9,348 research outputs found

    NEIGHBOURHOOD LOAD ROUTING AND MULTI-CHANNELS IN WIRELESS MESH NETWORKS

    Get PDF
    As an emerging technology, wireless mesh networks are making significant progress in the area of wireless networks in recent years. Routing in Wireless Mesh Network (WMN) is challenging because of the unpredictable variations of the wireless environment. Traditional mechanisms have been proved that the routing performance would get deteriorated and ideal metrics must be explored. Most wireless routing protocols that are currently available are designed to use a single channel. The available network capacity can be increased by using multiple channels, but this requires the development of new protocols specifically designed for multi-channel operation. In this paper, we propose Neighbourhood load routing metric in single channel mesh networks and also present the technique to utilize multiple channels and multiple interfaces between routers for communication. The traditional routing metrics Hop Count and Weighted Cumulative Expected Transmission Time (WCETT) are used in routing. We compare performance of AODV-HOP, WCETT and NLR routing metrics in singlechannel and multichannel environment by considering throughput and end to end delay performance metrics. Our results show that NLR performs better in singlechannel environment

    Performance Evaluation Cross Layer Routing Metric in Protocol Routing OLSR Wi-Fi Wireless Mesh Networks

    Get PDF
    Wireless Mesh network is a wireless communications and allows multiple nodes work together to deliver message to the destination. Mesh topology improve the reliability of the entire network. Investment is needed in wireless mesh networks less than the cellular network. Wireless Mesh Network is a technology solution to increase the coverage, reliability and ease of implementation that have the nature of multi-hop, self-reconfigurable, self-healing and self-organized. WMN performance depends on the routing protocol used. Routing metrics used by routing protocols decides which route to use between pair of nodes. Various routing metrics have been developed to increase throughput, load balancing and choose the path that is reliable in Wireless Mesh Network. Some cross-layer routing metrics have been developed to improve network performance. This study aims to improve the throughput received by the network, by evaluating the performance of the simulation results cross layer routing metrics Expected Forwarded Counter (EFW) using routing protocols OLSR at 802.11 Wi-Fi Wireless Mesh Network. EFW is routing based on cross-layer metrics to overcome the problems caused by the drop packet selfish behavior on a mesh router. Simulations carried out by using Network Simulator 2. An optimal routing metric has a potential to improve performance of a wireless mesh network. For better performance Improvement can be done by designing efficient routing metrics that can support adaptive mesh routers and mesh clients. The simulation results were evaluated with a modified routing metric EFW with protocol routing OLSR in Wi-FI Wireless Mesh Network. Routing metric EFW is an improvement of ETX by adding the estimated probability of dropping relaying node. The propose routing metric is a combination of EFW metric with routing metric ETT that consider packet size and bandwidth of the link to improve overall routing performance. From the simulation result , routing metric EFW modification has better performance fo throughput,PDR, Packet loss, and end to end delay than routing metrix etx or routing metric EFW, when the number of nodes used is smaller and using high data rate scenario

    Performance Analysis Of Routing Metrics For Multi Radio Multi Channel In Wireless Mesh Networks

    Get PDF
    Wireless mesh is a collection of wireless devices that can communicate with peers in single or multiple hops. Mesh networks are self-configuring systems where each Access Point (AP) can relay messages on behalf of others, thus increasing the range, utilizing Multiple Radios over mesh routers increases capacity and available bandwidth. Efficient utilization of Multiple Radios is assured through proper channel assignment and routing schemas. Routing metrics are used for selection of routes obtained by routing protocols. Routing metrics provide measurable values that can be used to judge how useful a route will be, quantitative value assigned by routing metrics indicate the specific characteristics of the route

    Performance Analysis of On-Demand Routing Protocols in Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks (WMNs) have recently gained a lot of popularity due to their rapid deployment and instant communication capabilities. WMNs are dynamically self-organizing, self-configuring and self-healing with the nodes in the network automatically establishing an adiej hoc network and preserving the mesh connectivity. Designing a routing protocol for WMNs requires several aspects to consider, such as wireless networks, fixed applications, mobile applications, scalability, better performance metrics, efficient routing within infrastructure, load balancing, throughput enhancement, interference, robustness etc. To support communication, various routing protocols are designed for various networks (e.g. ad hoc, sensor, wired etc.). However, all these protocols are not suitable for WMNs, because of the architectural differences among the networks. In this paper, a detailed simulation based performance study and analysis is performed on the reactive routing protocols to verify the suitability of these protocols over such kind of networks. Ad Hoc On-Demand Distance Vector (AODV), Dynamic Source Routing (DSR) and Dynamic MANET On-demand (DYMO) routing protocol are considered as the representative of reactive routing protocols. The performance differentials are investigated using varying traffic load and number of source. Based on the simulation results, how the performance of each protocol can be improved is also recommended.Wireless Mesh Networks (WMNs), IEEE 802.11s, AODV, DSR, DYMO

    FastM: Design and Evaluation of a Fast Mobility Mechanism for Wireless Mesh Networks

    Get PDF
    Although there is a large volume of work in the literature in terms of mobility approaches for Wireless Mesh Networks, usually these approaches introduce high latency in the handover process and do not support realtime services and applications. Moreover, mobility is decoupled from routing, which leads to inefficiency to both mobility and routing approaches with respect to mobility. In this paper we present a new extension to proactive routing protocols using a fast mobility extension, FastM, with the purpose of increasing handover performance in Wireless Mesh Networks. With this new extension, a new concept is created to integrate information between neighbor wireless mesh routers, managing locations of clients associated to wireless mesh routers in a certain neighborhood, and avoiding packet loss during handover. The proposed mobility approach is able to optimize the handover process without imposing any modifications to the current IEE 802.11 MAC protocol and use unmodified clients. Results show the improved efficiency of the proposed scheme: metrics such as disconnection time, throughput, packet loss and control overhead are largely improved when compared to previous approaches. Moreover, these conclusions apply to mobility scenarios, although mobility decreases the performance of the handover approach, as expected

    Network Adaptive Interference Aware Routing Metric for Hybrid Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks provide a reliable, robust and resilient platform for broadband access. Main benefits of using Wireless Mesh Networks are their low cost, robustness, self healing, and self configuring properties. In Wireless Mesh Networks, routing metric determines the path from source to destination. Wireless link conditions can be affected by a number of factors including interference, congestion, mobility, and network topology. Routing metric needs to consider all these factors while making routing decisions. In addition, wireless link conditions do not remain static with time requiring the routing metric to be adaptive. Interference in Wireless Mesh Networks are of two types: inter-channel and intra-channel interference. Existing routing metrics for Wireless Mesh Networks either consider only one of the two interference types or do not capture changing network conditions. In this paper, we propose a new routing metric for Wireless Mesh Networks which takes into account both inter and intra-channel interference and is adaptive to changing network conditions. Our proposed metric is compared with the state of the art and shows throughput improvement of up to 20 percent and latency reduction of 25 percent

    MMC: Multiple Metric Cost Routing Metric for Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks (WMNs) are bringing revolutionary changes in the field of wireless communication. Routing metric is the most important factor to find the optimized route. Researchers have shown that integrating multiple performance metrics into a routing protocol is effective for attaining optimal performance because a single metric will not be able to satisfy the comprehensive requirements of WMNs. In this paper, we propose a new routing metric for WMNs, Multiple Metric Cost (MMC), integrating three metrics: 1) Available bandwidth, 2) Residual energy and 3) Expected Transmission Count (ETX).MMC results in a better throughput. We evaluated the performance of MMC for proactive, reactive and opportunistic routing protocols using the OMNET++ network simulator. Our evaluation shows that MMC performs well in all three classes of routing protocols.
    • 

    corecore