28,241 research outputs found

    Open issues in semantic query optimization in relational DBMS

    Get PDF
    After two decades of research into Semantic Query Optimization (SQO) there is clear agreement as to the efficacy of SQO. However, although there are some experimental implementations there are still no commercial implementations. We first present a thorough analysis of research into SQO. We identify three problems which inhibit the effective use of SQO in Relational Database Management Systems(RDBMS). We then propose solutions to these problems and describe first steps towards the implementation of an effective semantic query optimizer for relational databases

    A Genetic Programming Framework for Two Data Mining Tasks: Classification and Generalized Rule Induction

    Get PDF
    This paper proposes a genetic programming (GP) framework for two major data mining tasks, namely classification and generalized rule induction. The framework emphasizes the integration between a GP algorithm and relational database systems. In particular, the fitness of individuals is computed by submitting SQL queries to a (parallel) database server. Some advantages of this integration from a data mining viewpoint are scalability, data-privacy control and automatic parallelization

    Set-oriented data mining in relational databases

    Get PDF
    Data mining is an important real-life application for businesses. It is critical to find efficient ways of mining large data sets. In order to benefit from the experience with relational databases, a set-oriented approach to mining data is needed. In such an approach, the data mining operations are expressed in terms of relational or set-oriented operations. Query optimization technology can then be used for efficient processing.\ud \ud In this paper, we describe set-oriented algorithms for mining association rules. Such algorithms imply performing multiple joins and thus may appear to be inherently less efficient than special-purpose algorithms. We develop new algorithms that can be expressed as SQL queries, and discuss optimization of these algorithms. After analytical evaluation, an algorithm named SETM emerges as the algorithm of choice. Algorithm SETM uses only simple database primitives, viz., sorting and merge-scan join. Algorithm SETM is simple, fast, and stable over the range of parameter values. It is easily parallelized and we suggest several additional optimizations. The set-oriented nature of Algorithm SETM makes it possible to develop extensions easily and its performance makes it feasible to build interactive data mining tools for large databases

    Query-driven learning for predictive analytics of data subspace cardinality

    Get PDF
    Fundamental to many predictive analytics tasks is the ability to estimate the cardinality (number of data items) of multi-dimensional data subspaces, defined by query selections over datasets. This is crucial for data analysts dealing with, e.g., interactive data subspace explorations, data subspace visualizations, and in query processing optimization. However, in many modern data systems, predictive analytics may be (i) too costly money-wise, e.g., in clouds, (ii) unreliable, e.g., in modern Big Data query engines, where accurate statistics are difficult to obtain/maintain, or (iii) infeasible, e.g., for privacy issues. We contribute a novel, query-driven, function estimation model of analyst-defined data subspace cardinality. The proposed estimation model is highly accurate in terms of prediction and accommodating the well-known selection queries: multi-dimensional range and distance-nearest neighbors (radius) queries. Our function estimation model: (i) quantizes the vectorial query space, by learning the analysts’ access patterns over a data space, (ii) associates query vectors with their corresponding cardinalities of the analyst-defined data subspaces, (iii) abstracts and employs query vectorial similarity to predict the cardinality of an unseen/unexplored data subspace, and (iv) identifies and adapts to possible changes of the query subspaces based on the theory of optimal stopping. The proposed model is decentralized, facilitating the scaling-out of such predictive analytics queries. The research significance of the model lies in that (i) it is an attractive solution when data-driven statistical techniques are undesirable or infeasible, (ii) it offers a scale-out, decentralized training solution, (iii) it is applicable to different selection query types, and (iv) it offers a performance that is superior to that of data-driven approaches

    Set-Oriented Mining for Association Rules in Relational Databases

    Get PDF
    Describe set-oriented algorithms for mining association rules. Such algorithms imply performing multiple joins and may appear to be inherently less efficient than special-purpose algorithms. We develop new algorithms that can be expressed as SQL queries, and discuss the optimization of these algorithms. After analytical evaluation, an algorithm named SETM emerges as the algorithm of choice. SETM uses only simple database primitives, viz. sorting and merge-scan join. SETM is simple, fast and stable over the range of parameter values. The major contribution of this paper is that it shows that at least some aspects of data mining can be carried out by using general query languages such as SQL, rather than by developing specialized black-box algorithms. The set-oriented nature of SETM facilitates the development of extension

    Data Workflow - A Workflow Model for Continuous Data Processing

    Get PDF
    Online data or streaming data are getting more and more important for enterprise information systems, e.g. by integrating sensor data and workflows. The continuous flow of data provided e.g. by sensors requires new workflow models addressing the data perspective of these applications, since continuous data is potentially infinite while business process instances are always finite.\ud In this paper a formal workflow model is proposed with data driven coordination and explicating properties of the continuous data processing. These properties can be used to optimize data workflows, i.e., reducing the computational power for processing the workflows in an engine by reusing intermediate processing results in several workflows
    corecore