12,574 research outputs found

    Magnetic Susceptibility of the Quark Condensate and Polarization from Chiral Models

    Full text link
    We compute the magnetic susceptibility of the quark condensate and the polarization of quarks at zero temperature and in a uniform magnetic background. Our theoretical framework consists of two chiral models that allow to treat self-consistently the spontaneous breaking of chiral symmetry: the linear σ\sigma-model coupled to quarks, dubbed quark-meson model, and the Nambu-Jona-Lasinio model. We also perform analytic estimates of the same quantities within the renormalized quark-meson model, both in the regimes of weak and strong fields. Our numerical results are in agreement with the recent literature; moreover, we confirm previous Lattice findings, related to the saturation of the polarization at large fields.Comment: 13 pages, 4 figure

    Extinction in neutrally stable stochastic Lotka-Volterra models

    Get PDF
    Populations of competing biological species exhibit a fascinating interplay between the nonlinear dynamics of evolutionary selection forces and random fluctuations arising from the stochastic nature of the interactions. The processes leading to extinction of species, whose understanding is a key component in the study of evolution and biodiversity, are influenced by both of these factors. In this paper, we investigate a class of stochastic population dynamics models based on generalized Lotka-Volterra systems. In the case of neutral stability of the underlying deterministic model, the impact of intrinsic noise on the survival of species is dramatic: it destroys coexistence of interacting species on a time scale proportional to the population size. We introduce a new method based on stochastic averaging which allows one to understand this extinction process quantitatively by reduction to a lower-dimensional effective dynamics. This is performed analytically for two highly symmetrical models and can be generalized numerically to more complex situations. The extinction probability distributions and other quantities of interest we obtain show excellent agreement with simulations.Comment: 14 pages, 7 figure

    alpha_s and the tau hadronic width: fixed-order, contour-improved and higher-order perturbation theory

    Full text link
    The determination of αs\alpha_s from hadronic τ\tau decays is revisited, with a special emphasis on the question of higher-order perturbative corrections and different possibilities of resumming the perturbative series with the renormalisation group: fixed-order (FOPT) vs. contour-improved perturbation theory (CIPT). The difference between these approaches has evolved into a systematic effect that does not go away as higher orders in the perturbative expansion are added. We attempt to clarify under which circumstances one or the other approach provides a better approximation to the true result. To this end, we propose to describe the Adler function series by a model that includes the exactly known coefficients and theoretical constraints on the large-order behaviour originating from the operator product expansion and the renormalisation group. Within this framework we find that while CIPT is unable to account for the fully resummed series, FOPT smoothly approaches the Borel sum, before the expected divergent behaviour sets in at even higher orders. Employing FOPT up to the fifth order to determine αs\alpha_s in the \MSb scheme, we obtain αs(Mτ)=0.3200.007+0.012\alpha_s(M_\tau)=0.320 {}^{+0.012}_{-0.007}, corresponding to αs(MZ)=0.11850.0009+0.0014\alpha_s(M_Z) = 0.1185 {}^{+0.0014}_{-0.0009}. Improving this result by including yet higher orders from our model yields αs(Mτ)=0.316±0.006\alpha_s(M_\tau)=0.316 \pm 0.006, which after evolution leads to αs(MZ)=0.1180±0.0008\alpha_s(M_Z) = 0.1180 \pm 0.0008. Our results are lower than previous values obtained from τ\tau decays.Comment: 42 pages, 9 figures; appendix on Adler function in the complex plane added. Version to appear in JHE

    Dominance-based Rough Set Approach, basic ideas and main trends

    Full text link
    Dominance-based Rough Approach (DRSA) has been proposed as a machine learning and knowledge discovery methodology to handle Multiple Criteria Decision Aiding (MCDA). Due to its capacity of asking the decision maker (DM) for simple preference information and supplying easily understandable and explainable recommendations, DRSA gained much interest during the years and it is now one of the most appreciated MCDA approaches. In fact, it has been applied also beyond MCDA domain, as a general knowledge discovery and data mining methodology for the analysis of monotonic (and also non-monotonic) data. In this contribution, we recall the basic principles and the main concepts of DRSA, with a general overview of its developments and software. We present also a historical reconstruction of the genesis of the methodology, with a specific focus on the contribution of Roman S{\l}owi\'nski.Comment: This research was partially supported by TAILOR, a project funded by European Union (EU) Horizon 2020 research and innovation programme under GA No 952215. This submission is a preprint of a book chapter accepted by Springer, with very few minor differences of just technical natur

    Investigation on soft computing techniques for airport environment evaluation systems

    Get PDF
    Spatial and temporal information exist widely in engineering fields, especially in airport environmental management systems. Airport environment is influenced by many different factors and uncertainty is a significant part of the system. Decision support considering this kind of spatial and temporal information and uncertainty is crucial for airport environment related engineering planning and operation. Geographical information systems and computer aided design are two powerful tools in supporting spatial and temporal information systems. However, the present geographical information systems and computer aided design software are still too general in considering the special features in airport environment, especially for uncertainty. In this thesis, a series of parameters and methods for neural network-based knowledge discovery and training improvement are put forward, such as the relative strength of effect, dynamic state space search strategy and compound architecture. [Continues.

    Geometric scaling in exclusive processes

    Full text link
    We show that according to the present understanding of the energy evolution of the observables measured in deep-inelastic scattering, the photon-proton scattering amplitude has to exhibit geometric scaling at each impact parameter. We suggest a way to test it experimentally at HERA. A qualitative analysis based on published data is presented and discussed.Comment: 9 pages, 2 figures. v2: references added, some points clarifie

    Multi-objective worst case optimization by means of evolutionary algorithms

    Get PDF
    Many real-world optimization problems are subject to uncertainty. A possible goal is then to find a solution which is robust in the sense that it has the best worst-case performance over all possible scenarios. However, if the problem also involves mul- tiple objectives, which scenario is “best” or “worst” depends on the user’s weighting of the different criteria, which is generally difficult to specify before alternatives are known. Evolutionary multi-objective optimization avoids this problem by searching for the whole front of Pareto optimal solutions. This paper extends the concept of Pareto dominance to worst case optimization problems and demonstrates how evolu- tionary algorithms can be used for worst case optimization in a multi-objective setting
    corecore