2 research outputs found

    CONFIDERAI: a novel CONFormal Interpretable-by-Design score function for Explainable and Reliable Artificial Intelligence

    Full text link
    Everyday life is increasingly influenced by artificial intelligence, and there is no question that machine learning algorithms must be designed to be reliable and trustworthy for everyone. Specifically, computer scientists consider an artificial intelligence system safe and trustworthy if it fulfills five pillars: explainability, robustness, transparency, fairness, and privacy. In addition to these five, we propose a sixth fundamental aspect: conformity, that is, the probabilistic assurance that the system will behave as the machine learner expects. In this paper, we propose a methodology to link conformal prediction with explainable machine learning by defining CONFIDERAI, a new score function for rule-based models that leverages both rules predictive ability and points geometrical position within rules boundaries. We also address the problem of defining regions in the feature space where conformal guarantees are satisfied by exploiting techniques to control the number of non-conformal samples in conformal regions based on support vector data description (SVDD). The overall methodology is tested with promising results on benchmark and real datasets, such as DNS tunneling detection or cardiovascular disease prediction.Comment: 12 pages, 7 figures, 1 algorithm, international journa

    Rule Extraction with Guaranteed Fidelity

    No full text
    This paper extends the conformal prediction framework to rule extraction, making it possible to extract interpretable models from opaque models in a setting where either the infidelity or the error rate is bounded by a predefined significance level. Experimental results on 27 publicly available data sets show that all three setups evaluated produced valid and rather efficient conformal predictors. The implication is that augmenting rule extraction with conformal prediction allows extraction of models where test set errors or test sets infidelities are guaranteed to be lower than a chosen acceptable level. Clearly this is beneficial for both typical rule extraction scenarios, i.e., either when the purpose is to explain an existing opaque model, or when it is to build a predictive model that must be interpretable.Sponsorship:This work was supported by the Swedish Foundation for Strategic Research throughthe project High-Performance Data Mining for Drug Effect Detection (IIS11-0053)and the Knowledge Foundation through the project Big Data Analytics by OnlineEnsemble Learning (20120192).</p
    corecore