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Abstract
Many real-world optimization problems are subject to uncertainty. A possible goal
is then to find a solution which is robust in the sense that it has the best worst-case
performance over all possible scenarios. However, if the problem also involves mul-
tiple objectives, which scenario is “best” or “worst” depends on the user’s weighting
of the different criteria, which is generally difficult to specify before alternatives are
known. Evolutionary multi-objective optimization avoids this problem by searching
for the whole front of Pareto optimal solutions. This paper extends the concept of
Pareto dominance to worst case optimization problems and demonstrates how evolu-
tionary algorithms can be used for worst case optimization in a multi-objective setting.

Keywords
Worst-case optimization, robustness, multi-objective evolutionary algorithm, uncer-
tainty.

1 Introduction

Many practical real-world optimization problems require dealing with uncertainty, e.g.,
because they rely on forecasts, because they depend on an opponent’s move, because
of delayed decisions in hierarchical planning, or because the solution eventually im-
plemented is subject to manufacturing tolerances. In such cases, one typically searches
for robust solutions. What exactly constitutes a robust solution depends on the specific
application and user needs, but often used criteria are a good expected quality, a low
variance or good performance in the worst case. In this paper, we assume that a solu-
tion’s quality depends on a number of possible scenarios, and the solution is considered
robust if it performs well in the worst case. Considering the worst case is important in
particular if the decision maker is very risk averse, or if the stakes are high, such as in
situations involving potential bankruptcy or death.

Another common characteristic of real-world problems is that they involve mul-
tiple objectives which need to be considered simultaneously. As these objectives are
usually conflicting, it is not possible to find a single solution that is optimal with re-
spect to all objectives. Which solution is the best depends on the user’s utility function,
i.e., on how the different criteria are weighted. Unfortunately, it is usually rather diffi-
cult to formally specify user preferences before the alternatives are known. One way to
solve this predicament is by searching for the whole Pareto-optimal front of solutions,
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i.e., all solutions that can not be improved in any criterion without at least sacrificing
another criterion. This set of solutions with different trade-offs between the objectives
can then be inspected by a decision maker who selects the final solution. One particular
approach to multi-objective optimization that has become quite popular in recent years
is evolutionary multi-objective optimization (see, e.g., Deb, 2001). Because Evolution-
ary algorithms (EAs) work with a population of solutions throughout the run, they are
able to search for several Pareto-optimal solutions with different trade-offs simultane-
ously in one optimization run.

In this paper, we extend the concept of Pareto dominance to worst case optimiza-
tion. Furthermore, we show how the new concept can be integrated into EAs to allow
them to search for worst case robust alternatives in a multi-objective setting. Note that
in the case of multiple objectives, different decision makes may consider different sce-
narios as worst-case. Thus, the problem requires special attention, as it is not possible
to reduce a soltuionto a single point in the objective space (as done, e.g., for MO robust-
ness optimization).

The paper is structured as follows. Section 2 briefly surveys related work and
briefly introduces evolutionary multi-objective optimization. Our extensions to worst
case multi-objective optimization are presented in Section 3. Two suggested alterna-
tives are then compared in Section 4. The paper concludes with a summary and some
ideas for future work.

2 Fundamentals and related work

2.1 Multi-objective optimization

In the past decade, there has been a tremendous interest in evolutionary multi-objective
optimization, and the on-line repository (emo) currently lists more than 2600 papers in
this area. A main cause for this interest is certainly the EA’s capability to work with
a population of solutions, and thus to generate, in one run, a set of alternatives with
different trade-offs between the objectives, which can then be presented to a decision
maker to choose from.

A comprehensive introduction to the field of multi-objective evolutionary algo-
rithms (MOEAs) is out of the scope of this paper, and the interested reader is referred
to e.g. Deb (2001); Coello Coello et al. (2002). In the following, we will focus on the
aspects particularly relevant for our approach.

Usually, the comparison of solutions in the case of multiple objectives is based on
the concept of dominance. A solution x is said to dominate a solution y if and only if
solution x is at least as good as y in all objectives, and strictly better in at least one ob-
jective. More formally, for a minimization problem (which we will assume throughout
the paper without loss of generality), dominance can be specified as follows:

x � y ⇔ ∀i ∈ [1 . . .m] : fi(x) ≤ fi(y)
∧∃j ∈ [1 . . .m] : fj(x) < fj(y)

Figure 1 illustrates the concept for the case of two objectives. In that example, so-
lution C is dominated by solution A and B, while solutions A and B are non-dominated
and thus, without any additional information about the DM’s preferences, have to be
considered incommensurable. If a solution is non-dominated with respect to any other
solution in the search space it is called Pareto-optimal.

A MOEA has to achieve two things: first, it has to drive the search towards the
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Figure 1: Illustration of the standard dominance relation

Pareto-optimal front, and second, it has to maintain diversity along this front. There are
several successful MOEA variants, including SPEA-2 Zitzler et al. (2002) and NSGA-
II Deb (2001).

2.2 Evolutionary search for robust solutions

In recent years, there has been a growing interest in applying evolutionary computa-
tion to optimization problems involving uncertainty, and a recent survey on this field
can be found in Jin and Branke (2005). One typical goal in many real world optimiza-
tion scenarios involving uncertainty is to produce solutions that are not only of high
quality, but also robust. There are many possible notions of robustness, including a
good expected performance, a good worst-case performance, a low variability in per-
formance, or a large range of disturbances still leading to acceptable performance (see
also Branke, 2001b, p. 127). Yet another definition would be a solution’s probability to
violate the constraints, which is often called reliability.

There are at least four different possibilities to integrate the notion of robust-
ness/reliability into evolutionary algorithms:

1. Simply optimize a robustness measure such as the expected performance, or the
worst-case performance.

2. Penalize solutions that are not robust, e.g., solutions with high variance.

3. Put a constraint on the robustness of a solution, i.e., only accept solutions with a
minimal robustness.

4. Consider robustness as an additional objective and use an MOEA to generate dif-
ferent possible trade-offs.

Most research work on evolutionary robustness optimization today attempts to
optimize the expected fitness given a probability distribution of the uncertain variable.
From the point of view of the optimization approach, this reduces the fitness distribu-
tion to a single value, the expected fitness. Thus, in principle, standard evolutionary
algorithms could be used. Unfortunately, it is usually not possible to calculate the ex-
pected fitness analytically, it has to be estimated. This, in turn, raises the question how
to estimate the expected fitness efficiently, and how to optimize based on estimates.

Popular approaches to estimate the expected fitness include:
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1. Implicit averaging: Tsutsui and Ghosh (1997) have shown that a genetic algorithm
with infinite population size and very rough estimates of the fitness (a single sam-
ple from the stochastic evaluation function) behaves, on average, exactly as a ge-
netic algorithm working on the expected fitness. Intuitively, this can be explained
by the fact that an EA generates many similar solutions in promising areas of the
search space, and thus the over-evaluation of one particular solution is counter-
balanced by the under-evaluation of a similar solution. This feature is sometimes
termed “implicit averaging”.

2. Explicit averaging over multiple samples: Averaging over n samples reduces the
standard deviation of the estimator by a factor of

√
n, while it increases the com-

putational cost by a factor of n, which makes this method often impractical. Nev-
ertheless, it is used frequently, see e.g. Greiner (1996); Sebald and Fogel (1992);
Thompson (1998); Wiesmann et al. (1998).

3. Variance reduction techniques: Using derandomized sampling techniques in-
stead of random sampling reduces the variance of the estimator, thus allowing
a more accurate estimate with fewer samples. In Loughlin and Ranjithan (1999);
Branke (2001b), Latin Hypercube Sampling is employed, together with the idea to
use the same disturbances for all individuals in a generation.

4. Evaluating important individuals more often: In Branke (1998), it is suggested
to evaluate good individuals more often than bad ones, because good individu-
als are more likely to survive and therefore a more accurate estimate is benefi-
cial. In Branke (2001a), it was proposed that individuals with high fitness variance
should be evaluated more often. Stagge (1998) considered a (µ, λ) or (µ + λ) evo-
lution strategy and suggested that the sample size should be based on an individ-
ual’s probability to be among the µ best ones. More elaborate strategies to decide
which individual to evaluate how often have been proposed in in Buchholz and
Thümmler (2005) and Schmidt et al. (2006).

5. Using other individuals in the neighborhood: Since promising regions in the
search space are sampled several times, it is possible to use information about
other individuals in the neighborhood to estimate an individual’s expected fitness.
In particular, in Branke (1998) it is proposed to record the history of an evolution,
i.e. to accumulate all individuals of an evolutionary run with corresponding fit-
ness values in a database, and to use the weighted average fitness of neighboring
history individuals. More elaborate schemes involving the use of local approxima-
tion models can be found in Paenke et al. (2006); Sano and Kita (2000).

Robustness based on expected fitness has also been studied for the case of mul-
tiobjective problems (Deb and Gupta, 2005; Gupta and Deb, 2005; ?). Two notions of
robustness are studied, one optimizing the mean objective values, the other optimizing
under the constraint that the distance between mean and undisturbed fitness is less
than some threshold. In both cases, sampling is used for estimation. Then, a standard
MOEA is used to work with these expected fitnesses and/or the estimated constraint
violation. Gupta and Deb (2005) thereby extends Deb and Gupta (2005) by additionally
taking into account robustness with respect to constraint violations. ? summarizes the
former two and examines the issues in more detail.

In contrast to the expected fitness approach, the worst case can usually not be ob-
tained by sampling. Instead, finding the worst case for a particular solution may itself
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be a complex optimization problem. In Elishakoff et al. (1994), this is solved by run-
ning an embedded optimizer searching for the worst case for each individual (called
anti-optimization in Elishakoff et al. (1994)). Similarly, Ong et al. (2006) construct a sim-
plified meta-model around a solution, and use a simple embedded local hill-climber to
search for the worst case. Lim et al. (2006) use the maximum disturbance range that
guarantees fitness above a certain threshold. Again, this is determined by an embed-
ded search algorithm. Tjornfelt-Jensen and Hansen (1999) uses a coevolutionary ap-
proach for a scheduling problem, co-evolving solutions and worst-case disturbances.
Others simply calculate some bounds on the worst-case behavior (e.g., Pantelides and
Ganzerli (1998)). Lua et al. (2005) use worst-case performance in the case of a multi
objective problem, but they assume that the user provides some a priori knowledge in
the form of a target point, and then evaluate individuals with respect to the scenario
which leads to the largest distance from the target as worst case. This in effect reduces
the multi-objective problem to a single objective (distance from target) problem.

A few papers treat robustness as an additional criterion to be optimized. Robust-
ness is measured, e.g., as variance (Das, 2000; Jin and Sendhoff, 2003; Paenke et al.,
2006), as maximal range in parameter variation that still leads to an acceptable solu-
tion (Li et al., 2005; Lim et al., 2006), or as the probability to violate a constraint (Deb
et al., 2007; Daum et al., 2007). This allows the decision maker to analyze the possi-
ble trade-off between solution quality and robustness/reliability. The challenges and
approaches are mainly similar to the single objective optimization in determining the
performance measures.

Our paper extends the notion of worst-case robustness optimization to the multi-
objective case. That is, for an inherently multi-objective problem and a user interested
in the worst case, we want to generate a set of solutions with different trade-offs to
choose from. In some sense, this is similar to the multi-objective problems considered
by Gupta and Deb (2005), but instead of looking at the expected fitness, we look at
worst-case fitness. While in a single objective setting, it makes little difference whether
expected fitness or worst-case fitness is optimized, there is a huge difference in a multi-
objective setting. The reason is that in the case of multiple objectives, different users
may consider different scenarios as worst case, and thus it is no longer possible to
reduce a solution to a single point in the objective space.

To our best knowledge, the first attempt to handle worst-case robustness in a
Pareto sense may be attributed to Avigad et al. (2005). They have considered it for the
problem of robust conceptual design as related to the issue of delayed decisions. How-
ever, the focus of the current paper is much broader, with a completely new algorithm
to handle worst-case dominance relations.

3 Selection in multi-objective worst-case optimization

3.1 General considerations

In ordinary multi-objective optimization, a solution x is represented by a single point
in objective space, i.e. by a vector of fitness values ~f(x). For worst-case optimization, a
solution’s fitness vector is not fully determined, but depends on some external, uncon-
trollable parameters. In other words, in objective space, a solution is now represented
by a set of fitness vectors, F = {~f (1)(x), ~f (2)(x), ~f (3)(x), . . .}. In principle, the set F
could be infinite, although we focus here on settings where the uncertainty can be cap-
tured by a finite set of scenarios.

In ordinary MO optimization, the selection mechanism is designed to drive the
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Figure 2: Set of representatives F of a solution. The representative labeled (8) is the
worst-case representative for a user only caring about objective f1, the solution labeled
(5) is the worst-case representative for a user weighting both objectives equally. The
line connects all potential worst-case representatives (W).

search towards the Pareto optimal front, while at the same time maintaining diversity
of non-dominated solutions. For example in NSGA-II, an individual’s fitness is calcu-
lated based on two mechanisms: the non-dominance sorting, and the crowding dis-
tance calculation. The idea of the non-dominance sorting is to favor individuals close
to the non-dominated front. It recursively looks at all the individuals in the population,
determines the subset of non-dominated individuals, assigns them the next best rank,
and removes them from the population, until all individuals have been ranked. To war-
rant diversity in the population, individuals with the same non-domination rank are
sorted with respect to their crowding distance, which is the sum of distances between
their closest left and right neighbor, over all dimensions. Amongst individuals with the
same non-domination rank, those with a larger crowding distance are preferred.

For multi-objective worst-case optimization, these ideas can not be applied directly
because the concept of non-dominance has not yet been defined for worst-case opti-
mization, and because each individual is represented by a set of fitness vectors, which
makes it impossible to calculate a crowding distance.

Figure 2 illustrates the set of fitness vectors F representing a particular solution. In
this example, F consists of eight discrete points in the 2-dimensional objective space.
Depending on the user’s preferences different representatives constitute the worst case.
For example, for a user only interested in minimizing objective f1, the representative
labeled (8) would be considered worst case, while for a user with equal weighting for
both objectives, the solution labeled (5) would be considered worst case. But no mat-
ter how the user’s utility function, of the eight representatives, only those connected
by the dotted line could ever be worst-case representatives. Therefore, the three other
representatives can be ignored for multi-objective worst-case optimization. We denote
the set of possible worst-case representatives byW . Note that the worst-case represen-
tatives are just the set of non-dominated solutions for the inverted MO problem with
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Figure 3: Visualization of the concept of dominance for ordinary MO optimization (left)
and MO worst-case optimization (right).

maximization of all objectives.
In the following, we assume that we can somehow determineW , e.g., because the

set of considered scenarios is known and finite. In some cases, determiningW may not
be trivial but if necessary, could also be determined by running an embedded MOEA
on the inverted problem.

3.2 Worst-case dominance relation

In this subsection, we examine the implications of the worst-case condition on domi-
nance relationships. Figure 3 compares the areas dominated in ordinary MO optimiza-
tion and MO worst-case optimization. In the ordinary case (left panel), a solution x
dominates all solutions that are worse in both objectives, which is the striped area to
the upper right. Similarly, it is dominated by all solutions in the grey area. If another
solution y is in none of the two above areas, it depends on the user’s preferences which
solution is considered better, and the solutions are said to be non-dominated. For MO
worst-case optimization (right panel), we have to deal with sets of worst-case represen-
tatives W(x) (one for each solution). A natural definition of dominance in the case of
worst-case multi-objective optimization would be:

Definition: Solution x worst-case dominates solution y (denoted as y �wc x), if
there exists no utility function such that a user would prefer y with respect to the worst-
case scenarios for this user.

Since this definition depends on the worst-case representatives of both solutions
W(x) andW(y), it is not possible to specify in general an area dominated by x. How-
ever, we can specify that for a solution y with W(y) completely within the domi-
nated region of W(x) for the inverted (maximization) problem (the grey area in Fig-
ure 3, right panel), y worst-case dominates x, because no member ofW(y) could ever
be considered worst case relative to the members in W(x). Thus, in order to deter-
mine whether one solution worst-case dominates another, we can determine the non-
dominated representatives ofW(x) ∪W(y) with respect to the inverted problem. If all
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f2

f1
(a)

f2

f1
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Figure 4: Example for one solution represented by triangles dominating the other (left),
and two non-dominated solutions (right). The line indicates the non-dominated front
for the inverted problem.

non-dominated representatives belong toW(x), then solution y worst-case dominates
x (denoted as y �wc x). If all non-dominated representatives belong toW(y), then so-
lution x worst-case dominates y (x �wc y). Otherwise, the two solutions are worst-case
non-dominated.

Two examples are provided in Figure 4. In the left panel, the non-dominated repre-
sentatives of the inverted problem all belong to the solution drawn with bullets, i.e., it is
worst-case dominated by the triangle-solution. In the right panel, some non-dominated
representatives of the inverted problem belong to either solution, i.e., the two solutions
are worst-case non-dominated.

The concept of non-dominance can be extended to more than two solutions:
Lemma: A solution y is worst-case non-dominated with respect to a set of solu-

tions x1, . . . , xn if and only if y is worst-case non-dominated with respect to each of the
solutions x1, . . . , xn individually.

Proof: If y is worst-case non-dominated with respect to each of the solutions
x1, . . . , xn individually, then there is at least one possible utility function where y would
be the worst-case preferred solution and thus non-dominated. This utility function
would equally value the border of the dominated area of the inverted problem of all
representatives of y. All representatives of the other solutions necessarily lie outside
of the dominated area and are thus less valued by any decision maker. The opposite
direction is trivial.2

The above worst-case dominance relation can be used to construct a worst-case
non-dominance ranking similar to what is used in NSGA-II. First, all solutions non-
dominated with respect to all other solutions are identified and assigned Rank 1. Then
they are removed from the population, and the non-dominated solutions of the remain-
ing individuals are identified and assigned Rank 2, etc.
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Figure 5: When comparing mutually non-dominating solutions, different criteria may
play a role. In all three examples, the solution represented by bullets should be pre-
ferred over the solution represented by squares. In (a), it better preserves diversity; in
(b), it has a lower spread, and in (c), the representatives define a convex rather than
concave region.

3.3 Ranking individuals within a front

Having established a means to determine whether one solution dominates another one,
we can now use non-dominated sorting as in NSGA-II to rank the solutions, only using
our newly proposed concept of worst-case dominancy instead of the usual dominance
concept. The next step is to ensure diversity among solutions by preferring those solu-
tions that are in less crowded regions.

As has been noted above, in standard NSGA-II, individuals of the same non-
dominated rank are compared based on crowding distance, which is not defined for
our application, because each solution consists of a set of representatives in objective
space. Also, while diversity is probably still important, it is not the only criterion. For
example, the spread of a solution’s representatives is an additional criterion. It repre-
sents the uncertainty involved in a decision and should be minimized. Also, a convex
set should be preferred to a concave set. The three criteria diversity, spread, and con-
vexity are visualized in Figure 5.

In the following two subsections, we present two alternatives to compare indi-
viduals within a non-domination front which should implicitly take into account the

Evolutionary Computation Volume x, Number x 9



J. Branke, G. Avigad, A Moshaiov

aforementioned criteria diversity, spread, and convexity. Note that they are used only
for individuals with the same non-dominated rank, and that the extreme individuals
(best if only objective fi is considered) always receive the best fitness within a rank in
our implementation.

3.3.1 Expected marginal utility
The first approach uses the utility-based crowding as suggested in Branke et al. (2004).
The underlying idea is that each decision maker (DM) has an underlying utility func-
tion used to pick the final solution. Given a space and probability distribution of utility
functions, it is possible to estimate each solution’s expected marginal utility, which is de-
fined as the expected loss a DM would suffer if this solution were removed from the set.
Then, among solutions in the same Pareto rank, those with a higher expected marginal
utility are favored.

In principle, arbitrary utility function and distributions could be used. In the ex-
amples below, we restrict ourselves to two objectives, a linear utility functions of the
form

U(x, λ) = −λf1(x) + (λ− 1)f2(x) (1)

and a uniform probability for λ ∈ [0, 1]. This utility function is easily adapted to the
case of worst-case utility simply by taking the minimum over all representatives. That
is, with m representatives x(1), . . . , x(m) utility is calculated as

U(x, λ) = min
j=1...m

{−λf1(x(j)) + (λ− 1)f2(x(j))}. (2)

Based on the utility, the marginal utility of a particular solution xi, U ′(xi), can be
defined as

U ′(xi, λ) = max{0,min
j 6=i
{U(xi, λ)− U(xj , λ)}}

and the expected marginal utility given a probability distribution P (λ) is then

E(U ′(x)) =
∫
λ

U ′(x, λ) · P (λ)dλ

The expected marginal utility can be estimated by Monte-Carlo integration over
all λ. In the examples below, We estimate the expected marginal utility by generat-
ing k random λ by stratified sampling (i.e. one random λ from each of the intervals
[0, 1/k[; [1/k, 2/k[; . . . ; [k − 1/k, 1]). For each solution, the marginal utilities for all λ are
computed and summed up. Note that in our worst-case scenario, a solution’s utility
for a specific λ is the minimal utility over all the solution’s representatives.

The marginal utility for two possible utility functions is visualized in Figure 6.

3.3.2 δ+-indicator
The second criterion we propose involves the distance a set of worst-case representa-
tives can be moved until the solution becomes dominated, or have to be moved until
it is non-dominated. It is closely related to the binary additive ε-indicator proposed by
Zitzler et al. (2003), so we start by discussing this first.

The binary additive ε-indicator Iε+ of two Pareto set approximations1 is equal
to the minimum distance by which a Pareto set approximation needs to or can be

1A Pareto set approximation is a set of solution vectors in fitness space that are pairwise non-dominated
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Individual 1
Individual 2

f 1

f2

b2

b1

Figure 6: If the solution represented by squares would be removed, the user only inter-
ested in minimizing objective f2 would suffer a loss of δ1, while a user equally weight-
ing the two objectives would suffer a loss of δ2.

translated in each dimension in the objective space such that another approximation
is weakly dominated. Formally, it is defined as follows for two approximation sets A
and B:

Iε+(A,B) = min
ε
{∀x ∈ B ∃y ∈ A : fi(y)− ε ≤ fi(x) for i ∈ {1, . . . , n}} (3)

The general idea of the ε+ indicator can be adapted to the case of worst-case dom-
inancy. For distinction, we call the result δ+ indicator. Again, the intuitive meaning
of δ+(A,B) is by how much one has to translate A in each dimension of the objective
space such that it dominates B, but with domination now being calculated according
to the worst-case domination criterion:

Iδ+(W1,W2) = min
ε
{∀x ∈ W1 ∃y ∈ W2 : fi(y) ≥ fi(x)− ε for i ∈ {1, . . . , n}} (4)

In practice, this can be computed as

Iδ+(W1,W2) = max
x∈W1

min
y∈W2

max
1≤i≤n

fi(x)− fi(y) (5)

The δ+ indicator allows us to compare two sets of worst-case representatives.
However, for selection, we need to define how good a solution is with respect to all
others. In the indicator-based MOEA proposed in Zitzler and Künzli (2004), this is
achieved, e.g., by using a weighted sum of the epsilon-indicator of a solution in com-
parison to all other solutions. However, this involves additional parameters and re-
quires proper scaling. Therefore, we propose here to define a solution’s surrogate
fitness F (x) as the minimum distance a solution has to be moved to become non-
dominated, or, if it is already non-dominated, the maximum distance it can be moved
until it becomes dominated. Formally, this can be expressed as

F (x) = min
y∈P\x

{Iδ+(x, y)} (6)

Evolutionary Computation Volume x, Number x 11
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Individual 1
Individual 2

f 1

f2

b

Figure 7: In this example, the solution represented by squares dominates the solution
represented by bullets. For the bullets to become non-dominated, they would have to
be shifted by at least δ in both objectives.

where P is the population of all individuals. An example is provided in Figure 7.
Furthermore, we assign the best solutions in either objective very high values to

keep them in the population.

4 Comparison of expected marginal utility and δ+ measures

In this section, we will compare the two proposed measures to distinguish individuals
which are in the same non-dominated front, namely the marginal utility approach and
the δ+ approach.

First, in the next subsection, we compare the two approaches based on some partic-
ular examples to understand how they reflect the criteria diversity, spread, and convex-
ity introduced above. Following this comparison, we present some empirical results a
simple artificial test functions.

4.1 Diversity, spread, convexity

To see how the two approaches handle diversity, spread, and convexity, we have taken
the three examples from Figure 5 and report on the fitness values determined by all
three methods.

Regarding diversity, the fitness values computed by the two approaches for each
of the three solutions from Figure 5(a) are reported in Table 1. As can be seen, both
approaches rank the isolated solution represented by bullets as best. The other two
are valued equally by the δ+ measure, as the distance they need to be shifted is equal
in both cases. For the marginal utility measure, the square solution has a fitness of
0, as it is never optimal for a linear utility function, and the solution represented by
triangles scores second best. Thus, at least for this particular example, the marginal
utility approach better captures the diversity criterion.

For the convexity criterion (Figure 5 (c)), both approaches assign a fitness of 0 to
the individuals represented by squares (because it is never better than the other indi-
vidual, or because a minimal shift would make it dominated), and a fitness of 1.0 to the
individual represented by bullets.
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Table 1: Fitness values computed by marginal utility approach and δ+ measure for the
example of Figure 5 (a).

δ+ measure marginal utility
circle 3.375 987.9

square 0.125 0.0
triangle 0.125 30.4
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(a) Marginal utility measure
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(b) δ+ measure

Figure 8: Fitness of the two individuals represented by bullets and squares in Figure 5
(b), where the spread of the square solution is varied. Left panel (a) shows fitness
measured as marginal utility, while right panel shows fitness measured according to
δ+ measure.

Finally, for the spread criterion, we look at how the fitness changes depending on
the distance between the representatives. To this end, we fix the locations of all rep-
resentatives of the solution represented by squares. For the solution represented by
bullets, we place the representatives at the coordinates (4, 4) (same center representa-
tive as other solution), (4−∆, 4 + ∆), and (4 + ∆, 4−∆). For ∆ = 2, the two solutions
are identical, while for ∆ < 2, the circle solution has a smaller spread, and for ∆ > 2,
it has a larger spread. Figure 8 compares the fitness of both solutions depending on ∆,
for both approaches.

The plot for the utility measure (Figure 8 (a)) shows the intuitively expected be-
havior: Always the solution with the smaller spread is preferred. For the δ+ measure,
this is only true for ∆ < 1 and ∆ > 2. Within this range, the two solutions are consid-
ered equivalent. Results are even more surprising if the middle representative of both
solutions is removed, see Figure 9. In this case, the δ+ measure computes the same
fitness for both individuals, independent of ∆. On the other hand, the utility measure
is not affected by the presence or absence of the middle representative, as this is never
the worst representative in the case of linear utility functions.

Overall, the above examples seem to suggest that the utility measure is closer to
what one would intuitively regard as a good measure.

4.2 Empirical comparison

Instead of looking at some particular combinations of individuals, in this subsection,
we want to compare the two approaches empirically on a simple, artificial test prob-
lem. We don’t want to impose additional difficulties by using a difficult optimization

Evolutionary Computation Volume x, Number x 13



J. Branke, G. Avigad, A Moshaiov

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0  1  2  3  4  5  6

Fi
tn

es
s

6

circle fixed
square varied

Figure 9: Same plot as in Figure 8 (b), but with middle representative removed.
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Figure 10: Worst-case representatives for some exemplary solutions of the suggested
test problem.

problem, but simply want to see whether the resulting distribution of individuals along
the Pareto front is good with respect to a worst-case optimization. Thus, we here use a
very simple test problem, the 10-dimensional ZDT1, from which we artificially create
scenarios. For each solution which would usually have the objective values f1 and f2,
we now create three representatives as follows. First, we calculate a disturbance fac-
tor d = 0.2exp(−f1(x)), i.e., the disturbance is larger for smaller values of f1(x). The
first two representatives are simply created by setting f

(1)
1 (x) = f1(x) + d, f

(1)
2 (x) =

f2(x) − d, f (2)
1 (x) = f1(x) − d, f (2)

2 (x) = f2(x) + d, i.e., with equal distance from the
original position to the upper left and lower right. The midpoint is chosen depend-
ing on the difference f1(x) − f2(x): d2 = max{−0.9,min{0.9, f1(x) − f2(x)}}, and
f

(3)
1 (x) = f1(x) − 0.5d2, f

(3)
2 (x) = f1(x) + d2. In other words, the fitnesses of the third

scenario correspond to the original fitnesses for f1(x) = f2(x), but is moved to the up-
per right for f1(x) < f2(x) and to the lower left for f1(x) > f2(x). Overall, this artificial
problem thus has solutions where the scenarios have different spread and some form a
convex, some a concave front. Figure 10 shows some solutions by their corresponding
worst-case representatives.

Except for the diversity measure, the EMO algorithm was more or less a standard
NSGA-II with Gaussian mutation with mutation probability pm = 0.04 and step size
σ = 0.2, and uniform crossover. Population size was set to 20 because such a small
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Figure 11: Worst-case representatives for the final solutions obtained with a run using
the δ+ measure (left), and a run using the marginal utility measure (right).

population size makes the differences between the approaches more apparent. The
algorithm was allowed to run for 200 generations. All results reported are averages
over 100 runs.

Besides comparing the two approaches suggested in this paper, we also present
results on a naive approach which reduces the three scenarios to one by averaging over
all three scenarios. Removing the uncertainty by averaging is a simple yet common
approach, and shall serve as a benchmark here.

An exemplary final population of the δ+ measure and the marginal utility measure
can be seen in Figure 11. Although population size is 20 and we have only 3 scenarios,
such plots are relatively difficult to read, and it is hard to tell what approach performs
better.

Therefore, we look at two performance measures:

1. The expected utility measured as λf1 + (1 − λ)f2 for λ uniformly distributed in
[0, 1].

2. The C(A,B) measure Zitzler et al. (2000). To compute this metric, we have com-
bined the final populations of all 100 runs for each approach, and determined how
many solutions from approach A are dominated by any solution from approach B
(C(A,B)) and vice versa.

The expected utility, and its development over the 200 generations, can be seen
in Figure 12. The methods proposed in this paper are both significantly better than
the simple approach of removing the uncertainty by averaging (the standard error in
the figure is too small to plot). The difference between marginal utility and δ+ measure
could also be attributed to the fact that we use expected utility as performance measure,
which corresponds to the assumptions used for the marginal utility method.

The results for the C(A,B) measure are summarized in Table 2. As can be seen,
almost all of the solutions generated by the averaging method are dominated by some
solution found by the other approaches, while only very few solutions found by the
utility approach or the δ+-measure approach are dominated by a solution found with
the averaging method. This confirms the previous observation that the newly proposed
approaches significantly outperform the method that simply averages over all scenar-
ios. Comparing the utility measure and the δ+-measure, there seems to be a slight
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Figure 12: Expected utility over the course of the run.

Table 2: C-measure comparisons of the different runs, comparing how many solutions
of one run are worst-case-dominated by solutions of another. A: averaging, B: utility,
C: δ+-dominance

by
A B C

A - 99.0 99.7
% dominated B 22.7 - 89.1

C 11.5 64.0 -

advantage for the δ+-measure, but results are much less clear.

5 Conclusion

In this paper, we have looked at worst-case multi-objective optimization, where a so-
lution is evaluated by means of a finite set of different scenarios. As usual in multi-
objective evolutionary optimization, the goal was to identify a good representative sub-
set of solutions which is then presented to the decision maker to choose from. To our
knowledge, this is the first attempt to transfer multi-objective evolutionary algorithms
to worst-case optimization, without removing the multi-objectivity of the problem. The
particular challenge is that it is not possible to reduce a solution to a single worst-case
representative, because different users would consider different representatives as their
worst case.

For this reason, we had to extended the definition of dominance for worst-case
optimization on sets of representatives, which allowed us to perform non-dominated
ranking of the solutions. For distinguishing between solutions of the same non-
domination rank, we adapted two measures, one based on expected marginal util-
ity, the other based on the distance a solution needs to be shifted to become (non-
)dominated.

We compared the two measures on a few specific examples and a simple artificial
test problems. The expected marginal utility measure seems to adhere better to the
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intuition about what kind of solutions should be preferable. Both measures work sig-
nificantly better than the simple idea of just ignoring the uncertainty and working with
the expected (mean) objective values.

So far, the approach has been tested only on problems with two objectives, but an
extension to more objectives should be straightforward. During the empirical analysis,
it also became apparent that simply visualizing the resulting set of solutions (as is often
done for MOEAs) is not very helpful. Better user interfaces, allowing to navigate along
the Pareto front, would be needed for worst case multi-objective optimization. Finally,
we plan to extend the approach from a finite set of scenarios to arbitrary worst-case
multi-objective optimization problems, where an “embedded” EA is used to determine
the worst-case front of a particular solution.
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H.-P. Schwefel (Eds.), Parallel Problem Solving from Nature V, Volume 1498 of LNCS, pp. 188–197. Springer.

Thompson, A. (1998). On the automatic design of robust elektronics through artificial evolution. In M. Sipper,
D. Mange, and A. Peres-Urike (Eds.), International Conference on Evolvable Systems, pp. 13 – 24. Springer.

Tjornfelt-Jensen, M. and T. K. Hansen (1999). Robust solutions to job shop problems. In Congress on Evolu-
tionary Computation, Volume 2, pp. 1138–1144. IEEE.

Tsutsui, S. and A. Ghosh (1997). Genetic algorithms with a robust solution searching scheme. IEEE Transac-
tions on Evolutionary Computation 1(3), 201–208.
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