21,392 research outputs found

    Open issues in semantic query optimization in relational DBMS

    Get PDF
    After two decades of research into Semantic Query Optimization (SQO) there is clear agreement as to the efficacy of SQO. However, although there are some experimental implementations there are still no commercial implementations. We first present a thorough analysis of research into SQO. We identify three problems which inhibit the effective use of SQO in Relational Database Management Systems(RDBMS). We then propose solutions to these problems and describe first steps towards the implementation of an effective semantic query optimizer for relational databases

    Constrained Query Answering

    Get PDF
    Traditional answering methods evaluate queries only against positive and definite knowledge expressed by means of facts and deduction rules. They do not make use of negative, disjunctive or existential information. Negative or indefinite knowledge is however often available in knowledge base systems, either as design requirements, or as observed properties. Such knowledge can serve to rule out unproductive subexpressions during query answering. In this article, we propose an approach for constraining any conventional query answering procedure with general, possibly negative or indefinite formulas, so as to discard impossible cases and to avoid redundant evaluations. This approach does not impose additional conditions on the positive and definite knowledge, nor does it assume any particular semantics for negation. It adopts that of the conventional query answering procedure it constrains. This is achieved by relying on meta-interpretation for specifying the constraining process. The soundness, completeness, and termination of the underlying query answering procedure are not compromised. Constrained query answering can be applied for answering queries more efficiently as well as for generating more informative, intensional answers

    Identification of Design Principles

    Get PDF
    This report identifies those design principles for a (possibly new) query and transformation language for the Web supporting inference that are considered essential. Based upon these design principles an initial strawman is selected. Scenarios for querying the Semantic Web illustrate the design principles and their reflection in the initial strawman, i.e., a first draft of the query language to be designed and implemented by the REWERSE working group I4

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201

    Effective and Efficient Data Access in the Versatile Web Query Language Xcerpt

    Get PDF
    Access to Web data has become an integral part of many applications and services. In the past, such data has usually been accessed through human-tailoredHTMLinterfaces.Nowadays, rich client interfaces in desktop applications or, increasingly, in browser-based clients ease data access and allow more complex client processing based on XML or RDF data retrieved throughWeb service interfaces. Convenient specifications of the data processing on the client and flexible, expressive service interfaces for data access become essential in this context.Web query languages such as XQuery, XSLT, SPARQL, or Xcerpt have been tailored specifically for such a setting: declarative and efficient access and processing ofWeb data. Xcerpt stands apart among these languages by its versatility, i.e., its ability to access not just oneWeb format but many. In this demonstration, two aspects of Xcerpt are illustrated in detail: The first part of the demonstration focuses on Xcerpt’s pattern matching constructs and rules to enable effective and versatile data access. It uses a concrete practical use case from bibliography management to illustrate these language features. Xcerpt’s visual companion language visXcerpt is used to provide an intuitive interface to both data and queries. The second part of the demonstration shows recent advancements in Xcerpt’s implementation focusing on experimental evaluation of recent complexity results and optimization techniques, as well as scalability over a number of usage scenarios and input sizes

    Twelve Theses on Reactive Rules for the Web

    Get PDF
    Reactivity, the ability to detect and react to events, is an essential functionality in many information systems. In particular, Web systems such as online marketplaces, adaptive (e.g., recommender) systems, and Web services, react to events such as Web page updates or data posted to a server. This article investigates issues of relevance in designing high-level programming languages dedicated to reactivity on the Web. It presents twelve theses on features desirable for a language of reactive rules tuned to programming Web and Semantic Web applications

    Artificial intelligence techniques for modeling database user behavior

    Get PDF
    The design and development of the adaptive modeling system is described. This system models how a user accesses a relational database management system in order to improve its performance by discovering use access patterns. In the current system, these patterns are used to improve the user interface and may be used to speed data retrieval, support query optimization and support a more flexible data representation. The system models both syntactic and semantic information about the user's access and employs both procedural and rule-based logic to manipulate the model

    AMaχoS—Abstract Machine for Xcerpt

    Get PDF
    Web query languages promise convenient and efficient access to Web data such as XML, RDF, or Topic Maps. Xcerpt is one such Web query language with strong emphasis on novel high-level constructs for effective and convenient query authoring, particularly tailored to versatile access to data in different Web formats such as XML or RDF. However, so far it lacks an efficient implementation to supplement the convenient language features. AMaχoS is an abstract machine implementation for Xcerpt that aims at efficiency and ease of deployment. It strictly separates compilation and execution of queries: Queries are compiled once to abstract machine code that consists in (1) a code segment with instructions for evaluating each rule and (2) a hint segment that provides the abstract machine with optimization hints derived by the query compilation. This article summarizes the motivation and principles behind AMaχoS and discusses how its current architecture realizes these principles

    Completing Queries: Rewriting of IncompleteWeb Queries under Schema Constraints

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before
    corecore