333 research outputs found

    Computational Public Safety in Emergency Management Communications

    Get PDF
    Communications are very important in any situation but in emergency management it is imperative that the communications be reliable and responsive to the evolving situation. In emergency management there are many different types of networks with different objectives. It is of immense value to have the ability to seamlessly integrate other networks and computing resources into one interconnected heterogeneous network. The entire management team should be able to access any of the individual networks and their resources. In this paper we discuss various wireless network communication options in the context of their viability for use in emergency management. We analyze various technical aspects such as propagation delay, packet delivery ratio, and transmission rates. In addition the environmental conditions that impair communications are discussed. All experiments we conducted took place in a setting that was real, using real equipment that was physically situated in settings that can be expected in urban disaster settings—our results are not simulations. They were performed in cooperation with the Ontario Provincial Police, Provincial Emergency Response Tea

    Wireless Mesh Network Performance for Urban Search and Rescue Missions

    Full text link
    In this paper we demonstrate that the Canine Pose Estimation (CPE) system can provide a reliable estimate for some poses and when coupled with effective wireless transmission over a mesh network. Pose estimates are time sensitive, thus it is important that pose data arrives at its destination quickly. Propagation delay and packet delivery ratio measuring algorithms were developed and used to appraise Wireless Mesh Network (WMN) performance as a means of carriage for this time-critical data. The experiments were conducted in the rooms of a building where the radio characteristics closely resembled those of a partially collapsed building-a typical US&R environment. This paper presents the results of the experiments, which demonstrate that it is possible to receive the canine pose estimation data in realtime although accuracy of the results depend on the network size and the deployment environment.Comment: 19 Pages, IJCNC Journa

    Wireless Mesh Network Performance for Urban Search and Rescue Missions

    Get PDF
    in this paper we demonstrate that the Canine Pose Estimation (CPE) system can provide a reliable estimate for some poses and when coupled with effective wireless transmission over a mesh network. Pose estimates are time sensitive, thus it is important that pose data arrives at its destination quickly. Propagation delay and packet delivery ratio measuring algorithms were developed and used to appraise Wireless Mesh Network (WMN) performance as a means of carriage for this time-critical data. The experiments were conducted in the rooms of a building where the radio characteristics closely resembled those of a partially collapsed building-a typical US&R environment. This paper presents the results of the experiments, which demonstrate that it is possible to receive the canine pose estimation data in realtime although accuracy of the results depend on the network size and the deployment environment

    Self-organizing Network Optimization via Placement of Additional Nodes

    Get PDF
    Das Hauptforschungsgebiet des Graduiertenkollegs "International Graduate School on Mobile Communication" (GS Mobicom) der Technischen Universität Ilmenau ist die Kommunikation in Katastrophenszenarien. Wegen eines Desasters oder einer Katastrophe können die terrestrischen Elementen der Infrastruktur eines Kommunikationsnetzwerks beschädigt oder komplett zerstört werden. Dennoch spielen verfügbare Kommunikationsnetze eine sehr wichtige Rolle während der Rettungsmaßnahmen, besonders für die Koordinierung der Rettungstruppen und für die Kommunikation zwischen ihren Mitgliedern. Ein solcher Service kann durch ein mobiles Ad-Hoc-Netzwerk (MANET) zur Verfügung gestellt werden. Ein typisches Problem der MANETs ist Netzwerkpartitionierung, welche zur Isolation von verschiedenen Knotengruppen führt. Eine mögliche Lösung dieses Problems ist die Positionierung von zusätzlichen Knoten, welche die Verbindung zwischen den isolierten Partitionen wiederherstellen können. Hauptziele dieser Arbeit sind die Recherche und die Entwicklung von Algorithmen und Methoden zur Positionierung der zusätzlichen Knoten. Der Fokus der Recherche liegt auf Untersuchung der verteilten Algorithmen zur Bestimmung der Positionen für die zusätzlichen Knoten. Die verteilten Algorithmen benutzen nur die Information, welche in einer lokalen Umgebung eines Knotens verfügbar ist, und dadurch entsteht ein selbstorganisierendes System. Jedoch wird das gesamte Netzwerk hier vor allem innerhalb eines ganz speziellen Szenarios - Katastrophenszenario - betrachtet. In einer solchen Situation kann die Information über die Topologie des zu reparierenden Netzwerks im Voraus erfasst werden und soll, natürlich, für die Wiederherstellung mitbenutzt werden. Dank der eventuell verfügbaren zusätzlichen Information können die Positionen für die zusätzlichen Knoten genauer ermittelt werden. Die Arbeit umfasst eine Beschreibung, Implementierungsdetails und eine Evaluierung eines selbstorganisierendes Systems, welche die Netzwerkwiederherstellung in beiden Szenarien ermöglicht.The main research area of the International Graduate School on Mobile Communication (GS Mobicom) at Ilmenau University of Technology is communication in disaster scenarios. Due to a disaster or an accident, the network infrastructure can be damaged or even completely destroyed. However, available communication networks play a vital role during the rescue activities especially for the coordination of the rescue teams and for the communication between their members. Such a communication service can be provided by a Mobile Ad-Hoc Network (MANET). One of the typical problems of a MANET is network partitioning, when separate groups of nodes become isolated from each other. One possible solution for this problem is the placement of additional nodes in order to reconstruct the communication links between isolated network partitions. The primary goal of this work is the research and development of algorithms and methods for the placement of additional nodes. The focus of this research lies on the investigation of distributed algorithms for the placement of additional nodes, which use only the information from the nodes’ local environment and thus form a self-organizing system. However, during the usage specifics of the system in a disaster scenario, global information about the topology of the network to be recovered can be known or collected in advance. In this case, it is of course reasonable to use this information in order to calculate the placement positions more precisely. The work provides the description, the implementation details and the evaluation of a self-organizing system which is able to recover from network partitioning in both situations

    Constructing Dynamic Ad-hoc Emergency Networks using Software-Defined Wireless Mesh Networks

    Get PDF
    Natural disasters and other emergency situations have the potential to destroy a whole network infrastructure needed for communication critical to emergency rescue, evacuation, and initial rehabilitation. Hence, the research community has begun to focus attention on rapid network reconstruction in such emergencies; however, research has tried to create or improve emergency response systems using traditional radio and satellite communications, which face high operation costs and frequent disruptions. This thesis proposes a centralized monitoring and control system to reconstruct ad-hoc networks in emergencies by using software-defined wireless mesh networks (SDWMN). The proposed framework utilizes wireless mesh networks and software-defined networking to provide real-time network monitoring services to restore Internet access in a targeted disaster zone. It dispatches mobile devices including unmanned aerial vehicles and self-driving cars to the most efficient location aggregation to recover impaired network connections by using a new GPS position finder (GPS-PF) algorithm. The algorithm is based on density-based spatial clustering that calculates the best position to deploy one of the mobile devices. The proposed system is evaluated using the common open research emulator to demonstrate its efficiency and high accessibility in emergency situations. The results obtained from the evaluation show that the performance of the emergency communication system is improved considerably with the incorporation of the framework

    Concept and design of the hybrid distributed embedded systems testbed

    Get PDF
    Wireless mesh networks are an emerging and versatile communication technology. The most common application of these networks is to provide access of any number of users to the world wide Internet. They can be set up by Internet service providers or even individuals joined in communities. Due to the wireless medium that is shared by all participants, effects like short-time fading, or the multi-hop property of the network topology many issues are still in the focus of research. Testbeds are a powerful tool to study wireless mesh networks as close as possible to real world application scenarios. In this technical report we describe the design, architecture, and implementation of our work-in-progress wireless testbed at Freie Universität Berlin consisting of 100 mesh routers that span multiple buildings. The testbed is hybrid as it combines wireless mesh network routers with a wireless sensor network

    ADMP: an adaptive multicast routing protocol for mobile ad hoc networks

    Get PDF
    We present ADMP, the adaptive mesh-based multicast routing protocol, in which nodes are able to independently tune the amount of redundancy used to transmit data packets with the goal of improving the overall packet delivery ratio while keeping the retransmission overhead as low as possible. ADMP is based on a novel distributed algorithm for computing connected dominating sets. ADMP uses a single type of control packet, called multicast announcement, which is used to build the meshes of multicast groups, elect the core of each mesh and obtain two-hop neighborhood information. Using detailed simulations for different scenarios, we show that ADMP achieves similar or better reliability than two mesh-based multicast protocols that are very resilient (ODMRP and PUMA) while inducing low packet retransmission overhead.1st IFIP International Conference on Ad-Hoc NetWorkingRed de Universidades con Carreras en Informática (RedUNCI

    Design and evaluation of a self-configuring wireless mesh network architecture

    Get PDF
    Wireless network connectivity plays an increasingly important role in supporting our everyday private and professional lives. For over three decades, self-organizing wireless multi-hop ad-hoc networks have been investigated as a decentralized replacement for the traditional forms of wireless networks that rely on a wired infrastructure. However, despite the tremendous efforts of the international wireless research community and widespread availability of devices that are able to support these networks, wireless ad-hoc networks are hardly ever used. In this work, the reasons behind this discrepancy are investigated. It is found that several basic theoretical assumptions on ad-hoc networks prove to be wrong when solutions are deployed in reality, and that several basic functionalities are still missing. It is argued that a hierarchical wireless mesh network architecture, in which specialized, multi-interfaced mesh nodes form a reliable multi-hop wireless backbone for the less capable end-user clients is an essential step in bringing the ad-hoc networking concept one step closer to reality. Therefore, in a second part of this work, algorithms increasing the reliability and supporting the deployment and management of these wireless mesh networks are developed, implemented and evaluated, while keeping the observed limitations and practical considerations in mind. Furthermore, the feasibility of the algorithms is verified by experiment. The performance analysis of these protocols and the ability to deploy the developed algorithms on current generation off-the-shelf hardware indicates the successfulness of the followed research approach, which combines theoretical considerations with practical implementations and observations. However, it was found that there are also many pitfalls to using real-life implementation as a research technique. Therefore, in the last part of this work, a methodology for wireless network research using real-life implementation is developed, allowing researchers to generate more reliable protocols and performance analysis results with less effort

    Requirements for a Distributed NFV Orchestration in a WMN-Based Disaster Network.

    Get PDF
    • …
    corecore