125,459 research outputs found

    Optimal extension to Sobolev rough paths

    Full text link
    We show that every Rd\mathbb{R}^d-valued Sobolev path with regularity α\alpha and integrability pp can be lifted to a Sobolev rough path in the sense of T. Lyons provided α>1/p>0\alpha >1/p>0. Moreover, we prove the existence of unique rough path lifts which are optimal w.r.t. strictly convex functionals among all possible rough path lifts given a Sobolev path. As examples, we consider the rough path lift with minimal Sobolev norm and characterize the Stratonovich rough path lift of a Brownian motion as optimal lift w.r.t. to a suitable convex functional. Generalizations of the results to Besov spaces are briefly discussed.Comment: Typos fixed. To appear in Potential Analysi

    Sample Efficient Optimization for Learning Controllers for Bipedal Locomotion

    Full text link
    Learning policies for bipedal locomotion can be difficult, as experiments are expensive and simulation does not usually transfer well to hardware. To counter this, we need al- gorithms that are sample efficient and inherently safe. Bayesian Optimization is a powerful sample-efficient tool for optimizing non-convex black-box functions. However, its performance can degrade in higher dimensions. We develop a distance metric for bipedal locomotion that enhances the sample-efficiency of Bayesian Optimization and use it to train a 16 dimensional neuromuscular model for planar walking. This distance metric reflects some basic gait features of healthy walking and helps us quickly eliminate a majority of unstable controllers. With our approach we can learn policies for walking in less than 100 trials for a range of challenging settings. In simulation, we show results on two different costs and on various terrains including rough ground and ramps, sloping upwards and downwards. We also perturb our models with unknown inertial disturbances analogous with differences between simulation and hardware. These results are promising, as they indicate that this method can potentially be used to learn control policies on hardware.Comment: To appear in International Conference on Humanoid Robots (Humanoids '2016), IEEE-RAS. (Rika Antonova and Akshara Rai contributed equally

    Algorithmic Complexity in Cosmology and Quantum Gravity

    Get PDF
    In this article we use the idea of algorithmic complexity (AC) to study various cosmological scenarios, and as a means of quantizing the gravitational interaction. We look at 5D and 7D cosmological models where the Universe begins as a higher dimensional Planck size spacetime which fluctuates between Euclidean and Lorentzian signatures. These fluctuations are governed by the AC of the two different signatures. At some point a transition to a 4D Lorentzian signature Universe occurs, with the extra dimensions becoming ``frozen'' or non-dynamical. We also apply the idea of algorithmic complexity to study composite wormholes, the entropy of blackholes, and the path integral for quantum gravity.Comment: 15 page
    • …
    corecore