6 research outputs found

    Protocolo Auto-Organizado de Encaminamiento para Redes Submarinas No Uniformes (PAO-RESNU)

    Get PDF
    En esta comunicación, se presenta un nuevo algoritmo de encaminamiento para redes auto-organizadas (SON, Self-Organizing Networks) de sensores acústicas submarinas con un solo nodo recolector de datos (o Gateway en el argot). El protocolo PAO-RESNU (Protocolo Auto-Organizado de encaminamiento para Redes Submarinas No Uniformes) funciona para topologías 2D/3D ad-hoc en las que no se conoce la localización inicial de los nodos. Puede ser útil en aplicaciones de vigilancia que requieran un despliegue rápido de sensores. El estimador usado para construir la ruta hacia el nodo recolector se basa en una terna de indicadores: intensidad de señal recibida (RSS, Received Signal Strength), número de saltos y número de nodos compañeros. Se aportan resultados relativos al retardo promedio de paquete, número medio de saltos por ruta, o consumo promedio de energía. La evaluación de los resultados apunta a un comportamiento satisfactorio de PAO-RESNU.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    An energy aware scheme for layered chain in underwater wireless sensor networks using genetic algorithm

    Get PDF
    Extending the network lifetime is a very challenging problem that needs to be taken into account during routing data in wireless sensor networks in general and particularly in underwater wireless sensor networks (UWSN). For this purpose, the present paper proposes a multilayer chain based on genetic algorithm routing (MCGA) for routing data from nodes to the sink. This algorithm consists to create a limited number of local chains constructed by using genetic algorithm in order to obtain the shortest path between nodes; furthermore, a leader node (LN) is elected in each chain followed by constructing a global chain containing LNs. The selection of the LN in the closest chain to the sink is as follows: Initially, the closest node to sink is elected LN in this latter because all nodes have initially the same energy value; then the future selection of the LN is based on the residual energy of the nodes. LNs in the other chains are selected based on the proximity to the previous LNs. Data transmission is performed in two steps: intra-chain transmission and inter-chain transmission. Furthermore, MCGA is simulated for different scenarios of mobility and density of nodes in the networks. The performance evaluation of the proposed technique shows a considerable reduction in terms of energy consumption and network lifespan

    Review on energy efficient opportunistic routing protocol for underwater wireless sensor networks

    Get PDF
    Currently, the Underwater Sensor Networks (UWSNs) is mainly an interesting area due to its ability to provide a technology to gather many valuable data from underwater environment such as tsunami monitoring sensor, military tactical application, environmental monitoring and many more. However, UWSNs is suffering from limited energy, high packet loss and the use of acoustic communication. In UWSNs most of the energy consumption is used during the forwarding of packet data from the source to the destination. Therefore, many researchers are eager to design energy efficient routing protocol to minimize energy consumption in UWSNs. As the opportunistic routing (OR) is the most promising method to be used in UWSNs, this paper focuses on the existing proposed energy efficient OR protocol in UWSNs. This paper reviews the existing proposed energy efficient OR protocol, classifying them into 3 categories namely sender-side-based, receiver-side-based and hybrid. Furthermore each of the protocols is reviewed in detail, and its advantages and disadvantages are discussed. Finally, we discuss potential future work research directions in UWSNs, especially for energy efficient OR protocol design

    Void avoidance opportunistic routing density rank based for underwater sensor networks

    Get PDF
    Currently, the Underwater Sensor Networks (UWSNs) is mainly an attractive area due to its technological ability to gather valuable data from underwater environments such as tsunami monitoring sensors, military tactical applications, and environmental monitoring. However, UWSNs are suffering from limited energy, high packet loss, and the use of acoustic communication which have very limited bandwidth and slow transmission. In UWSNs, the energy consumption used is 125 times more during the forwarding of the packet data from source to destination as compare to during receiving data. For this reason, many researchers are keen to design an energy-efficient routing protocol to minimize the energy consumption in UWSNs while at the same time provide adequate packet delivery ratio and less cumulative delay. As such, the opportunistic routing (OR) is the most promising method to be used in UWSNs due to its unique characteristics such as high path loss, dynamic topology, high energy consumption, and high propagation delay. However, the OR algorithm had also suffered from as higher traffic load for selection next forwarding nodes in the progression area, which suppressed the redundant forwarding packet and caused communication void. There are three new proposed algorithms introduced to address all three issues which resulted from using the OR approach in UWSNs. Firstly, the higher traffic load for selection next forwarding nodes in the problematic progression area problem was addressed by using the Opportunistic Routing Density Based (ORDB) algorithm to minimize the traffic load by introducing a beaconless routing to update the neighbor node information protocol. Secondly, the algorithm Opportunistic Routing Density Rank Based (ORDRB) was developed to deal with redundant packet forwarding by introducing a new method to reduce the redundant packet forwarding while in dense or sparse conditions to improve the energy consumption effectively. Finally, the algorithm Void Avoidance Opportunistic Routing Density Rank Based (ORDRB) was developed to deal with the communication void by introducing a simple method to detect a void node and avoid it during the forwarding process. Simulation results showed that ORDB has improved the network performance in terms of energy tax average (25%, 40%), packet delivery ratio (43%, 23%), and cumulative delay (67%, -42%) compared to DBR and UWFlooding routing protocols. While for ORDRB, the network performance improved in terms of energy tax average (0.9%, 53%, 62%), packet delivery ratio (100%, 83%, 58%) and cumulative delay (-270%, -94%, 55%) compared to WDFAD-DBR, DBR and UWFlooding. Lastly, for VAORDRB, the network performance improved in terms of energy tax average (3%, 8%), packet delivery ratio (167%, 261%), and cumulative delay (68%, 57%) compared to EVA-DBR and WDFAD-DBR. Based on the findings of this study, the protocol VAORDRB is a suitable total solution to reduce the cumulative delay and increase the packet delivery ratio in sparse and dense network deployment

    Modelado y simulación de un protocolo de comunicaciones para redes subacuáticas

    Full text link
    [ES] El Internet of Underwater Things (IoUT) es una nueva clase de IoT que podría definirse como una red de objetos inteligentes subacuáticos interconectados, y se espera que este paradigma posibilite un gran abanico de aplicaciones, contribuyendo no solo al desarrollo de smart cities/industry. El IoUT se basa en las Underwater Wireless Sensor Networks (UWSNs), que tienen características específicas respecto las tradicionales WSN, al utilizar señales acústicas en lugar de radiofrecuencia, como el retardo de propagación, limitado ancho de banda y baja fiabilidad, además de resultar especialmente crítico la eficiencia energética, representando todo ello grandes retos. En este TFG se modelará y evaluará la adaptación de un protocolo de comunicaciones del equipo de investigación para contribuir a posibilitar el IoUT considerando los retos planteados. Para ellos se implementará y adaptará la base del protocolo DBR (Depth-Based Routing), validándolo y comparándolo para entender su funcionamiento y los parámetros con los que funciona, realizando pruebas sobre cada uno de ellos con el fin de detallar y explicar los resultados del protocolo en cada una de sus simulaciones. Una vez comprendido esto se evolucionará a un protocolo desarrollando Clustering sobre la base del DBR para ver las ventajas que presenta respecto al anterior y si merece la pena su utilización, tanto en prestaciones de consumo como de paquetes recibidos. Para ello y al final se efectuará una comparación total.[CA] Internet of Underwater Things (IoUT) és una nova classe de IoT que podria definirse com una xarxa d’objectes intel·ligents subaquàtics interconnectats, i s’espera que este paradigma possibilite una gran quantitat d’aplicacions, contribuint no sols al desenvolupament d’ smart cities/industry. L’IoUT es basa en les Underwater Wireless Sensor Networks (UWSNs) , que tenen característiques específiques respecte les tradicionals WSN, a l’utilitzar senyals acústics en compte de radiofreqüència, com el retard de propagació, limitat amplada de banda i baixa fiabilitat, a més de resultar especialment crític l’eficiència energètica, representant tot això grans reptes. En este TFG es modelarà i avaluarà l’adaptació d’un protocol de comunicacions de l’equip d’investigació per a contribuir a possibilitar l’IoUT considerant els reptes plantejats. Per això s’implementarà i adaptarà la base del protocol DBR (Depth-Based Routing) , validant-ho i comparant-ho per a entendre el seu funcionament i els paràmetres amb què funciona, realitzant proves sobre cada un d’ells amb la fi de detallar i explicar els resultats del protocol en cadascuna de les seues simulacions. Una vegada comprés açò s’evolucionarà a un protocol desenvolupant Clustering sobre la base del DBR per a veure els avantatges que presenta respecte a l’anterior i si val la pena la seua utilització, tant en prestacions de consum com de paquets rebuts. Per això i a la fi, s’efectuaran una comparació total.[EN] The Internet of Underwater Things (IoUT) is a new class of IoT that could be defined as a network of interconnected underwater intelligent objects, and this paradigm is expected to enable a wide range of applications, contributing not only to the development of Smart cities/industry. The IoUT is based on the Underwater Wireless Sensor Networks (UWSNs), which have specific characteristics regarding traditional WSN, using acoustic signals instead of radio frequency, such as the propagation delay, limited bandwidth and low Reliability, besides being especially critical the energy efficiency, representing all this great challenges. This GFR will model and evaluate the adaptation of a communications protocol of the research team to contribute to enable the IoUT considering the challenges planned. For them, the DBR (Depth-Based Routing) protocol’s base will be implemented and adapted, validating and comparing it to understand its operation and the parameters with which it works, performing tests on each of them in order to detail and explain the results of the protocol in each of its simulations. Once this is understood, we will evolve to a protocol developing Clustering on the basis of the DBR to see the advantages that it presents with respect to the previous one and if it is worth its use, both in consumer benefits and in packages received. For this and in the end a total comparison will be made.Catalán Gallach, I. (2019). Modelado y simulación de un protocolo de comunicaciones para redes subacuáticas. http://hdl.handle.net/10251/128819TFG

    Routing protocols based on node mobility for Underwater Wireless Sensor Network (UWSN): A survey

    No full text
    Recently, the Underwater Wireless Sensor Network (UWSN) is the major research area for researchers due to its versatile applications like: tactical surveillance, seismic monitoring, assisted navigations, pollution monitoring, and many more scientific based applications. Majority numbers of researchers have introduced the routing protocols based on node mobility but still research needs improvement to design the efficient routing protocols which control the node movement. This article focuses the routing protocols based on node mobility with its classification like: vector based, depth based, clustered based, AUV based, and path based. In classification the major focus is on deployment, node mobility, data forwarding, route discovery, and route maintenance. The article also focuses the existing problems in the mobility based routing protocols. We have introduced two analysis methods one is analytical method and other is numerical simulation method. In analytical method we have compared the proposed routing protocols through architectural parameters and performance characteristics parameters. In numerical simulation analysis we presents the simulation of proposed routing protocols through packets delivery ratio and observed that addressing depth based H2-DAB routing protocol remains well performer among all other proposed routing protocols. The core ideas of this research paper will guide the researchers to further research in the field of UWSN routing protocols based on node mobility
    corecore