6,327 research outputs found

    A Deadlock – Free Routing Algorithm for Torus Network

    Get PDF
    TORUS is a n-dimensional network topology. Each dimension will have k nodes.  A routing algorithm determines the sequence of channels for a packet to traverse from the source to destination. A new router design that significantly reduces the main drawback of worm hole switching – latency, is presented in this paper. Worm-hole switching is combined with virtual channel to provide better performance. Packet deadlock is avoided by verifying the freeness of the nodes before sending the packets to that node. The traditional ‘wormhole switching’ mechanism for routing in the torus network has the disadvantages such as link contention, message latency, need for large buffer size and finally a massive deadlock may appear. The recently proposed ‘clue’ algorithm, has the disadvantages such as difficulty in cut through the link by the packets, says nothing about loss of packets between a hop and storage overhead and complexity in dividing the virtual channels. We proposed an ‘Advanced Clue’ algorithm by combining the concepts of clue and flow controlled clue and also overcome the disadvantages of clue. We use two virtual channels and a buffer which gives a combination of clue and flow controlled clue. We also propose conditions that satisfy the reliability of the packet delivery between hops. The packet will be sent to the next hop and buffered in the current hop. The sending hop will set a timer and wait for the acknowledgement. If the acknowledgement is not arrived till the timer expired then, the packet will be resend, and otherwise the packet will be removed from the buffer. Keywords: Torus, Virtual channels, Cut – through Switching, Wormhole switching

    Portable Tor Router: Easily Enabling Web Privacy for Consumers

    Full text link
    On-line privacy is of major public concern. Unfortunately, for the average consumer, there is no simple mechanism to browse the Internet privately on multiple devices. Most available Internet privacy mechanisms are either expensive, not readily available, untrusted, or simply provide trivial information masking. We propose that the simplest, most effective and inexpensive way of gaining privacy, without sacrificing unnecessary amounts of functionality and speed, is to mask the user's IP address while also encrypting all data. We hypothesized that the Tor protocol is aptly suited to address these needs. With this in mind we implemented a Tor router using a single board computer and the open-source Tor protocol code. We found that our proposed solution was able to meet five of our six goals soon after its implementation: cost effectiveness, immediacy of privacy, simplicity of use, ease of execution, and unimpaired functionality. Our final criterion of speed was sacrificed for greater privacy but it did not fall so low as to impair day-to-day functionality. With a total cost of roughly $100.00 USD and a speed cap of around 2 Megabits per second we were able to meet our goal of an affordable, convenient, and usable solution to increased on-line privacy for the average consumer.Comment: 6 pages, 5 figures, IEEE ICCE Conferenc

    Network protocol scalability via a topological Kadanoff transformation

    Full text link
    A natural hierarchical framework for network topology abstraction is presented based on an analogy with the Kadanoff transformation and renormalisation group in theoretical physics. Some properties of the renormalisation group bear similarities to the scalability properties of network routing protocols (interactions). Central to our abstraction are two intimately connected and complementary path diversity units: simple cycles, and cycle adjacencies. A recursive network abstraction procedure is presented, together with an associated generic recursive routing protocol family that offers many desirable features.Comment: 4 pages, 5 figures, PhysComNet 2008 workshop submissio

    The Impact of Routing Option on Tangerang Bus Lane Corridor

    Full text link
    The objective of this study is to analyze the impact of re-routing bus lane corridor on some performance indicators. The Tangerang Bus Lane is taken as a case study. The discussion is focused on comparison of service planning performance indicators such ridership, passenger-km, and bus-km. A primary survey on bus operational characteristics and user attitude is conducted. Prior to the analysis, some basic formula is derivedand modified and, then, performance indicators for both route option are estimated. The analysis is conducted by comparing the estimated indicators. The result shows that the alternative route gives better performance and yields to a need of re-evaluating the originally proposed route

    Architectural Considerations for a Self-Configuring Routing Scheme for Spontaneous Networks

    Get PDF
    Decoupling the permanent identifier of a node from the node's topology-dependent address is a promising approach toward completely scalable self-organizing networks. A group of proposals that have adopted such an approach use the same structure to: address nodes, perform routing, and implement location service. In this way, the consistency of the routing protocol relies on the coherent sharing of the addressing space among all nodes in the network. Such proposals use a logical tree-like structure where routes in this space correspond to routes in the physical level. The advantage of tree-like spaces is that it allows for simple address assignment and management. Nevertheless, it has low route selection flexibility, which results in low routing performance and poor resilience to failures. In this paper, we propose to increase the number of paths using incomplete hypercubes. The design of more complex structures, like multi-dimensional Cartesian spaces, improves the resilience and routing performance due to the flexibility in route selection. We present a framework for using hypercubes to implement indirect routing. This framework allows to give a solution adapted to the dynamics of the network, providing a proactive and reactive routing protocols, our major contributions. We show that, contrary to traditional approaches, our proposal supports more dynamic networks and is more robust to node failures
    • …
    corecore