68 research outputs found

    Improving relay based cellular networks performance in highly user congested and emergency situations

    Get PDF
    PhDRelay based cellular networks (RBCNs) are the technologies that incorporate multi-hop communication into traditional cellular networks. A RBCN can potentially support higher data rates, more stable radio coverage and more dynamic services. In reality, RBCNs still suffer from performance degradation in terms of high user congestion, base station failure and overloading in emergency situations. The focus of this thesis is to explore the potential to improve IEEE802.16j supported RBCN performance in user congestion and emergency situations using adjustments to the RF layer (by antenna adjustments or extensions using multi-hop) and cooperative adjustment algorithms, e.g. based on controlling frequency allocation centrally and using distributed approaches. The first part of this thesis designs and validates network reconfiguration algorithms for RBCN, including a cooperative antenna power control algorithm and a heuristic antenna tilting algorithm. The second part of this thesis investigates centralized and distributed dynamic frequency allocation for higher RBCN frequency efficiency, network resilience, and computation simplicity. It is demonstrated that these benefits mitigate user congestion and base station failure problems significantly. Additionally, interweaving coordinated dynamic frequency allocation and antenna tilting is investigated in order to obtain the benefits of both actions. The third part of this thesis incorporates Delay Tolerate Networking (DTN) technology into RBCN to let users self-organize to connect to functional base station through multi-hops supported by other users. Through the use of DTN, RBCN coverage and performance are improved. This thesis explores the augmentation of DTN routing protocols to let more un-covered users connect to base stations and improve network load balancin

    Determinar los parámetros óptimos en la implementación del algoritmo de ruteo antnet para mejorar la transmisión de datos

    Get PDF
    The main objective on this research is the development of finding the optimal parameters for a routing algorithm for network routers based on the ant algorithm described as AntNet. The optimum parameters for this type of algorithm improve a more efficient alternative to those given by the RIP, EIGRP and OSPF routing protocols, to be applied in a data network. This shall be tested in two networks and routers defined, taking the same characteristics for the three groups: RIP, OSPF and by the result provided by the genetic algorithm implemented using a static network. The system recognizes the best path between networks of routers, based on the principle of AntNet networks or networks of ants, which are the best way from exploring almost all roads, using estimergia to go there and make optimal. MatLab was used to detect the best way. Later this road was implemented in a real network data, sending a test file in compressed format. Its efficiency compared with RIP and OSPF protocols are checked. For validation of the network, compressed files, which were sent for ten consecutive times and the results were taken using a server and a network connected by the given client used. The server and client are implemented in Linux, to measure the arrival time of the file and thus the data transfer rate. It was found that the routing algorithm, under the optimal parameters found, provided a reliable alternative for routing data networks.El principal objetivo de la investigación es encontrar los parámetros óptimos para un algoritmo de encaminamiento para una red de routers basado en el algoritmo de la hormiga descrito como Antnet. Los parámetros óptimos para este tipo de algoritmo, mejorará de manera más eficiente a las dadas por los estándares RIP, EIGRP y OSPF, para ser aplicados en una red de datos. Para ello se probará en dos redes de routers ya definidas, tomando características iguales para los tres grupos: RIP, OSPF y por el resultado proporcionado por el algoritmo genético implementado mediante una red estática. El sistema, reconoce el mejor camino entre redes de routers, basándose en el principio de las redes AntNet o redes de hormigas, las cuales encuentran el mejor camino a partir de la exploración de casi todos los caminos, utilizando la estimergia, para recorrerlos y marcar los óptimos. Para la detección del mejor camino se utilizó MatLab. Posteriormente se implementó dicho camino en una red real de datos, enviando un archivo de prueba en formato comprimido. Se comprobó su eficiencia comparándolo con los protocolos RIP y OSPF. Para la validación de la red, se utilizaron archivos comprimidos, los cuales fueron enviados por diez veces consecutivas y se tomaron los resultados con ayuda de un servidor y un cliente conectados por la red dada. El servidor y el cliente se implementaron en Linux, para poder medir el tiempo de llegada del archivo y así la tasa de transferencia de datos. Se comprobó que el algoritmo de enrutamiento, bajo los parámetros óptimos encontrados, brindó una alternativa confiable, para el encaminamiento de redes de datos

    An identification based network link backup method

    Get PDF
    in order to solve the problem of network link failure or link congestion, this paper proposes an identifi cation based link backup method, which uses the identification network to carry out collaborative backup of links, formulates the link level through the network identifi cation mechanism, divides the routing characteristics through the link level, and calculates the link level through the link backup protocol between routers. When the high priority link fails or the link congestion occurs, the low priority link can be used for routing; When the transmission rate of a single link decreases, the low priority link can also be enabled. So as to achieve network load balancing and maximize link utilization. Through mini net simulation, the experimental topology is built and verifi ed. The results show that this method can quickly repair the link failure, quickly switch the link, reduce the network interruption delay, when the high priority link failure or congestion, it can quickly establish the route update, and quickly recover, so as to achieve the purpose of network load balancing

    Connectivity Analysis in Vehicular Ad-hoc Network based on VDTN

    Get PDF
    In the last decade, user demand has been increasing exponentially based on modern communication systems. One of these new technologies is known as mobile ad-hoc networking (MANET). One part of MANET is called a vehicular ad-hoc network (VANET). It has different types such as vehicle-to-vehicle (V2V), vehicular delay-tolerant networks, and vehicle-to-infrastructure (V2I). To provide sufficient quality of communication service in the Vehicular Delay-Tolerant Network (VDTN), it is important to present a comprehensive survey that shows the challenges and limitations of VANET. In this paper, we focus on one type of VANET, which is known as VDTNs. To investigate realistic communication systems based on VANET, we considered intelligent transportation systems (ITSs) and the possibility of replacing the roadside unit with VDTN. Many factors can affect the message propagation delay. When road-side units (RSUs) are present, which leads to an increase in the message delivery efficiency since RSUs can collaborate with vehicles on the road to increase the throughput of the network, we propose new methods based on environment and vehicle traffic and present a comprehensive evaluation of the newly suggested VDTN routing method. Furthermore, challenges and prospects are presented to stimulate interest in the scientific community

    GrAnt: Inferring Best Forwarders from Complex Networks' Dynamics through a Greedy Ant Colony Optimization

    Get PDF
    This paper presents a new prediction-based forwarding protocol for the complex and dynamic Delay Tolerant Networks (DTN). The proposed protocol is called GrAnt (Greedy Ant) as it uses a greedy transition rule for the Ant Colony Optimization (ACO) metaheuristic to select the most promising forwarder nodes or to provide the exploitation of good paths previously found. The main motivation for the use of ACO is to take advantage of its population-based search and of the rapid adaptation of its learning framework. Considering data from heuristic functions and pheromone concentration, the GrAnt protocol includes three modules: routing, scheduling, and buffer management. To the best of our knowledge, this is the first unicast protocol that employs a greedy ACO which: (1) infers best promising forwarders from nodes' social connectivity, (2) determines the best paths to be followed to a message reach its destination, while limiting the message replications and droppings, (3) performs message transmission scheduling and buffer space management. GrAnt is compared to Epidemic and PROPHET protocols in two different scenarios: a working day and a community mobility model. Simulation results obtained by ONE simulator show that in both environments, GrAnt achieves higher delivery ratio, lower messages redundancy, and fewer dropped messages than Epidemic and PROPHET.Cet article porte sur la proposition d'un protocole d'acheminement pour les réseaux complexes et dynamiques du type tolérants aux délais (DTN), qui est basé sur l'estimation de possibilités futures de contact. Le protocole proposé est appelé GrAnt (Greedy Ant) car il utilise une règle de transition greedy pour la méta-heuristique d'optimisation par colonies de fourmis (ACO). Cette méta-heuristique donne à GrAnt la possibilité de sélectionner les relais les plus prometteuses ou d'exploiter les bons chemins préalablement trouvé. La motivation principale pour l'utilisation de l'ACO est de profiter de son mécanisme de recherche basée sur population et de son apprentissage et adaptation rapide. En utilisant des simulations basées sur des modèles synthétiques de mobilité, nous montrons que GrAnt est en mesure d'adapter conformément son acheminement dans des différents scénarios et possède une meilleure performance comparée à des protocoles comme Epidemic et PROPHET, en plus de la génération de faible surcharge

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Dtn and non-dtn routing protocols for inter-cubesat communications: A comprehensive survey

    Get PDF
    CubeSats, which are limited by size and mass, have limited functionality. These miniaturised satellites suffer from a low power budget, short radio range, low transmission speeds, and limited data storage capacity. Regardless of these limitations, CubeSats have been deployed to carry out many research missions, such as gravity mapping and the tracking of forest fires. One method of increasing their functionality and reducing their limitations is to form CubeSat networks, or swarms, where many CubeSats work together to carry out a mission. Nevertheless, the network might have intermittent connectivity and, accordingly, data communication becomes challenging in such a disjointed network where there is no contemporaneous path between source and destination due to satellites’ mobility pattern and given the limitations of range. In this survey, various inter-satellite routing protocols that are Delay Tolerant (DTN) and Non Delay Tolerant (Non-DTN) are considered. DTN routing protocols are considered for the scenarios where the network is disjointed with no contemporaneous path between a source and a destination. We qualitatively compare all of the above routing protocols to highlight the positive and negative points under different network constraints. We conclude that the performance of routing protocols used in aerospace communications is highly dependent on the evolving topology of the network over time. Additionally, the Non-DTN routing protocols will work efficiently if the network is dense enough to establish reliable links between CubeSats. Emphasis is also given to network capacity in terms of how buffer, energy, bandwidth, and contact duration influence the performance of DTN routing protocols, where, for example, flooding-based DTN protocols can provide superior performance in terms of maximizing delivery ratio and minimizing a delivery delay. However, such protocols are not suitable for CubeSat networks, as they harvest the limited resources of these tiny satellites and they are contrasted with forwarding-based DTN routing protocols, which are resource-friendly and produce minimum overheads on the cost of degraded delivery probability. From the literature, we found that quota-based DTN routing protocols can provide the necessary balance between delivery delay and overhead costs in many CubeSat missions

    Estratégias de encaminhamento para recolha oportunística de informação em redes móveis de internet das coisas

    Get PDF
    High vehicular mobility in urban scenarios originates inter-vehicles communication discontinuities, a highly important factor when designing a forwarding strategy for vehicular networks. Store, carry and forward mechanisms enable the usage of vehicular networks in a large set of applications, such as sensor data collection in IoT, contributing to smart city platforms. This work focuses on two main topics to enhance the forwarding decision: i) forwarding strategies that make use of location-aware and social-based to perform neighborhood selection, ii) and packet selection mechanisms to provide Quality of Service (QoS). The neighborhood selection is performed through multiple metrics, resulting in three forwarding strategies: (1) Gateway Location Awareness (GLA), a location-aware ranking classification making use of velocity, heading angle and distance to the gateway, to select the vehicles with higher chance to deliver the information in a shorter period of time, thus differentiating nodes through their movement patterns; (2) Aging Social-Aware Ranking (ASAR) that exploits the social behaviours of each vehicle, where nodes are ranked based on a historical contact table, differentiating vehicles with a high number of contacts from those who barely contact with other vehicles; (3) and to merge both location and social aforementioned algorithms, a hybrid approach emerges, thus generating a more intelligent mechanism. Allied to the forwarding criteria, two packet selection mechanisms are proposed to address distinct network functionalities, namely: Distributed Packet Selection, that focuses primarily on data type prioritization and secondly, on packet network lifetime; and Equalized Packet Selection, which uses network metrics to calculate a storage packet ranking. To do so, the packet number of hops, the packet type and packet network lifetime are used. In order to perform the evaluation of the proposed mechanisms, both real and emulation experiments were performed. For each forwarding strategy, it is evaluated the influence of several parameters in the network's performance, as well as comparatively evaluate the strategies in different scenarios. Experiment results, obtained with real traces of both mobility and vehicular connectivity from a real city-scale urban vehicular network, are used to evaluate the performance of GLA, ASAR and HYBRID schemes, and their results are compared to lower- and upper-bounds. Later, these strategies' viability is also validated in a real scenario. The obtained results show that these strategies are a good tradeoff to maximize data delivery ratio and minimize network overhead, while making use of moving networks as a smart city network infrastructure. To evaluate the proposed packet selection mechanisms, a First In First Out packet selection technique is used as ground rule, thus contrasting with the more objective driven proposed techniques. The results show that the proposed mechanisms are capable of provide distinct network functionalities, from prioritizing a packet type to enhancing the network's performance.A elevada mobilidade em cenários veiculares urbanos origina descontinuidades de comunicação entre veículos, um fator altamente importante quando se desenha uma estratégia de encaminhamento para redes veiculares. Mecanismos de store, carry and forward (guardar, carregar e entregar) possibilitam a recolha de dados de sensores em aplicações da Internet das coisas, contribuindo para plataformas de cidades inteligentes. Este trabalho é focado em dois tópicos principais de forma a melhorar a decisão de encaminhamento: i) estratégias de encaminhamento que fazem uso de métricas sociais e de localização para efetuar a seleção de vizinhos, ii) e mecanismos de seleção de pacotes que qualificam a rede com qualidade de serviço. A seleção de vizinhos é feita através de múltiplas métricas, resultando em três estratégias de encaminhamento: Gateway Location Awareness (GLA), uma classificação baseada em localização que faz uso de velocidade, ângulo de direção e distância até uma gateway, para selecionar os veículos com maior probabilidade de entregar a informação num menor período temporal, distinguindo os veículos através dos seus padrões de movimento. Aging Social-Aware Ranking (ASAR) explora os comportamentos sociais de cada veículo, onde é atribuída uma classificação aos veículos com base num histórico de contactos, diferenciando veículos com um alto número de contactos de outros com menos. Por fim, por forma a tirar partido das distintas características de cada uma das destas estratégias, é proposta uma abordagem híbrida, Hybrid between GLA and ASAR (HYBRID). Aliado ao critério de encaminhamento, são propostos dois mecanismos de seleção de pacotes que focam distintas funcionalidades na rede, sendo estes: Distributed Packet Selection, que foca em primeiro lugar na prioritização de determinados tipos de pacotes e em segundo lugar, no tempo de vida que resta ao pacote na rede; e Equalized Packet Selection, que usa métricas da rede para calcular a classificação de cada pacote em memória. Para tal, é usado o numero de saltos do pacote, o tipo de dados do pacote e o tempo de vida que resta ao pacote na rede. De forma a avaliar os mecanismos propostos, foram realizadas experiências em emulador e em cenário real. Para cada estratégia de encaminhamento, e avaliada a influência de vários parâmetros de configuração no desempenho da rede. Para além disso, é feita uma avaliação comparativa entre as várias estratégias em diferentes cenários. Resultados experimentais, obtidos usando traços reais de mobilidade e conetividade de uma rede veicular urbana, são utilizados para avaliar a performance dos esquemas GLA, ASAR e HYRID. Posteriormente, a viabilidade destas estratégias é também validada em cenário real. Os resultados obtidos mostram que estas estratégias são um bom tradeoff para maximizar a taxa de entrega de dados e minimizar a sobrecarga de dados na rede. Para avaliar os mecanismos de seleção de pacotes, um simples mecanismo First In First Out é utilizado como base, contrapondo com as técnicas propostas mais orientadas a objectivos concretos. Os resultados obtidos mostram que os mecanismos propostos são capazes de proporcionar à rede diferentes funcionalidades, desde prioritização de determinado tipos de dados a melhoramentos no desempenho da rede.Agradeço à Fundação Portuguesa para a Ciência e Tecnologia pelo suporte financeiro através de fundos nacionais e quando aplicável cofi nanciado pelo FEDER, no âmbito do Acordo de Parceria PT2020 pelo projecto MobiWise através do programa Operacional Competitividade e Internacionalização (COMPETE 2020) do Portugal 2020 (POCI-01-0145-FEDER-016426).Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Congestion Control Mechanism for Intermittently Connected Wireless Network

    Get PDF
    corecore