in the MIRABEL use-case.
For the demonstration, we proposed the extension of SQL for being able to specify
scenarios and to process what-if queries based on these scenarios inside an agent’s
DBMS. Utilizing built-in forecasting and optimization functionalities as well as
what-if scenarios and flexibility and prescription models stored in a database, an
analyst is offered simplified powerful ways to analyse past, current, and future
data.

14. In Chapter 10, the real-time data management architecture for processing in-
stances of flexibility and prescription models under (soft or hard) timing con-
straints was proposed. The proposed architecture enables storage and query
processing optimizations and offers many useful features such as model-specific,
approximate, and subscription-based queries. The experiments with our initial
MIRABEL-specific prototype, integrating (some of) the proposed techniques, wit-
nessed significant performance improvements when storing/accessing (historical)
measurements, aggregating flexibility models, and maintaining forecast models.

15. In Chapter 11, the design of the MIRABEL-specific graphical user interface
(GUI) was presented. It allows displaying and visually analysing instances of flexi-
bility and prescription models that are specific to a particular agent role (BRP) in
the MIRABEL use-case. The presented initial implementation is able to visualize
large amounts of such complex model instances and offer generalized and in-depth
analysis of all such data.

12.2 Discussion
Functionality underlying all these contributions is the integral part of our proposed Pre-
scriptiveCPS. Unlike CPSs existing today, PrescriptiveCPS continuously, auto-
matically, an in (near) real-time (1) collects and consolidates information about the
physical world, (2) makes predictions, (3) solves optimisation problem instances to find
(optimal) decisions, and (4) finally applies these decisions to the physical world. It
was shown that multiple instances of these planning activities may coexist, and they
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are performed in parallel (in the distributed fashion) by, potentially, a large number
of PrescriptiveCPS agents in different roles such as sensor, actuator, forecasting,
aggregator, disaggregator, and global prescriptor, with the activity delegations shown
in Figure 12.1.

PrescriptiveCPS can automatically take decisions, but, unlike artificial intelli-
gence (AI) systems, lacks the ability of setting and achieving goals autonomously with-
out human intervention. For setting goals, and for monitoring that the goals are actually
met, inputs from (human) analysts are required (see Figure 12.1). PrescriptiveCPS
allows setting goals for each agent independently, and these goals might be comple-
mentary or conflicting, resulting into, potentially, complex intermixed collaborative and
competitive patterns of agents’ behaviour. For analysing single agent behaviour under
various goals set, the thesis described various software-based prescriptive analytics tools
helping (human) analysts to ask various complex questions about past, presence, and
future. However, they were not designed for assessing the joint behaviour of multiple
(or all) PrescriptiveCPS agents. For this, additional PrescriptiveCPS simulation
models (environments) are required, as pointed by future work in the next section.

Identify Alternative Decisions

Model System’s Response to 
Alternative Decisions

Choose Best Decision

Implement Decision

Monitor

Collect and Consolidate 
Information

Make Predictions

Sensor agents

Forecasting agents

Global prescriptor 
agents

Actuator agents

Aggregator 
agents

Disaggregator 
agents

Human analysts

Identify Objectives Perform Analysis

Figure 12.1: The involvement of PrescriptiveCPS roles and (human) analysts in different activities
of planning and control

We believe that this thesis makes a significant step towards developing technology
for CPSs to be witnessed in the future. In contrast to traditional CPSs existing today,
our proposed PrescriptiveCPS, with all the contributions of this thesis, allows ac-
commodating all of the following complexities, often raising insurmountable challenges
for the traditional systems (see Figure 12.2):

• Large numbers of agents (e.g., for each household in Europe, considering the
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Figure 12.2: The capabilities of PrescriptiveCPS in the context of traditional and future CPSs

MIRABEL use-case) which are semi-homogeneous (i.e., differing in terms of their
roles) and with substantial cognitive capabilities (incl., forecasting, optimization,
and what-if).

• Volatile continuous physical systems (environments) where accurate long-term pre-
dictions are not feasible or possible only higher aggregation levels.

• Hierarchical agent organization patterns which reflect the view of the physical
world (e.g., prosumer, BRP, and TSO).

To counter these complexities, the theories and techniques presented in this thesis al-
low developing large-scale (e.g., continent- or world-scale) CPSs, which asynchronously,
continuously, and in (near) real-time transform (drive) momentary knowledge about the
physical world into prescriptions (decisions) – where the physical world is perceived and
actuated by a large number of sensor and actuator agents, respectively. This trans-
formation is done via decision-making agents that not only generate prescriptions but
also fuse, consolidate, and reshape a knowledge about the physical world, and pass the
knowledge to other (higher-level) decision-making agents if required. To counter (and
take advantages of) sporadic and rapid changes in a volatile physical system, the pro-
posed real-time optimisations and incremental techniques can be utilized. Alternatively,
decision-making can be brought “close to” the physical system by configuring a single
agent (or adjacent peer agents) to take the sensor, actuator, and decision-making roles
and thus lowering a decision making latency. If needed, agents can be organized to
mirror the organizational view of the physical world.
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Furthermore, this thesis proposed software-based techniques allowing to equip agents
with substantial cognitive capabilities (when needed). The most significant are the
novel in-DBMS techniques allowing to (1) forecast, (2) solve optimisation problems,
and (3) perform what-if analysis “close-to-the-data”, transparently to the user, and
using declarative SQL-based constructs. None of such integrated data management and
analytics functionalities (individually or as a group) were previously considered in the
literature and/or are supported by business intelligence (BI) tools existing today.

In spite of all the thesis contributions, there are still many challenges to be addressed
for future CPSs (see Figure 12.2). Some of these challenges have not been considered in
this thesis but can be tackled by specialized PrescriptiveCPS instances. Remaining
challenges are insurmountable for PrescriptiveCPS. While following the limitations
shown in Figure 12.2, challenges from both categories are exemplified below.

PrescriptiveCPS may support, but the thesis did not consider agents that are (1)
intelligent (cognitive) and are able to set and achieve goals autonomously and learn from
past experience, (2) very heterogeneous ranging from nano-scale resource-constrained
devices to powerful large-scale cloud-based systems, and/or (3) with limited access to
the physical environment that is hardly foreseeable.

PrescriptiveCPS is susceptible to a single point of failure due to a single agent
(or few agents) at the highest level of the agent organization hierarchy. To avoid this
problem, agents in future CPSs may follow, for example, a distributed interaction pattern
where they self-organize to optimize their interaction or to accommodate to changes in
the organizational view of the physical world. In this case, agent roles need to become
transferable, i.e., delegable to various agents at run-time. For such a distributed setting,
the presented PrescriptiveCPS is not sufficient and needs to be further extended.

Addressing these challenges is future work. More future work is overviewed in the
next section.

12.3 Future Work
There is plenty of future work to be done at all levels of a CPS system. This includes
immediate work to be done in the scope of PrescriptiveCPS as well as work to
be done for planning-capable CPSs in general. We now review future work in these
categories individually.

Immediate future work on PrescriptiveCPS
At the PrescriptiveCPS component level, future work may consider:

• Different flexibility and prescription model storage approaches (e.g., using files,
model-repositories, or no-SQL/array-based/main-memory databases) and their
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comparison to the integrated relational DBMS approach, presented in this the-
sis. Also, processing flexibility and prescription models as streams, scientific, or
Hadoop-based workflows is an interesting future work.

• Novel flexibility model aggregation and disaggregation techniques that automati-
cally adjust the losses of a stimuli and responses to, for example, momentary agent
system loads or new planning objectives.

• The implementation of the presented forecasting-capable DBMS and its experi-
mental evaluation, for practically showing advantages, gained with respect to the
traditional time series forecasting approach.

• New query optimization techniques that optimize queries involving what-if anal-
ysis, forecasting, and optimization problem solving. The design and the exper-
imental evaluation of a DBMS with such query optimization capabilities is an
interesting future work.

• A comprehensive evaluation of the RT-capable planning component integrating
all the presented storage and query processing optimizations techniques.

At the PrescriptiveCPS agent level, future work may consider:

• The implementation of an agent software, developed according to the proposed
design, and its experimental evaluation in a simulated PrescriptiveCPS envi-
ronment, where time, message exchange, physical sensing/actuation are simulated
according to user-defined simulation (incl., stressful) scenarios.

At the CP level, future work may consider:

• The prototype of the complete PrescriptiveCPS, for studying the joint effect
of many interacting agents and their joint capability to plan and control the be-
haviour of a concrete physical system (or processes).

Future work on CPSs in general
Planning under uncertainty, where stimuli and responses in flexibility models are de-
fined as probability distributions, is an interesting future work, which considers the
use of PrescriptiveCPS in hardly foreseeable and accessible physical environments
(see Figure 12.2).

PrescriptiveCPS does not consider many other aspects related of practical use of
a CPSs with planning capabilities. Future work may consider different agent hardware
architectures, communication protocols, and standards as well as the resilience to failures,
malicious behaviour, and attacks (e.g., man-in-the-middle, DDoS).

Privacy and security of data as well as the integration of various PrescriptiveCPS
instances to other existing systems (e.g., social-networks) are other directions of future
work.



Dansk Resumé (Summary in
Danish)

Mere og mere af vores fysiske verden bliver overvåget og kontrolleret af såkaldte cyber-
fysiske systemer (CPSer). Disse er sammensætninger af netværksbaserede autonome IT
(cyber) og fysiske (physical) agenter, såsom sensorer, aktuatorer, beregningsenheder, og
mennesker. I dag er CPSer stadig forholdsvis små og meget begrænsede i forhold til de
CPSer vi kan forvente i fremtiden. Fremtidige CPSer forventes at være langt mere kom-
plekse, storstilede, udbredte, og missionskritiske, og vil kunne findes i en række områder
såsom transport, medicin, produktion og energi, hvor de vil give mange fordele, såsom
øget effektivitet, bæredygtighed, pålidelighed og sikkerhed. For at frigøre CPSernes
fulde potentiale, skal de bl.a. udstyres med støtte til automatiseret planlægning og kon-
trol, hvor beregningsagenter i samspil og løbende planlægger og styrer deres handlinger
på en intelligent og velkoordineret måde for at sikre og optimere en fysisk proces, såsom
elforsyningen i elnettet.

I nuværende CPSer er styringen typisk automatiseret, mens planlægningen udeluk-
kende er foretaget af mennesker. Det er umuligt for mennesker at planlægge hver han-
dling i et fremtidigt CPS på grund af kompleksiteten, skalaen, og omskifteligheden af
en fysisk proces. På grund af disse egenskaber, skal kontrol og planlægning være kon-
tinuerlig og automatiseret i fremtidens CPSer. Mennesker kan kun analysere og justere
systemets drift ved hjælp af det sæt af værktøjer, der understøtter præskriptive analyser
(prescriptive analytics), der giver dem mulighed for (1) at lave forudsigelser, (2) at få
forslagene fra de mest fremtrædende sæt handlinger (beslutninger), der skal tages, og
(3) at analysere konsekvenserne, hvis sådanne handlinger blev udført.

Denne afhandling omhandler planlægning og kontrol i forbindelse med store multi-
agent CPSer. Baseret på en smart-grid use case, præsenterer afhandlingen det såkaldte
PrescriptiveCPS hvilket er (den konceptuelle model af) et multi-agent, multi-rolle, og
multi-level CPS, der automatisk og kontinuerligt tager beslutninger i nær-realtid og lev-
erer (menneskelige) brugere præskriptiveanalyseværktøjer til at analysere og håndtere
det underliggende fysiske system (eller proces). I erkendelse af kompleksiteten af CPSer,
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giver denne afhandling bidrag til følgende tre niveauer: (1) niveauet for et (fuldt) Pre-
scriptiveCPS, (2) niveauet for en enkelt PrescriptiveCPS agent, og (3) niveauet for en
komponent af et CPS agent software system.

På CPS-niveau, omfatter bidragene definitionen af PrescriptiveCPS, i henhold til
hvilken det er det system med interagerende fysiske- og IT- (under-) systemer. Her
består IT-systemet af hierarkisk organiserede forbundne agenter der sammen styrer in-
stanser af såkaldte fleksibilitet (flexibility), beslutning (decision) og præskriptive (pre-
scription) modeller, som henholdsvis er kortvarige, fokuserer på fremtiden, og repræsen-
terer en kapacitet, en (brugers) intention, og måder til at ændre adfærd (tilstand) af et
fysisk system.

På agentniveau omfatter bidragene en tre-lags arkitektur af et agent software system,
der integrerer antallet af komponenter, der er specielt konstrueret eller udbygges til at
understøtte funktionaliteten af PrescriptiveCPS.

Komponentniveauet er hvor afhandlingen har sit hovedbidrag. Bidragene omfat-
ter beskrivelse, design og eksperimentel evaluering af (1) et samlet multi- dimensionelt
skema til at opbevare fleksibilitet og præskriptive modeller (og data), (2) teknikker
til trinvis aggregering af fleksibilitet modelinstanser og disaggregering af præskriptive
modelinstanser (3) et database management system (DBMS) med indbygget optimer-
ingsproblemløsning (optimization problem solving) der gør det muligt at formulere op-
timeringsproblemer ved hjælp af SQL-lignende forespørgsler og at løse dem "inde i en
database", (4) en realtids data management arkitektur til at behandle instanser af flek-
sibilitet og præskriptive modeller under (bløde eller hårde) tidsbegrænsninger, og (5)
en grafisk brugergrænseflade (GUI) til visuelt at analysere fleksibilitet og præskriptive
modelinstanser. Derudover diskuterer og eksemplificerer afhandlingen (men giver ingen
evalueringer af) (1) domæne-specifikke og in-DBMS generiske prognosemetoder der gør
det muligt at forudsige instanser af fleksibilitet modeller baseret på historiske data, og
(2) kraftfulde måder at analysere tidligere-, nutids- og fremtidsbaserede såkaldte hy-
potetiske hvad-hvis scenarier og fleksibilitet og præskriptive modelinstanser gemt i en
database. De fleste af bidragene på dette niveau er baseret på et smart-grid brugssce-
narie.

Sammenfattende giver afhandlingen (1) modellen for et CPS med planlægningsmu-
lighed, (2) design og eksperimentel evaluering af præskriptive analyse teknikker der gør
det muligt effektivt at forudsige, aggregere, disaggregere, visualisere og analysere kom-
plekse modeller af den fysiske verden, og (3) brugsscenariet fra energiområdet, der viser,
hvordan de indførte begreber kan anvendes i den virkelige verden. Vi mener, at dette
bidrag udgør et betydeligt skridt i retning af at udvikle CPSer til planlægningsbrug i
fremtiden.



Zusammenfassung (Summary
in German)
Mehr und mehr wird heute unsere physische Welt überwacht und durch sogenannte
Cyber-Physical-Systems (CPS) geregelt. Dies sind Kombinationen von vernetzten au-
tonomen cyber und physischen Agenten wie Sensoren, Aktoren, Rechenelementen und
Menschen. Heute sind CPS noch relativ klein und im Vergleich zu CPS der Zukunft
sehr begrenzt. Zukünftige CPS werden voraussichtlich weit komplexer, größer, weit
verbreiteter und unternehmenskritischer sein sowie in einer Vielzahl von Bereichen wie
Transport, Medizin, Fertigung und Energie – in denen sie viele Vorteile wie erhöhte
Effizienz, Nachhaltigkeit, Zuverlässigkeit und Sicherheit bringen – anzutreffen sein. Um
ihr volles Potenzial entfalten zu können, müssen CPS unter anderem mit der Unter-
stützung automatisierter Planungs- und Steuerungsfunktionalität ausgestattet sein, so
dass Agents ihre Aktionen gemeinsam und kontinuierlich auf intelligente und gut koor-
dinierte Weise planen und kontrollieren können, um einen physischen Prozess wie den
Stromfluss im Stromnetz sicherzustellen und zu optimieren.

Zwar sind in den heutigen CPS Steuerung und Kontrolle typischerweise automa-
tisiert, aber die Planung wird weiterhin allein von Menschen durchgeführt. Leider ist
diese Aufgabe nur schwer zu bewältigen, und es ist für den Menschen schlicht unmöglich,
jede Aktion in einem zukünftigen CPS auf Basis der Komplexität, des Umfangs und der
Volatilität eines physikalischen Prozesses zu planen. Aufgrund dieser Eigenschaften
müssen Steuerung und Planung in CPS der Zukunft kontinuierlich und automatisiert
ablaufen. Der Mensch soll sich dabei ganz auf die Analyse und Einflussnahme auf
das System mit Hilfe einer Reihe von Werkzeugen konzentrieren können. Derartige
Werkzeuge erlauben (1) Vorhersagen, (2) Vorschläge der wichtigsten auszuführenden
Aktionen (Entscheidungen) und (3) die Analyse und potentiellen Auswirkungen der zu
fällenden Entscheidungen.

Diese Arbeit beschäftigt sich mit der Planung und Kontrolle im Rahmen großer
Multi-Agent-CPS. Basierend auf dem Smart-Grid als Anwendungsfall wird ein sogenan-
ntes PrescriptiveCPS vorgestellt, welches einem Multi-Agent-, Multi-Role- und Multi-
Level-CPS bzw. dessen konzeptionellem Modell entspricht. Diese PrescriptiveCPS tr-
effen und realisieren automatisch und kontinuierlich Entscheidungen in naher Echtzeit
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und stellen Benutzern (Menschen) Prescriptive-Analytics-Werkzeuge und Verwaltung
der Leistung der zugrundeliegenden physischen Systeme bzw. Prozesse zur Verfügung.
In Anbetracht der Komplexität von CPS leistet diese Arbeit Beiträge auf folgenden
Ebenen: (1) Gesamtsystem eines PrescriptiveCPS, (2) PrescriptiveCPS-Agenten und
(3) Komponenten eines CPS-Agent-Software-Systems.

Auf CPS-Ebene umfassen die Beiträge die Definition von PrescriptiveCPS als ein
System von wechselwirkenden physischen und cyber (Sub-)Systemen. Das Cyber-System
besteht hierbei aus hierarchisch organisierten verbundenen Agenten, die zusammen In-
stanzen sogenannter Flexibility-, Decision- und Prescription-Models verwalten, welche
von kurzer Dauer sind, sich auf die Zukunft konzentrieren und Fähigkeiten, Absichten
(des Benutzers) und Aktionen darstellen, die das Verhalten des physischen Systems
verändern.

Auf Agenten-Ebene umfassen die Beiträge die Drei-Ebenen-Architektur eines Agen-
tensoftwaresystems sowie die Integration von Komponenten, die insbesondere zur besseren
Unterstützung der Funktionalität von PrescriptiveCPS entwickelt wurden.

Der Schwerpunkt dieser Arbeit bilden die Beiträge auf der Komponenten-Ebene,
diese umfassen Beschreibung, Design und experimentelle Evaluation (1) eines einheitlichen
multidimensionalen Schemas für die Speicherung von Flexibility- and Prescription-Models
(und verwandten Daten), (2) der Techniken zur inkrementellen Aggregation von In-
stanzen eines Flexibilitätsmodells und Disaggregation von Prescription-Models, (3) eines
Datenbankmanagementsystem (DBMS) mit integrierter Optimierungskomponente, die
es erlaubt, Optimierungsprobleme mit Hilfe von SQL-ähnlichen Anfragen zu formulieren
und sie „in einer Datenbank zu lösen“, (4) einer Echtzeit-Datenmanagementarchitektur
zur Verarbeitung von Instanzen der Flexibility- and Prescription-Models unter (we-
ichen oder harten) Zeitvorgaben und (5) einer grafische Benutzeroberfläche (GUI) zur
Visualisierung und Analyse von Instanzen der Flexibility- and Prescription-Models.
Darüber hinaus diskutiert und veranschaulicht diese Arbeit beispielhaft ohne detail-
lierte Evaluation (1) anwendungsspezifische und im DBMS integrierte Vorhersagever-
fahren, die die Vorhersage von Instanzen der Flexibility- and Prescription-Models auf
Basis historischer Daten ermöglichen, und (2) leistungsfähige Möglichkeiten zur Anal-
yse von Vergangenheit, Gegenwart und Zukunft auf Basis sogenannter hypothetischer
„What-if“-Szenarien und der in der Datenbank hinterlegten Instanzen der Flexibility-
and Prescription-Models. Die meisten der Beiträge auf dieser Ebene basieren auf dem
Smart-Grid-Anwendungsfall.

Zusammenfassend befasst sich diese Arbeit mit (1) dem Modell eines CPS mit Pla-
nungsfunktionen, (2) dem Design und der experimentellen Evaluierung von Prescriptive-
Analytics-Techniken, die eine effektive Vorhersage, Aggregation, Disaggregation, Visu-
alisierung und Analyse komplexer Modelle der physischen Welt ermöglichen und (3)
dem Anwendungsfall der Energiedomäne, der zeigt, wie die vorgestellten Konzepte in
der Praxis Anwendung finden. Wir glauben, dass diese Beiträge einen wesentlichen
Schritt in der zukünftigen Entwicklung planender CPS darstellen.
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