533 research outputs found

    An Analytical Performance Evaluation on Multiview Clustering Approaches

    Get PDF
    The concept of machine learning encompasses a wide variety of different approaches, one of which is called clustering. The data points are grouped together in this approach to the problem. Using a clustering method, it is feasible, given a collection of data points, to classify each data point as belonging to a specific group. This can be done if the algorithm is given the collection of data points. In theory, data points that constitute the same group ought to have attributes and characteristics that are equivalent to one another, however data points that belong to other groups ought to have properties and characteristics that are very different from one another. The generation of multiview data is made possible by recent developments in information collecting technologies. The data were collected from à variety of sources and were analysed using a variety of perspectives. The data in question are what are known as multiview data. On a single view, the conventional clustering algorithms are applied. In spite of this, real-world data are complicated and can be clustered in a variety of different ways, depending on how the data are interpreted. In practise, the real-world data are messy. In recent years, Multiview Clustering, often known as MVC, has garnered an increasing amount of attention due to its goal of utilising complimentary and consensus information derived from different points of view. On the other hand, the vast majority of the systems that are currently available only enable the single-clustering scenario, whereby only makes utilization of a single cluster to split the data. This is the case since there is only one cluster accessible. In light of this, it is absolutely necessary to carry out investigation on the multiview data format. The study work is centred on multiview clustering and how well it performs compared to these other strategies

    Deep Machine Learning with Spatio-Temporal Inference

    Get PDF
    Deep Machine Learning (DML) refers to methods which utilize hierarchies of more than one or two layers of computational elements to achieve learning. DML may draw upon biomemetic models, or may be simply biologically-inspired. Regardless, these architectures seek to employ hierarchical processing as means of mimicking the ability of the human brain to process a myriad of sensory data and make meaningful decisions based on this data. In this dissertation we present a novel DML architecture which is biologically-inspired in that (1) all processing is performed hierarchically; (2) all processing units are identical; and (3) processing captures both spatial and temporal dependencies in the observations to organize and extract features suitable for supervised learning. We call this architecture Deep Spatio-Temporal Inference Network (DeSTIN). In this framework, patterns observed in pixel data at the lowest layer of the hierarchy are organized and fit to generalizations using decomposition algorithms. Subsequent spatial layers draw upon previous layers, their own temporal observations and beliefs, and the observations and beliefs of parent nodes to extract features suitable for supervised learning using standard classifiers such as feedforward neural networks. Hence, DeSTIN is viewed as an unsupervised feature extraction scheme in the sense that rather than relying on human engineering to determine features for a particular problem, DeSTIN naturally constructs features of interest by representing salient regularities in the patterns observed. Detailed discussion and analysis of the DeSTIN framework is provided, including focus on its key components of generalization through online clustering and temporal inference. We present a variety of implementation details, including static and dynamic learning formulations, and function approximation methods. Results on standardized datasets of handwritten digits as well as face and optic nerve detection are presented, illustrating the efficacy of the proposed approach

    Solving Machine Learning Problems with Biological Principles

    Get PDF
    Spiking neural networks (SNNs) have been proposed both as models of cortical computation and as candidates for solving problems in machine learning. While increasing recent works have improved their performances in benchmark discriminative tasks, most of them learn by surrogates of backpropagation where biological features such as spikes are regarded more as defects than merits. In this thesis, we explore the enerative abilities of SNNs with built-in biological mechanisms. When sampling from high-dimensional multimodal distributions, models based on general Markov chain Monte Carlo methods often have the mixing problem that the sampler is easy to get trapped in local minima. Inspired from traditional annealing or tempering approaches, we demonstrate that increasing the rate of background Poisson noise in an SNN can flatten the energy landscape and facilitate mixing of the system. In addition, we show that with synaptic short-term plasticity (STP) the SNN can achieve more efficient mixing by local modulation of active attractors and eventually outperforming traditional benchmark models. We reveal diverse sampling statistics of SNNs induced by STP and finally study its implementation on conventional machine learning methods. Our work thereby highlights important computational consequences of biological features that might otherwise appear as artifacts of evolution

    Evolutionary design of deep neural networks

    Get PDF
    Mención Internacional en el título de doctorFor three decades, neuroevolution has applied evolutionary computation to the optimization of the topology of artificial neural networks, with most works focusing on very simple architectures. However, times have changed, and nowadays convolutional neural networks are the industry and academia standard for solving a variety of problems, many of which remained unsolved before the discovery of this kind of networks. Convolutional neural networks involve complex topologies, and the manual design of these topologies for solving a problem at hand is expensive and inefficient. In this thesis, our aim is to use neuroevolution in order to evolve the architecture of convolutional neural networks. To do so, we have decided to try two different techniques: genetic algorithms and grammatical evolution. We have implemented a niching scheme for preserving the genetic diversity, in order to ease the construction of ensembles of neural networks. These techniques have been validated against the MNIST database for handwritten digit recognition, achieving a test error rate of 0.28%, and the OPPORTUNITY data set for human activity recognition, attaining an F1 score of 0.9275. Both results have proven very competitive when compared with the state of the art. Also, in all cases, ensembles have proven to perform better than individual models. Later, the topologies learned for MNIST were tested on EMNIST, a database recently introduced in 2017, which includes more samples and a set of letters for character recognition. Results have shown that the topologies optimized for MNIST perform well on EMNIST, proving that architectures can be reused across domains with similar characteristics. In summary, neuroevolution is an effective approach for automatically designing topologies for convolutional neural networks. However, it still remains as an unexplored field due to hardware limitations. Current advances, however, should constitute the fuel that empowers the emergence of this field, and further research should start as of today.This Ph.D. dissertation has been partially supported by the Spanish Ministry of Education, Culture and Sports under FPU fellowship with identifier FPU13/03917. This research stay has been partially co-funded by the Spanish Ministry of Education, Culture and Sports under FPU short stay grant with identifier EST15/00260.Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: María Araceli Sanchís de Miguel.- Secretario: Francisco Javier Segovia Pérez.- Vocal: Simon Luca
    corecore