1,357 research outputs found

    BGP Security in Partial Deployment: Is the Juice Worth the Squeeze?

    Full text link
    As the rollout of secure route origin authentication with the RPKI slowly gains traction among network operators, there is a push to standardize secure path validation for BGP (i.e., S*BGP: S-BGP, soBGP, BGPSEC, etc.). Origin authentication already does much to improve routing security. Moreover, the transition to S*BGP is expected to be long and slow, with S*BGP coexisting in "partial deployment" alongside BGP for a long time. We therefore use theoretical and experimental approach to study the security benefits provided by partially-deployed S*BGP, vis-a-vis those already provided by origin authentication. Because routing policies have a profound impact on routing security, we use a survey of 100 network operators to find the policies that are likely to be most popular during partial S*BGP deployment. We find that S*BGP provides only meagre benefits over origin authentication when these popular policies are used. We also study the security benefits of other routing policies, provide prescriptive guidelines for partially-deployed S*BGP, and show how interactions between S*BGP and BGP can introduce new vulnerabilities into the routing system

    Decentralized trust in the inter-domain routing infrastructure

    Get PDF
    Inter-domain routing security is of critical importance to the Internet since it prevents unwanted traffic redirections. The current system is based on a Public Key Infrastructure (PKI), a centralized repository of digital certificates. However, the inherent centralization of such design creates tensions between its participants and hinders its deployment. In addition, some technical drawbacks of PKIs delay widespread adoption. In this paper we present IPchain, a blockchain to store the allocations and delegations of IP addresses. IPchain leverages blockchains' properties to decentralize trust among its participants, with the final goal of providing flexible trust models that adapt better to the ever-changing geopolitical landscape. Moreover, we argue that Proof of Stake is a suitable consensus algorithm for IPchain due to the unique incentive structure of this use-case, and that blockchains offer relevant technical advantages when compared to existing systems, such as simplified management. In order to show its feasibility and suitability, we have implemented and evaluated IPchain's performance and scalability storing around 350k IP prefixes in a 2.5 GB chain.Peer ReviewedPostprint (published version

    Routing Security in Mobile Ad-hoc Networks

    Get PDF
    The role of infrastructure-less mobile ad hoc networks (MANETs) in ubiquitous networks is outlined. In a MANET there are no dedicated routers and all network nodes must contribute to routing. Classification of routing protocols for MANET is based on how routing information is acquired and maintained by mobile nodes and/or on roles of network nodes in a routing. According to the first classification base, MANET routing protocols are proactive, reactive, or hybrid combinations of proactive and reactive protocols. According to the role-based classification, MANET routing protocols are either uniform when all network nodes have the same role or non-uniform when the roles are different and dedicated. A contemporary review of MANET routing protocols is briefly presented. Security attacks against MANET routing can be passive and or active. The purpose of the former is information retrieval, for example network traffic monitoring, while the latter is performed by malicious nodes with the express intention of disturbing, modifying or interrupting MANET routing. An overview of active attacks based on modification, impersonation/ spoofing, fabrication, wormhole, and selfish behavior is presented. The importance of cryptography and trust in secure MANET routing is also outlined, with relevant security extensions of existing routing protocols for MANETs described and assessed. A comparison of existing secure routing protocols form the main contribution in this paper, while some future research challenges in secure MANET routing are discussed

    In-packet Bloom filters: Design and networking applications

    Full text link
    The Bloom filter (BF) is a well-known space-efficient data structure that answers set membership queries with some probability of false positives. In an attempt to solve many of the limitations of current inter-networking architectures, some recent proposals rely on including small BFs in packet headers for routing, security, accountability or other purposes that move application states into the packets themselves. In this paper, we consider the design of such in-packet Bloom filters (iBF). Our main contributions are exploring the design space and the evaluation of a series of extensions (1) to increase the practicality and performance of iBFs, (2) to enable false-negative-free element deletion, and (3) to provide security enhancements. In addition to the theoretical estimates, extensive simulations of the multiple design parameters and implementation alternatives validate the usefulness of the extensions, providing for enhanced and novel iBF networking applications.Comment: 15 pages, 11 figures, preprint submitted to Elsevier COMNET Journa

    Towards a Rigorous Methodology for Measuring Adoption of RPKI Route Validation and Filtering

    Full text link
    A proposal to improve routing security---Route Origin Authorization (ROA)---has been standardized. A ROA specifies which network is allowed to announce a set of Internet destinations. While some networks now specify ROAs, little is known about whether other networks check routes they receive against these ROAs, a process known as Route Origin Validation (ROV). Which networks blindly accept invalid routes? Which reject them outright? Which de-preference them if alternatives exist? Recent analysis attempts to use uncontrolled experiments to characterize ROV adoption by comparing valid routes and invalid routes. However, we argue that gaining a solid understanding of ROV adoption is impossible using currently available data sets and techniques. Our measurements suggest that, although some ISPs are not observed using invalid routes in uncontrolled experiments, they are actually using different routes for (non-security) traffic engineering purposes, without performing ROV. We conclude with a description of a controlled, verifiable methodology for measuring ROV and present three ASes that do implement ROV, confirmed by operators

    SAODV versus TAODV Technique using MANET routing Security

    Get PDF
    Recent technology SAODV (Secure ADHOC on Demand Distance Vector) uses Cryptography to send the data from one node to another. The problem with SAODV is, it is required to enter the 8-bit security key to send and receive data. If the number of present in the network are more, the SAODV protocol fails to deliver the data in time as the 8-bit security key has to be entered again and again. Therefore this demands a study where we are designing a Protocol TAODV in which all the nodes present in the network should get registered. The use of 8-bit security key is not required as in our study we are designing a Trusted Centre which provides security for the nodes connected to it
    corecore