3,043 research outputs found

    QoS multicast tree construction in IP/DWDM optical internet by bio-inspired algorithms

    Get PDF
    Copyright @ Elsevier Ltd. All rights reserved.In this paper, two bio-inspired Quality of Service (QoS) multicast algorithms are proposed in IP over dense wavelength division multiplexing (DWDM) optical Internet. Given a QoS multicast request and the delay interval required by the application, both algorithms are able to find a flexible QoS-based cost suboptimal routing tree. They first construct the multicast trees based on ant colony optimization and artificial immune algorithm, respectively. Then a dedicated wavelength assignment algorithm is proposed to assign wavelengths to the trees aiming to minimize the delay of the wavelength conversion. In both algorithms, multicast routing and wavelength assignment are integrated into a single process. Therefore, they can find the multicast trees on which the least wavelength conversion delay is achieved. Load balance is also considered in both algorithms. Simulation results show that these two bio-inspired algorithms can construct high performance QoS routing trees for multicast applications in IP/DWDM optical Internet.This work was supported in part ny the Program for New Century Excellent Talents in University, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant no. 60673159 and 70671020, the National High-Tech Reasearch and Development Plan of China under Grant no. 2007AA041201, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant no. 20070145017

    Deadline Constrained Cloud Computing Resources Scheduling through an Ant Colony System Approach

    Get PDF
    Cloud computing resources scheduling is essential for executing workflows in the cloud platform because it relates to both execution time and execution cost. In this paper, we adopt a model that optimizes the execution cost while meeting deadline constraints. In solving this problem, we propose an Improved Ant Colony System (IACS) approach featuring two novel strategies. Firstly, a dynamic heuristic strategy is used to calculate a heuristic value during an evolutionary process by taking the workflow topological structure into consideration. Secondly, a double search strategy is used to initialize the pheromone and calculate the heuristic value according to the execution time at the beginning and to initialize the pheromone and calculate heuristic value according to the execution cost after a feasible solution is found. Therefore, the proposed IACS is adaptive to the search environment and to different objectives. We have conducted extensive experiments based on workflows with different scales and different cloud resources. We compare the result with a particle swarm optimization (PSO) approach and a dynamic objective genetic algorithm (DOGA) approach. Experimental results show that IACS is able to find better solutions with a lower cost than both PSO and DOGA do on various scheduling scales and deadline conditions

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Ant-Colony-Based Multiuser Detection for MC DS-CDMA Systems

    No full text
    In this contribution we present a novel ant colony optimization (ACO) based multi-user detector (MUD) designed for synchronous multi-carrier direct sequence code division multiple access (MC DSCDMA) systems. The operation of the ACO-based MUD is based on the behaviour of the ant colony in nature. The ACO-based MUD aims for achieving the same bit-error-rate (BER) performance as the optimum maximum likelihood (ML) MUD, without carrying out an exhaustive search of the entire MC DS-CDMA search space constituted by all possible combinations of the received multi-user vectors. We will demonstrate that the system is capable of supporting almost as many users as the number of chips in the spreading sequence, while searching only a small fraction of the entire ML search space. It will also be demonstrated that the number of floating point operations per second is a factor of 108 lower for the proposed ACO-based MUD than that of the ML MUD, when supporting K = 32 users in a MC DS-CDMA system employing 31-chip Gold codes as the T-domain spreading sequence

    Decision of Multimodal Transportation Scheme Based on Swarm Intelligence

    Get PDF
    In this paper, some basic concepts of multimodal transportation and swarm intelligence were described and reviewed and analyzed related literatures of multimodal transportation scheme decision and swarm intelligence methods application areas. Then, this paper established a multimodal transportation scheme decision optimization mathematical model based on transportation costs, transportation time, and transportation risks, explained relevant parameters and the constraints of the model in detail, and used the weight coefficient to transform the multiobjective optimization problems into a single objective optimization transportation scheme decision problem. Then, this paper is proposed by combining particle swarm optimization algorithm and ant colony algorithm (PSACO) to solve the combinatorial optimization problem of multimodal transportation scheme decision for the first time; this algorithm effectively combines the advantages of particle swarm optimization algorithm and ant colony algorithm. The solution shows that the PSACO algorithm has two algorithms’ advantages and makes up their own problems; PSACO algorithm is better than ant colony algorithm in time efficiency and its accuracy is better than that of the particle swarm optimization algorithm, which is proved to be an effective heuristic algorithm to solve the problem about multimodal transportation scheme decision, and it can provide economical, reasonable, and safe transportation plan reference for the transportation decision makers

    Power transmission planning using heuristic optimisation techniques: Deterministic crowding genetic algorithms and Ant colony search methods

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The goal of transmission planning in electric power systems is a robust network which is economical, reliable, and in harmony with its environment taking into account the inherent uncertainties. For reasons of practicality, transmission planners have normally taken an incremental approach and tended to evaluate a relatively small number of expansion alternatives over a relatively short time horizon. In this thesis, two new planning methodologies namely the Deterministic Crowding Genetic Algorithm and the Ant Colony System are applied to solve the long term transmission planning problem. Both optimisation techniques consider a 'green field' approach, and are not constrained by the existing network design. They both identify the optimal transmission network over an extended time horizon based only on the expected pattern of electricity demand and generation sources. Two computer codes have been developed. An initial comparative investigation of the application of Ant Colony Optimisation and a Genetic Algorithm to an artificial test problem has been undertaken. It was found that both approaches were comparable for the artificial test problem.EPRSC and National Grid Company pl

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines
    corecore