3,211 research outputs found

    Secure and Reliable Wireless Communication through End-to-End-based Solution

    Get PDF
    In the past few decades, network architectures and protocols are often designed to achieve a high throughput and a low latency. Security was rarely considered during the initial design phases. As a result, many network systems are insecure by design. Once they are widely deployed, the inherent vulnerabilities may be difficult to eliminate due to the prohibitive update cost. In this dissertation, we examine such types of vulnerabilities in various networks and design end-to-end-based solutions that allow end systems to address such loopholes. The end-to-end argument was originally proposed to let end hosts implement application-specific functions rather than letting intermediate network nodes (i.e., routers) perform unneeded functions. In this dissertation, we apply the end-to-end principle to address three problems in wireless networks that are caused by design flaw with following reasons: either because integrating solutions into a large number of already deployed intermediate nodes is not a viable option or because end hosts are in a better position to cope with the problems. First, we study the problem of jamming in a multihop wireless network. Jamming attacks are possible because wireless networks communicate over a shared medium. It is easy to launch a jamming attack but is difficult to defend against it. To ensure the end-to-end packet delivery, we propose a jamming-resilient multipath routing algorithm that maximizes end-to-end availability based on the availability history between sources and destinations. Second, we investigate caller ID spoofing attacks in telephone networks in which an attacker can send a fake caller ID to a callee rather than her real one to impersonate as someone else. Such attacks are possible because there is no caller ID authentication mechanism in operator interconnection protocols. Modifying current protocols to verify caller ID between operators may be infeasible due to the scale of deployed systems. So, we propose two schemes to detect caller ID spoofing attacks based on end-to-end verification. Finally, we examine evil twin access point attacks in wireless hotspots. In such attacks, an adversary sets up a phishing access point that has the same Service Set IDentification (SSID) as the legitimate ones in the hotspot. Such attacks are easy to launch because of how 802.11 standards are designed. Existing solutions take away convenience from the user while providing security. Our aim is to detect evil twin access point attacks in wireless hotspots without modifying how access point works in hotspots and without additional infrastructure support. We propose an end-to-end-based mechanism that can effectively detect evil twin access point attacks in wireless hotspots

    Wireless Sensor Network Virtualization: A Survey

    Get PDF
    Wireless Sensor Networks (WSNs) are the key components of the emerging Internet-of-Things (IoT) paradigm. They are now ubiquitous and used in a plurality of application domains. WSNs are still domain specific and usually deployed to support a specific application. However, as WSN nodes are becoming more and more powerful, it is getting more and more pertinent to research how multiple applications could share a very same WSN infrastructure. Virtualization is a technology that can potentially enable this sharing. This paper is a survey on WSN virtualization. It provides a comprehensive review of the state-of-the-art and an in-depth discussion of the research issues. We introduce the basics of WSN virtualization and motivate its pertinence with carefully selected scenarios. Existing works are presented in detail and critically evaluated using a set of requirements derived from the scenarios. The pertinent research projects are also reviewed. Several research issues are also discussed with hints on how they could be tackled.Comment: Accepted for publication on 3rd March 2015 in forthcoming issue of IEEE Communication Surveys and Tutorials. This version has NOT been proof-read and may have some some inconsistencies. Please refer to final version published in IEEE Xplor

    Design of a High Capacity, Scalable, and Green Wireless Communication System Leveraging the Unlicensed Spectrum

    Get PDF
    The stunning demand for mobile wireless data that has been recently growing at an exponential rate requires a several fold increase in spectrum. The use of unlicensed spectrum is thus critically needed to aid the existing licensed spectrum to meet such a huge mobile wireless data traffic growth demand in a cost effective manner. The deployment of Long Term Evolution (LTE) in the unlicensed spectrum (LTE-U) has recently been gaining significant industry momentum. The lower transmit power regulation of the unlicensed spectrum makes LTE deployment in the unlicensed spectrum suitable only for a small cell. A small cell utilizing LTE-L (LTE in licensed spectrum), and LTE-U (LTE in unlicensed spectrum) will therefore significantly reduce the total cost of ownership (TCO) of a small cell, while providing the additional mobile wireless data offload capacity from Macro Cell to small cell in LTE Heterogeneous Networks (HetNet), to meet such an increase in wireless data demand. The U.S. 5 GHz Unlicensed National Information Infrastructure (U-NII) bands that are currently under consideration for LTE deployment in the unlicensed spectrum contain only a limited number of 20 MHZ channels. Thus in a dense multi-operator deployment scenario, one or more LTE-U small cells have to co-exist and share the same 20 MHz unlicensed channel with each other and with the incumbent Wi-Fi. This dissertation presents a proactive small cell interference mitigation strategy for improving the spectral efficiency of LTE networks in the unlicensed spectrum. It describes the scenario and demonstrate via simulation results, that in the absence of an explicit interference mitigation mechanism, there will be a significant degradation in the overall LTE-U system performance for LTE-U co-channel co-existence in countries such as U.S. that do not mandate Listen-Before-Talk (LBT) regulations. An unlicensed spectrum Inter Cell Interference Coordination (usICIC) mechanism is then presented as a time-domain multiplexing technique for interference mitigation for the sharing of an unlicensed channel by multi-operator LTE-U small cells. Through extensive simulation results, it is demonstrated that the proposed usICIC mechanism will result in 40% or more improvement in the overall LTE-U system performance (throughput) leading to increased wireless communication system capacity. The ever increasing demand for mobile wireless data is also resulting in a dramatic expansion of wireless network infrastructure by all service providers resulting in significant escalation in energy consumption by the wireless networks. This not only has an impact on the recurring operational expanse (OPEX) for the service providers, but importantly the resulting increase in greenhouse gas emission is not good for the environment. Energy efficiency has thus become one of the critical tenets in the design and deployment of Green wireless communication systems. Consequently the market trend for next-generation communication systems has been towards miniaturization to meet this stunning ever increasing demand for mobile wireless data, leading towards the need for scalable distributed and parallel processing system architecture that is energy efficient, and high capacity. Reducing cost and size while increasing capacity, ensuring scalability, and achieving energy efficiency requires several design paradigm shifts. This dissertation presents the design for a next generation wireless communication system that employs new energy efficient distributed and parallel processing system architecture to achieve these goals while leveraging the unlicensed spectrum to significantly increase (by a factor of two) the capacity of the wireless communication system. This design not only significantly reduces the upfront CAPEX, but also the recurring OPEX for the service providers to maintain their next generation wireless communication networks

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure
    • …
    corecore