1,579 research outputs found

    Determination of plate wave velocities and diffuse field decay rates with braod-band acousto-ultrasonic signals

    Get PDF
    Lowest symmetric and lowest antisymmetric plate wave modes were excited and identified in broad-band acousto-ultrasonic (AU) signals collected from various high temperature composite materials. Group velocities have been determined for these nearly nondispersive modes. An algorithm has been developed and applied to determine phase velocities and hence dispersion curves for the frequency ranges of the broad-band pulses. It is demonstrated that these data are sensitive to changes in the various stiffness moduli of the materials, in agreement by analogy, with the theoretical and experimental results of Tang and Henneke on fiber reinforced polymers. Diffuse field decay rates have been determined in the same specimen geometries and AU configuration as for the plate wave measurements. These decay rates are of value in assessing degradation such as matrix cracking in ceramic matrix composites. In addition, we verify that diffuse field decay rates respond to fiber/matrix interfacial shear strength and density in ceramic matrix composites. This work shows that velocity/stiffness and decay rate measurements can be obtained in the same set of AU experiments for characterizing materials and in specimens with geometries useful for mechanical measurements

    Ultrasonic evaluation of mechanical properties of thick, multilayered, filament wound composites

    Get PDF
    A preliminary investigation is conducted to define capabilities and limitations of ultrasonic and acousto-ultrasonic measurements related to mechanical properties of filament wound graphite/epoxy composite structures. The structures studied are segments of filament wound cylinders formed of multiple layers of hoop and helical windings. The segments consist of 24 to 35 layers and range from 3.02 to 3.34 cm in wall thickness. The resultant structures are anisotropic, heterogeneous, porous, and highly attenuating to ultrasonic frequencies greater than 1 MHz. The segments represent structures to be used for space shuttle booster cases. Ultrasonic velocity and acousto-ultrasonic stress wave factor measurement approaches are discussed. Correlations among velocity, density, and porosity, and between the acousto-ultrasonic stress wave factor and interlaminar shear strength are presented

    Soil temperature investigations using satellite acquired thermal-infrared data in semi-arid regions

    Get PDF
    Thermal-infrared data from the Heat Capacity Mapping Mission satellite were used to map the spatial distribution of diurnal surface temperatures and to estimate mean annual soil temperatures (MAST) and annual surface temperature amplitudes (AMP) in semi-arid east central Utah. Diurnal data with minimal snow and cloud cover were selected for five dates throughout a yearly period and geometrically co-registered. Rubber-sheet stretching was aided by the WARP program which allowed preview of image transformations. Daytime maximum and nighttime minimum temperatures were averaged to generation average daily temperature (ADT) data set for each of the five dates. Five ADT values for each pixel were used to fit a sine curve describing the theoretical annual surface temperature response as defined by a solution of a one-dimensinal heat flow equation. Linearization of the equation produced estimates of MAST and AMP plus associated confidence statistics. MAST values were grouped into classes and displayed on a color video screen. Diurnal surface temperatures and MAST were primarily correlated with elevation

    Towards Spatial Queries over Phenomena in Sensor Networks

    Get PDF
    Today, technology developments enable inexpensive production and deployment of tiny sensing and computing nodes. Networked through wireless radio, such senor nodes form a new platform, wireless sensor networks, which provide novel ability to monitor spatiotemporally continuous phenomena. By treating a wireless sensor network as a database system, users can pose SQL-based queries over phenomena without needing to program detailed sensor node operations. DBMS-internally, intelligent and energyefficient data collection and processing algorithms have to be implemented to support spatial query processing over sensor networks. This dissertation proposes spatial query support for two views of continuous phenomena: field-based and object-based. A field-based view of continuous phenomena depicts them as a value distribution over a geographical area. However, due to the discrete and comparatively sparse distribution of sensor nodes, estimation methods are necessary to generate a field-based query result, and it has to be computed collaboratively ‘in-the-network’ due to energy constraints. This dissertation proposes SWOP, an in-network algorithm using Gaussian Kernel estimation. The key contribution is the use of a small number of Hermite coefficients to approximate the Gaussian Kernel function for sub-clustered sensor nodes, and processes the estimation result efficiently. An object-based view of continuous phenomena is interested in aspects such as the boundary of an ‘interesting region’ (e.g. toxic plume). This dissertation presents NED, which provides object boundary detection in sensor networks. NED encodes partial event estimation results based on confidence levels into optimized, variable length messages exchanged locally among neighboring sensor nodes to save communication cost. Therefore, sensor nodes detect objects and boundaries based on moving averages to eliminate noise effects and enhance detection quality. Furthermore, the dissertation proposes the SNAKE-based approach, which uses deformable curves to track the spatiotemporal changes of such objects incrementally in sensor networks. In the proposed algorithm, only neighboring nodes exchange messages to maintain the curve structures. Based on in-network tracking of deformable curves, other types of spatial and spatiotemporal properties of objects, such as area, can be provided by the sensor network. The experimental results proved that our approaches are resource friendly within the constrained sensor networks, while providing high quality query results

    Index to 1986 NASA Tech Briefs, volume 11, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1986 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    An Image fusion algorithm for spatially enhancing spectral mixture maps

    Get PDF
    An image fusion algorithm, based upon spectral mixture analysis, is presented. The algorithm combines low spatial resolution multi/hyperspectral data with high spatial resolution sharpening image(s) to create high resolution material maps. Spectral (un)mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. The outputs of unmixing are endmember fraction images (material maps) at the spatial resolution of the multispectral system. This research includes developing an improved unmixing algorithm based upon stepwise regression. In the second stage of the process, the unmixing solution is sharpened with data from another sensor to generate high resolution material maps. Sharpening is implemented as a nonlinear optimization using the same type of model as unmixing. Quantifiable results are obtained through the use of synthetically generated imagery. Without synthetic images, a large amount of ground truth would be required in order to measure the accuracy of the material maps. Multiple band sharpening is easily accommodated by the algorithm, and the results are demonstrated at multiple scales. The analysis includes an examination of the effects of constraints and texture variation on the material maps. The results show stepwise unmixing is an improvement over traditional unmixing algorithms. The results also indicate sharpening improves the material maps. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map

    Sensory Communication

    Get PDF
    Contains table of contents on Section 2, an introduction, reports on eleven research projects and a list of publications.National Institutes of Health Grant 5 R01 DC00117National Institutes of Health Grant 5 R01 DC00270National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Grant 5 R01 DC00100National Institutes of Health Contract 7 R29 DC00428National Institutes of Health Grant 2 R01 DC00126U.S. Air Force - Office of Scientific Research Grant AFOSR 90-0200U.S. Navy - Office of Naval Research Grant N00014-90-J-1935National Institutes of Health Grant 5 R29 DC00625U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-181

    Publications of the Jet Propulsion Laboratory 1976

    Get PDF
    The formalized technical reporting, released January through December 1975, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory is described and indexed. The following classes of publications are included: (1) technical reports; (2) technical memorandums; (3) articles from bi-monthly Deep Space Network (DSN) progress report; (4) special publications; and (5) articles published in the open literature. The publications are indexed by: (1) author, (2) subject, and (3) publication type and number. A descriptive entry appears under the name of each author of each publication; an abstract is included with the entry for the primary (first-listed) author. Unless designated otherwise, all publications listed are unclassified

    Two-dimensional reflectivity polarization elastometry imaging techniques (PIET) of soft tissue

    Get PDF
    A non-invasive polarized light reflection measurement method to measure the stretch of soft tissue, such as skin, is described. The technique utilizes changes in the reflectivity of polarized light intensity as a monitor of skin stretch. Measurements on in-vitro pigskin and invivo human skin show that the reflectivity of polarized light intensity increases linearly with stretch over a range. The changes in diffusive reflectivity properties of skin result from the alterations that take place in the roughness across the thickness of the skin layers due to stretch. Conceptually, as the roughness of a layer decreases with stretch, a smoother reflecting media is produced resulting in a proportional increase in the specular reflection. Results can be easily extended to a real time stretch analysis of large tissue areas that would be applicable for mapping the stretch of skin. Simple one- and two-dimensional sinusoidal theoretical surface roughness model correctly predicts the experimental measurements. In-vitro pigskins were also used for the tissue bum experiments and its measured reflectivity slope versus stretch increases with the bum duration up to a limited thermal excitation. Above this limit, the in-vitro sample becomes optically transparent, as its biomechanical properties is thermally altered and a negative reflectivity slope is observed
    corecore