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Abstract

Deep Machine Learning (DML) refers to methods which utilize hierarchies of more
than one or two layers of computational elements to achieve learning. DML may
draw upon biomemetic models, or may be simply biologically-inspired. Regardless,
these architectures seek to employ hierarchical processing as means of mimicking
the ability of the human brain to process a myriad of sensory data and make
meaningful decisions based on this data. In this dissertation we present a novel
DML architecture which is biologically-inspired in that (1) all processing is performed
hierarchically; (2) all processing units are identical; and (3) processing captures both
spatial and temporal dependencies in the observations to organize and extract features
suitable for supervised learning. We call this architecture Deep Spatio-Temporal
Inference Network (DeSTIN). In this framework, patterns observed in pixel data
at the lowest layer of the hierarchy are organized and fit to generalizations using
decomposition algorithms. Subsequent spatial layers draw upon previous layers,
their own temporal observations and beliefs, and the observations and beliefs of
parent nodes to extract features suitable for supervised learning using standard
classifiers such as feedforward neural networks. Hence, DeSTIN is viewed as an
unsupervised feature extraction scheme in the sense that rather than relying on
human engineering to determine features for a particular problem, DeSTIN naturally
constructs features of interest by representing salient regularities in the patterns
observed. Detailed discussion and analysis of the DeSTIN framework is provided,
including focus on its key components of generalization through online clustering and
temporal inference. We present a variety of implementation details, including static
and dynamic learning formulations, and function approximation methods. Results on
standardized datasets of handwritten digits as well as face and optic nerve detection
are presented, illustrating the efficacy of the proposed approach.
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Chapter 1

Introduction

1.1 Deep Machine Learning

Humans are able to receive and process a myriad of sensory data that is both spatial
and temporal in its nature and capture critical aspects of this data in a way that
allows for its future use in a concise manner. Over 50 years ago, Richard Bellman,
who introduced dynamic programming theory and pioneered the field of optimal
control, asserted that high dimensionality of data is a fundamental hurdle in many
science and engineering applications. The main difficulty that arises, particularly
in the context of pattern classification applications, is that the learning complexity
grows exponentially with linear increase in the dimensionality of the data. He coined
this phenomenon the curse of dimensionality Bellman (1957). The typical approach
of overcoming "the curse" has been to pre-process the data in a manner that would
reduce its dimensionality to that which can be effectively processed, for example
by a classification engine. This dimensionality reduction scheme is often referred
to as feature extraction. As an example in an industrial process, defects in printed
material which are inspected by machine vision systems process millions of pixels per
second, but the reduction of this high dimensional data into meaningful information
such as defective material, or high quality material, is only possible through highly
engineered systems which are designed and trained to detect anomalies and their
absence through specialized image processing and pattern recognition algorithms and
software systems. Thus clearly the intelligence behind many pattern recognition
systems is within the human-engineered feature extraction process, which at times
can be challenging, highly application-dependent, and does not truly emulate the
human decision process Duda et al. (2001). Moreover, if incomplete or erroneous
features are extracted, the classification process is inherently limited in performance.
In addition to the spatial dimensionality of real-life data, the temporal component
also plays a key role. A sequence of patterns that we observe often conveys a meaning
to us, whereby independent fragments of this sequence would be hard to decipher in
isolation. Since we often infer meaning from events or observations that are received
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close in time, modeling the temporal component of the observations plays a critical
role in effective information representation.
Capturing spatiotemporal dependencies, based on regularities in the observations,

is therefore viewed as a fundamental goal for machine learning systems. Recent
neuroscience findings have provided insight into the principles governing information
representation in the mammalian brain, leading to new ideas for designing systems
that represent information. One of the key findings has been that the neocortex, which
is associated with many cognitive abilities, does not explicitly pre-process sensory
signals, but rather allows them to propagate through a complex hierarchy Lee and
Mumford (2003) of modules that, over time, learn to represent observations based on
the regularities they exhibit Lee et al. (1998). This discovery motivated the emergence
of the subfield of Deep Machine Learning (DML), which focuses on computational
models for information representation that exhibit similar characteristics to that of
the neocortex.
The very term "Deep Machine Learning" refers to the use of more than a few

layers of processing elements in the formulation or implementation of a machine
learning algorithm or set of algorithms Arel et al. (2010). From Bengio (2009), a
deep architecture is defined as "composed of multiple levels of non-linear operations,
such as in neural nets with many hidden layers or in complicated propositional
formulae re-using many sub-formulae." The difficulty in truly implementing and
developing a DML architecture lies in the learning aspect; solving an optimization
problem so that the architecture can actually learn and correctly classify unknown
vectors. Many deep learning approaches are biologically inspired, in that they draw
upon biological models to create an analogous computational architecture. The
degree of biological inspiration at some point becomes more biomimetic, where the
computational architecture actually attempts to mimic the biological basis as it is
currently understood. Thus there have been a variety of deep learning approaches
and research directions proposed over the past decade. It is important to emphasize
that each approach has strengths and weaknesses, depending on the application
and context in which it is being used. Two leading methods, Convolutional Neural
Networks (CNNs) and Deep Belief Networks (DBNs) and their respective variations
are well established in the deep learning field. Other methods that draw more upon
biomimetic approaches are also exciting fertile areas of current research.
DML has been applied to various domains with success such as handwriting, face,

and audio recognition. However, the goal of DML is far beyond such task-specific
applications. It should also be noted that despite the great opportunity offered by
DML techniques, especially at improving machine learning and machine vision in
general, some domain-specific tasks may not be directly improved by such schemes.
An example is identifying and reading the routing numbers on the bottom of bank
checks. Though these digits are human readable, they are comprised of restricted
character sets which specialized readers can recognize flawlessly at very high data
rates Rice et al. (1996). Similarly, iris recognition is not a task that humans generally
perform; indeed, without training, one iris looks very similar to another at the level of
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human attention, yet engineered systems can produce matches between candidate iris
images and an image database to high precision and accuracy to serve as a unique
identifier for biometrics applications Newton and Phillips (2009). Finally, recent
developments in facial recognition Osadchy et al. (2007) show equivalent performance
relative to humans in their ability to match query images against large numbers of
candidates, potentially matching far more than most humans can remember due to
the massive memory storage capabilities of computers Adler and Schuckers (2007).
Nevertheless, these remain highly specific cases and are the result of a lengthy feature
optimization process as well as years of research that does not always map to other,
more general applications. Furthermore, in principle deep learning systems can benefit
from these same highly engineered features and potentially learn even higher levels of
representations which engineered systems lack. Despite the myriad of open research
issues and the fact that the field is still in its infancy, it is clear that advancements
made with respect to developing DML systems will undoubtedly shape the future of
machine learning in general.

1.2 Feature Extraction

Practical pattern recognition has relied on human engineered features since its
inception and effective working systems often rely on these mechanisms. As an
example, processing of fundus images to locate the optic nerve is an important step
in automatic detection of retina disease. Some examples of retina images are shown
in Figure 1.1, from the DiaretDB1 database of retina images Kauppi et al. (2007).
Another example of a retina image is shown at the top of Figure 1.2; the optic nerve
is the bright circular object on the right side of the image. As detailed in Tobin et al.
(2007), a human engineered system for detecting the optic nerve takes the following
steps, with human-engineered motivation, as illustrated in the middle and bottom
of Figure 1.2. First, we note that the vascular tree seems to emanate out from the
region of the optic disk. This suggests that regions where there are many vessels
could have a high correlation with the presence of the optic nerve; regions where
the vessels are thicker are correlated with optic nerve; and regions where the vessels
have a strong vertical orientation are correlated with the optic nerve. The second
observation pertains to the intensity of the optic nerve region. In many patients,
the optic nerve is highly reflective and thus is more intense than other regions in the
image. The final observation pertains to the optic nerve size; while variable from
patient to patient, it has a definite shape and size which is variable from patient to
patient but can be described well by an approximation.
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Figure 1.1: Examples of retina images from a public database of retina images
(DiaretDB1, Kauppi et al. (2007)).

For true learning, however, autonomous systems must extract their own features
and use them to learn the problems at hand with minimal or no human engineering
intervention.

1.3 The Deep SpatioTemporal Inference Network
(DeSTIN)

The paradigm of partitioning large data structures into smaller, more manageable
units, and discovering the dependencies that may or may not exist between such
units, is very promising. However, there remains a need for an architecture that
can represent temporal information with the same ease in which spatial structure
is discovered. Moreover, some key constraints are imposed on the learning schemes
driving these architectures, such as the need for layer-by-layer training Erhan et al.
(2010). This work proposes a novel architecture for deep learning that combines
concepts from unsupervised learning for dynamic pattern representation together
with Bayesian inference. We call this architecture "Deep Spatio-Temporal Inference
Network" or DeSTIN Arel et al. (2009a), Arel et al. (2009b). The governing
architecture yields a highly scalable modeling system which is capable of effectively
dealing with high-dimensional signals. Spatiotemporal dependencies that exist within
the observations are modeled inherently in an unguided manner. Each node models
the inputs by means of clustering and simple dynamics modeling, while it constructs
a belief state over the distribution of sequences using inference methods.
The architecture comprises of multiple instantiations of an identical processing

node which populate all layers of the system. Each node is tasked with characterizing
the sequences of patterns that are presented to it by nodes in the layer that precedes it.
At the very lowest layer of the hierarchy nodes receive as input raw data (e.g. pixels of
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Figure 1.2: Example of hand-engineered features to solve a problem, in this case
the location of the optic disk.

the image) and continuously construct a belief state that attempts to characterize the
sequences of patterns viewed. The second layer, and all those above it, receive as input
the belief states of nodes at their corresponding lower layers, and attempt to construct
belief states that capture regularities in their inputs. DeSTIN offers two key attributes
that render it attractive. First, the belief space that is formed across the layers of the
architecture inherently captures both spatial and temporal regularities in the data.
Given that many applications require that temporal information be discovered for
robust inference, this is a key advantage over existing schemes. Second, each node is
identical suggesting ease of mapping the design to massively parallel platform, such
as graphics processing units or other such platforms.
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In summary, we may envision DeSTIN as an unsupervised feature extractor. As
opposed to a human, hand-engineered system of computer algorithms which seek to
highlight and detect features that can be used to solve a specific pattern recognition
task, DeSTIN learns in an unsupervised manner, with no training labels, from data
examples and generates features that can be used for supervised learning.

1.4 Contributions

We have developed a unique, biologically-inspired, deep architecture for unsupervised
feature extraction suitable for a variety of high-dimensional signal analysis problems,
including imaging. The research contributions are:
Inherent temporal nature: The DeSTIN belief formulation is inherently temporal

in nature, as successive observations are used with the static and dynamic learning
to formulate a multiple-observer predictive belief which is suited as an unsupervised
feature for later use with a pattern classifier. Each node observes and learns to
represent a temporal sequence of patterns, with the lowest layer of the hierarchy
accessing temporally changing input data, over time continuously constructing a belief
state that attempts to characterize the sequences of patterns viewed. Subsequent
layers process the belief states of child nodes, and construct belief states that capture
regularities in their inputs. At each node, outputs of hierarchical belief states across
all layers capture both spatial and temporal regularities in the data, which is a novel,
key advantage over existing deep learning schemes.
Simplified architecture: The second major contribution is the use of a single

simplified architecture for the feature extraction process. Deep machine learning
has often required a variety of “tunings” which are specific to the problem domain
and are often achieved experimentally. Instead DeSTIN has been implemented in this
work as a single, specific topology which would change only based on the size of the
input field. These principles and guiding philosophy lends DeSTIN to a more natural
mapping to simple hardware systems.
Simultaneous layer learning: The third research contribution is simultaneous layer

learning, where all layers of the hierarchy learn continuously and simultaneously.
While lower layers naturally form their beliefs sooner, the upper layers adapt and
change continuously to the response of the lower layers until those layers stabilize,
which is both a better emulation of biological learning and more efficient as the
convergence of each layer does not depend on complete convergence of previous layers.
The pipeline nature of DeSTIN does require some between-layer dependencies, causing
the higher layers of the system to learn more slowly than lower layers (with fewer
dependencies).
Online learning: The fourth major contribution is the use of online learning

throughout the feature extraction process. While many deep machine learning
architectures also use online learning, many do not, and emphasize batch processing,
largely due to the difficulty of the problem of training multiple layers of processors
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effectively. Instead DeSTIN has been implemented as an online learning problem, with
online clustering and probability distribution function estimation used to generalize
static pattern learning, and tabular or function approximation methods used to learn
system temporal dynamics. Again, this lends DeSTIN to a more natural mapping to
simple hardware systems.
Layered feedback: The final research contribution is the use of layered feedback

to focus local attention on data variation. Maintaining good generalization, while
capturing sufficient variation to accurately learn to discriminate data categories, is an
important goal of artificial general intelligence. In DeSTIN, this goal is accomplished
through the feedback used by the cortical algorithm common to each node. This
allows the nodes of each layer of the hierarchy a sensitivity to local variations in the
data, which can be obscured by the limited capacity or excess generalization of higher
nodes, by placing its learning in the context of the “higher picture” provided by its
parent nodes. Feedback has been used in deep machine learning in the past, but in
DeSTIN it is an inherent part of the formulation and is used in concert with all node
beliefs (save perhaps the top node).

1.5 Dissertation Outline

In the next chapters, we present a background section including literature review
of work relevant to our general topic. In particular, we formally introduce
deep machine learning and its applications. Some discussion of cortical-inspired
computing architectures is included for completeness. This chapter presents sufficient
background to place DeSTIN in a context with other deep machine learning methods
as well as presents the state-of-the-art in deep learning methods. The next
chapter contains a detailed description of the components of DeSTIN and proposed
methods for analysis and implementation. We then focus on the two important
elements of DeSTIN, static learning (Chapter 4), and dynamic learning (Chapter
5), and introduce mechanisms for this work using probabilistic methods and function
approximation. In the sixth chapter we discuss results using a variety of different data
sets: handwritten digits, face detection, and optic nerve detection from retina images.
In the seventh chapter we discuss additional implementation details, including the
computational load and noise response of DeSTIN. We conclude in the eighth chapter,
where we also discuss future work in this field and with DeSTIN in particular.
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Chapter 2

Background and Literature Review

2.1 Overview of Machine Learning

The field of machine learning (ML) is broadly concerned with algorithms that
effectively "make computers learn". The concept of computers learning automatically
through experience (acquisition of more and more data through time) is a very
appealing concept and is the subject of considerable research and development energy
over the past 50 years or more. Much of this appeal is based on the features
of computing that far exceed human capabilities: memory capacity, computational
speed at tasks such as numerical analysis, and the potential for continuous operation.
While it is safe to say at this juncture that computers cannot achieve true human
levels of general learning and intelligence, there have been many great advances in
specialized fields where computers have exceeded human capabilities, including some
gaming environments and recognition tasks under controlled environments. These
are generally well-defined problems with clear rules, but their accomplishments are
truly impressive Mitchell (1997). In this section we will review prominent areas of
machine learning which play a relevant part in this dissertation, specifically supervised
learning and unsupervised learning. Other areas of machine learning, including semi-
supervised learning Zhu (2006), which attempts to solve problems where a large
amount of data is available with an incomplete quantity of classified or labeled data,
are certainly important but are less relevant to this work.

2.1.1 Supervised Learning Methods

In supervised learning, a training set of labeled data is available Duda et al. (2001)
where labels consist of classifications or designations which the ML algorithm should
reproduce. The inclusion of the training set allows the pattern recognition algorithm
to solve the problem at hand through an optimization process where the algorithm
learns how to discriminate between the different categories of interest. Broadly,
supervised learning techniques can be divided into two fields: parametric techniques
and non-parametric techniques. In parametric techniques, such as Bayesian decision
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theory Mitchell (1997), a classification engine is created using discriminate functions
which are based on some assumed characteristic of the data. A popular assumption is
that the data obeys Gaussian probability distributions. Non-parametric techniques,
on the other hand, make no assumption about the functional form of the data and
instead estimate the probability density function (PDF), or even the a posteriori
probability functions, directly from the data rather than estimating the parameters of
the PDF from the data. Non-parametric techniques can be very powerful and flexible
since they do not require knowledge of the structure of the data. We cannot necessarily
conclude that they are “better” than parametric techniques, however, because such
a blanket statement does not consider details such as implementation complexity,
domain knowledge, and the amount of training data available. Some well-studied
and popular nonparametric methods include the k-Nearest Neighbor algorithm and
artificial neural networks.

Bayes Decision Theory

A parametric method such as Bayes decision theory uses the laws of probability to
determine the most likely category for an unknown vector. The PDFs needed to
implement such an approach must be known (or assumed) and their parameters must
be determined in order to make effective use of this approach. Bayes’ theorem states
that

p(ωi|o) = p(o|ωi)p(wi)
p(o)

, (2.1)

where ωi is the ‘state of nature’, or the actual classification of the observation vector
o; p(wi)is the probability that the ‘state of nature’ ωi will actually occur (note that
ωi is a discrete value); p(ωi|o) is the probability that the ‘state of nature’ was ωi given
an observed vector o; p(o|ωi) is the probability of observing vector o given that the
‘state of nature’ is ωi; this is generally a PDF, specifically a conditional probability
density function; p(o) is the prior on o. Generally speaking, this latter PDF is not an
issue for Bayes’ decision theory because it is not a function of the ‘state of nature’
and is therefore identical for all classes.
In Bayes’ decision theory we seek to find the ‘state of nature’ ωi that maximizes

the probability of producing the observed vector o. There are several ways to compute
this, but essentially they can be summarized as choosing the class ωi that yields the
largest value for the observed vector o. As such, the decision rules allow a formal,
rigorous methodology for what many of us simply see as common sense: for example,
if an unknown vector o “looks more like” a group of vectors labeled ωi than another
group ωj, that unknown vector most likely belongs to ωi . From a practical standpoint,
the decision rules we derive allow us to build classifiers which can distinguish between
vectors from each class and allow us to create trade-offs regarding the risk of miss
classifications.
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In many cases a reasonable and tractable assumption is a Gaussian probability
density given as

p(o|ωi) = 1

(2π)
d
2 |Σi| 12

exp(−1
2
(o− μi)TΣ−1i (o− μi)), (2.2)

where ωi is the ‘state of nature’, or the actual classification / label of vector o, μi is
the mean of class i, and Σi is the covariance matrix, with element σij computed as

σij = E{(o− μi)T (o− μj)} (2.3)

where E{} denotes the expectation. Note that |Σ| is the determinant of the covariance
matrix. The choice of the Gaussian PDF is motivated by several factors Cooper and
McGillem (1999). First, the Gaussian PDF is a good mathematical model for many
natural events and processes. A related factor is the results of the Central Limit
Theorem, which tells us that the PDF of a sum of many independent random variables
will become Gaussian in its form, regardless of the PDF of the original random
variables. Another important factor is the simplicity of the Gaussian PDF, which
can be completely specified with only its mean and covariance (first and second order
statistics); and as we shall see, these parameters are easy to estimated with maximum
likelihood estimation techniques. Finally, the Gaussian PDF is mathematically
tractable for many problems, which is a powerful motivation for its use as well because
of the insight it can offer into different physical situations.
Using the Gaussian models is a powerful tool, but the parameters of the models

must be known or computed to effectively tap into their power. Parameter estimation
of random processes is a very important area of study in itself, but a powerful simple
method, maximum likelihood (ML) estimation, is based on the following concept.
Suppose we have a set D of training samples o1,o2,o3, ... on which are chosen
independently. The probability of picking any one sample ok is given by p(ok|θ) where
θ is a vector containing the parameters of the random process. We want to choose
the parameters θ that maximizes this probability. When the PDF has a Gaussian
form, these parameters (the mean and covariance) are very easy to estimate. Of the
training set D we assume there are n1 elements that “belong” to class ω1 and n2
elements that belong to class ω2. Consider choosing just one vector o1 the probability
of choosing it is p(o1|θ). Since the choice of the vectors are assumed to be independent
the probability of choosing the first one and the second one together is simply the
product p(o1|θ)p(o2|θ), and extending this to n vectors yields

p(D|θ) =
n�
k=1

p(ok|θ). (2.4)

With maximum likelihood estimation, we want to determine the value of θ that
gives the maximum value for these equations. This is a very simple concept, but in
practice it can be difficult to determine analytically owing to the complexity of the
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PDF model. A common method used in problems of this sort is to take the logarithm
of these functions. This reduces the fairly complex product operation into a summing
operation which could be simpler to manipulate, and is a valid operation because the
logarithm function is monotonically increasing, the x that maximizes f(x) will also
maximize ln(f(x)). Thus taking the logarithm yields

log(p(D|θ)) = log(
n�
k=1

p(ok|θ)) =
n�
k=1

log p(ok|θ) (2.5)

For the Gaussian PDF the parameters are the mean μ and the covariance matrix Σ,
so substituting the Gaussian form in yields

n�
k=1

log p(ok|θ) = −1
2

n�
k=1

�
log(2π)d + log |Σ|+ (o− μ)TΣ−1(o− μ)� . (2.6)

To find the value of θ that maximizes this equation, we can take the gradient, which
is a set of partial derivatives with respect to the parameters we want to maximize.
We then set the gradient to zero and find the θ that solves the equation. In the case
of the Gaussian PDF, we are guaranteed that this is indeed the maximum because of
the single-modal nature (the function increases, reaches a peak, then declines). The
solution for a general, multivariate case is Duda et al. (2001)

μ =
1

n

n�
k=1

ok, (2.7)

Σ =
1

n

n�
k=1

(ok − μ)(ok − μ)T . (2.8)

This is the “common sense” solution as well; we average the vectors of each class to
compute the class mean and the covariance is the average of the covariance computed
by each vector individually.

The KNN Algorithm

Most of the work in designing parametric classifiers comes in finding the parameters
of p(o|ωi). A simple nonparametric method, the K-nearest neighbor (KNN) classifier,
cleverly skips much of this work by performing the following approximation. Suppose
there are K training vectors in the vicinity of the unknown o, so that there are no
other members of the training set that are closer. We can approximate the probability
p(o) as

p(o) =
K

nV
, (2.9)

where n is the number of vectors in the training set and V is the volume of the region
that just envelops all K vectors. This is the fraction of all the vectors that are in our
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vicinity. In the entire data set, suppose there are ni vectors that belong to class �i.
We can therefore approximate p(ωi) as

p(ωi) =
ni
n

(2.10)

Finally, suppose out of theK vectors in our immediate vicinity, Ki of them are labeled
ωi. In that case, we can approximate p(o|ωi) as

p(o|ωi) = Ki

niV
(2.11)

Again, this is the fraction of vectors from class ωi that are "nearby". We are ignoring
all the other classes, and in fact that is what we do when we condition the probability
with the “given ωi" term. If we substitute these approximations into Bayes’ theorem,
we find

p(ωi|o) = p(o|ωi)p(wi)
p(o)

=
Ki

niV
ni
n

K
nV

=
Ki

K
, (2.12)

which is merely the fraction of vectors belonging to class ωi out of the K closest ones.
We assign the classification based on which of these probabilities is highest — and
since K is constant, basically we just choose the class with the most representatives
in our vicinity. The appeal to intuition again makes sense in this case: if most of the
vectors that are close to our sample belongs to class ωi, then our sample probably
belongs to class ωi as well.
The KNN algorithm is very simple to implement. An unknown vector is compared

with every member of the training set. The distance is computed between the
unknown vector and each member in the training set according to some metric,
such as Euclidean distance. Then the distances are sorted. We take the K training
members that are the closest to the unknown vector and find the classification that
is the most represented. We then assign this class to the unknown vector. The
method is straightforward and simple to implement, although it can have some large
computational cost since we must compute the distance between our unknown sample
and every vector in the training set.

Artificial Neural Networks

Neural networks attempt to model a biological process, the neuron, and deploy it as
a computational element. In a neural network a series of input elements or nodes are
created which are connected to multiple "hidden" nodes through a weighting matrix.
These hidden nodes comprise a "hidden layer" which is may be connected to one or
more additional "hidden layers" with large fan-out (connection of nodes in a layer to
many nodes in the next layer). At each element the input values are summed and
passed through an activation function. A simple neural network is depicted in Figure
2.1. This network has two input nodes, one hidden layer with two nodes, and an
output node. Each node has an activation function which operates on the sum of the
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inputs to the node. Here we depict the input nodes with a linear function (meaning
they simply pass their input values with no modification). The hidden and output
nodes, however, have a nonlinear activation function which allows for more complex
behavior. Each of the nodes may also have a bias added to the values on its input as
well which is not depicted in the figure.
A sort of predecessor to neural networks, the Perceptron, originated in the 1950s

and 1960s with the work of Rosenblatt Rosenblatt (1958) and MinskyMinsky and
Papert (1969). Perceptrons use a binary threshold as its activation function which
limited the functional capabilities of the architecture. Indeed, Minksy’s analysis has
been credited with making neural network research difficult for many years, as the
work was perceived as emphasizing the limitations of the approach rather than its
strengths Dreyfus and Dreyfus (1988). Neural networks became more popular and
influential as more researchers discovered the backpropagation algorithm or variants
of it (see Duda et al. (2001) Chapter 6 for description of these contributors), but the
paper by Rumelhart, Hinton and Williams Rumelhart et al. (1986) reached a wide
audience and led to a resurgence in neural network research and development.

Figure 2.1: Simple neural network for illustration, with a two dimensional input
layer, two hidden nodes in one layer, and one output layer.

Gradient descent is at the core of the backpropagation algorithm as it allows us
to find the optimal weights. Basic gradient descent consists of choosing an initial
value for a weight vector wt=0, where t is the iteration through the algorithm, then
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computing a new value by first finding the value of the gradient of a cost function
J(wt=0) and adjusting the weight by a small amount in the direction of the gradient.
If the gradient is given by ΔJ then the update is simply

wt+1 = wt − ηΔJ(wt) (2.13)

where η is the learning rate, a scalar value that dictates the degree to which the weight
is adjusted. The learning rate can be set by using the Hessian of the cost function

δ2

δwiδwj
J(wt), but this is not always helpful. Newton descent is also an alternative

but it requires an inversion of the Hessian and does not work for nonquadratic error
functions. In practice the learning rate is often simply set to small values and decays
over time.
The neural network is trained by randomly initializing its weights, often to

random values, then repeatedly presenting the network with the inputs, finding
the output values, and using the resultant error to train the network. The "credit
assignment" problem refers to the problem of properly determining what the output of
a hidden node should be to achieve a desired overall target output Duda et al. (2001).
Backpropagation defeats the credit assignment problem and allows the neural net
training a way to compute the error at each hidden node so that the proper weights
from input to hidden nodes can be designed. The back-propagation algorithm works
by using gradient descent to adjust the weights after backing the output through each
node, requiring a differentiable activation function. From Duda et al. (2001) we see a
derivation of the back-propagation algorithm; we simply repeat its main points here.
The goal is to minimize the error between the network outputs, z, and the desired
target outputs, τ , expressed as

J(w) =
1

2

c�
k=1

(τ k − zk)2 (2.14)

We identify the weighted-and-summed inputs to node k as netk. Then given an output
zk and a target value τ k at the kth output, we compute the error as (zk − τ k). We
can then adjust each weight between output node k and hidden node j as

Δwkj = ηδkyj = η(τ k − zk)f �(netk)yj (2.15)

where f 	(x) is the derivative of the activation function f(x) and yj is the output of the
hidden node j. As mentioned, the learning rate η is some heuristic value that scales
how we adjust the weights each cycle; if it is too low the network training takes too
long, but if it is too high we get the familiar “skip-around” effect of gradient descent
where a local minimum is not found. Adjusting the weights between the inputs and
the hidden nodes follows a similar form with more complex details:

Δwji = ηδjoi = η
c

(
�
k=1

wkjδk)f
�(netj)xi (2.16)
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The neural network training proceeds until a minimum error rate has been achieved
or some other stopping criteria (such as performance on a validation set has reached
a desired target or a maximum number of training cycles has been attained).

2.1.2 Unsupervised Learning

Another broad area of research in ML is unsupervised learning (UL), where algorithms
learn how data of interest is organized. Unsupervised learning also seeks functions
that can label input vectors but they begin with no prior knowledge of the desired
output label. This kind of problem may seem to be highly impractical but in Duda
et al. (2001) five reasons for interest in UL are given

1. Collecting and labeling a large set of sample patterns can be costly.

2. UL can help produce training data for later supervised learning applications.

3. For some applications, the characteristics of the samples can change. UL can
actually track these changes due to its greater flexibility.

4. UL can help determine the features of a data set that are most useful for later
supervised learning applications. In this case UL acts as a pre-processor.

5. UL can help researchers gain insight into the nature of their data.

In fact, many applications have several of these traits in common. In data
mining, databases are analyzed using a variety of techniques including unsupervised
learning. These algorithms can identify patterns and connections between data that
were previously unknown (5 above) and may continuously refine these connections as
the data changes (case 3 above.) A well-studied method of unsupervised learning
is clustering Xu and Wunsch (2005), where algorithms attempt to assign labels or
classes to data points based on their similarity to other points in the data set. Three
well-known clustering algorithms include the K-Means, Winner-take-all (WTA), and
Kohonen algorithms.
The algorithm called “K-Means clustering” attempts to estimate the mean value

of a given number of clusters K. To describe this algorithm, suppose we know the
cluster means. We perform a minimum distance classification of a vector x by simply
finding the distance or a similarity between o and every cluster mean. We then classify
o as class ωj where d(o,ωj) ≤ d(o,ωi) for all i �= j, where d(x, y) is a distance measure
indicating how dissimilar two vectors x and y are from one another. In essence this
is simply approximating the probability p(ωj|o, θj) as p(ωj|o, θj) = 1 for i = j and
p(ωj|o, θj) = 0 for i = j. Since the cluster means are not known, typically we can
randomly set their initial values and iteratively modify them by assigning each vector
to a cluster, then recomputing the cluster means by using the maximum likelihood
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estimate of the class mean,
ˆ
μ =

1

ni

ni�
k=1

ok (2.17)

where ni is the number of vectors that were assigned to class i. The vector assignment
is performed by computing the distance from the cluster centers and the vector, and
assigning the cluster number to the smallest distance. The algorithm stops when the
vector assignments to clusters do not change. The K-Means algorithm is simple to
implement and works well in practice. As a result, it is commonly applied to a variety
of problems and is a very good benchmark for unsupervised learning algorithms Duda
et al. (2001).
In a similar method, theWinner-Take-All clustering algorithmKaski and Kohonen

(1994), the cluster centers are iteratively according to the rule

μk+1i = μki + η(o− μki ) (2.18)

This rule applies only to the “winner”, the closest cluster center from vector o. The
cluster centers are assigned arbitrarily initially, then the vector data is entered and the
distance from each cluster center to the vector is computed. The minimum distance
center is deemed the ‘winner’ and its center is updated as shown. After the cluster
center is updated, it will be closer to the vector and thus the vector’s “cluster number”
will not change as a result of the update. The winner-take-all or WTA algorithm has
one parameter, the learning rate η. This value can be changed as a function of epoch
or iteration number, or it can remain constant. In any event, after several iterations
the cluster assignments will not change and the algorithm has converged to a solution.
A final method of interest is the Kohonen self-organizing map or SOM, which is a

type of neural network that can perform unsupervised learning Kohonen (1990). The
neural network is depicted on the left side of Figure 2.2. As in all neural networks,
each input is connected to each node with a system of weights. The weights are used
in a slightly different manner than a backpropagation neural network, however. Also,
the training of a Kohonen map is a bit simpler than a back-propagation network.
The training and operation proceed in the following manner. First, the node weights
are initialized through some method. When a new training vector (unlabeled) is
presented, each node receives an input computed as

y =
�
(oi − wni)2, (2.19)

which is simply the Euclidean distance between the input and the weights of node n.
The node b with the smallest distance y is deemed the “winner”. At this point the
weights are updated using the following algorithm:

wk+1m = wkm + η(k)N(k, gmb)(o− wkm), (2.20)

where k is the iteration number, η(k) is the learning rate (written here as a function
of the iteration number), N(k, g)is a neighborhood function (also a function of the
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iteration number), gmb is the grid distance between the winner node b and the node
we are updating m.
An iteration number can be interpreted as either a single training vector

submission or a complete epoch through the training set. The learning rate η(k)
is a function that monotonically decreases as k increases. Typically an exponential or
linear decay is chosen, but the function should asymptotically (or absolutely) decay
toward zero. The neighborhood function has a maximum when g is 0, and grows
smaller as g increases. Furthermore, as k increases N(k, gmb) should decrease as well,
where gmb is not 0.
The grid distance bears further explanation and illustration (right side of Figure

2.2). The node shown in yellow (node 2,1) has been chosen as the winner. The grid
distance to the node (1,1) just to the left of the winner node is 1. The grid distance
to the node (1,3) just to the left of the winner node and at the bottom of the grid is
2.23.

Figure 2.2: Left: Kohonen network. Right: Grid distances for computing the
neighborhood training values.

This is a bit counter-intuitive, because the neighborhood function has nothing
to do with the weights associated with the node. However, that is the entire point
of the grid. Essentially the map “self-organizes” as training data is shown and the
weights are trained. The “self-organizing” refers to the algorithms’ ability to change
the node weights so that adjacent weights on the grid become more like one another.
In clustering applications, the weights associated with each node are actually cluster
centers. We see that the training process then means we find the most similar cluster
to an input vector, then we pull the best cluster’s weights toward the input data

17



and modify its neighbors in the same direction (but to a lesser degree). There are
K nodes for a target of K clusters. The network performs classification by simply
finding the winner node for an input vector and identifying the input as belonging to
that cluster. As in the other algorithms, convergence is reached when the data inputs
do not change their cluster centers.

2.2 Feature Extraction

In pattern recognition, especially as associated with image processing, the concept
of “feature extraction” is a core component for success. A “feature” is essentially a
numerical measurement of some characteristics of the image, or regions of an image.
Early development of pattern recognition and image processing or machine vision
systems usually consisted of a processing phase where, after images were obtained
and properly filtered or otherwise pre-processed to isolate desired regions of interest,
key elements of the image were measured in an attempt to characterize the image for
successful pattern classification Duda et al. (2001), Gonzalez and Richard (2002). For
example, in manufacturing the detection of defects in the manufactured material was
followed by efforts to determine the type of defect, as this could deliver additional
insight into the manufacturing process and flaws that may exist Kumar (2008).
In many cases these features consisted of domain-specific values that were easily
measured but also indicative of the type of defect, such as the elongation of a region
(to identify scratches). In other applications, as we mentioned earlier for the location
of the optic nerve Tobin et al. (2007), the features measured were even more specific
and depended greatly on the success of earlier image processing steps taken. Efforts
to develop more general features, such as invariant moments Wong and Hall (1978),
Li (1992) or other such measurements have created a vast body of literature, with
much of it very application specific (see for example Hong et al. (1998), Chou et al.
(1997), Giancardo et al. (2011)). In Jiang (2009), the author denotes four main classes
of features: human-engineered from domain knowledge, image local structure based,
image global structure based, and machine learning based “statistical” approaches.
The feature extraction method of DeSTIN and CNNs fall into the final category.
Techniques such as Fourier analysis or the aforementioned invariant moments yield
global structure based features.
In recent years there has been more focus on general feature extraction, especially

associated with salient regions or “keypoints” in images. These are examples of the
image local structure based approach. This was initially inspired by applications for
object tracking and stereo matching, which was initially accomplished by numerically
simple, but computationally intensive operations such as normalized correlation
Dickey and Romero (1991) and matched filtering Horner and Gianino (1984) where a
template was used for a sort of brute-force search using shear matching pixel values.
Later work Harris and Stephens (1988), Shi and Tomasi (1994) used image patches
and performed computationally efficient searches for patches with two strong spatial
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eigenvalues, which are indicative of corners. This work still has many important
applications and open-source implementations exist Bradski and Kaehler (2008).
A more robust method of great influence is the Scale-Invariant Feature Transform

or SIFT Lowe (2004). In essence, there are actually two main components to SIFT.
The first is the extraction of keypoints, or regions where the image has a highly
identifiable point. These are computed by filtering the image of interest with a variety
of scales of difference of Gaussian operations. A keypoint candidate occurs when it
is greater than, or less than, its neighbors within a scale and within adjacent scales.
A 3-D quadratic model is fit to the point and several additional filtering criteria are
applied, to reject points with poor contrast or poor spatial characteristics, then an
orientation is assigned to the point using a binning or histogram approach based on
the region.
The second main contribution of SIFT is the generation of a high-dimension

feature vector that describes each point. A windowed region around the keypoint
is used with image gradients and the associated orientation and scale are used to
compute a sort of hierarchical descriptor. The method has been empirically proven
to be quite robust in the face of some rotation and scale changes, and was the best
method in a performance evaluation Mikolajczyk and Schmid (2005). There have
been other, related methods Bay et al. (2008) which attempt to make simplifications
to save computational cost, and there is an active amount of research on this topic.
Several different general object recognition methods use SIFT as an integral part

of their processing, as do “bag of words” type approaches Serre et al. (2005), Ranzato
et al. (2007a), Mutch and Lowe (2006). For the purposes of our work, we view the
use of SIFT as a complimentary, and competing, method to our work. The method
compliments in the fact that the feature values can be used as a proxy for the image
content itself, although exploration of this concept has been left for future research.
The method competes in that it does not actually learn how to represent image
elements, but instead relies on a semi-heuristic, but very general, method which has
been empirically proven to “work” in a variety of practical applications.

2.3 Overview of Deep Machine Learning

A comprehensive overview of deep machine learning is presented in Bengio (2009),
where it is cast in the light of the goals of general Artificial Intelligence (AI). In this
section we will discuss the major findings from that work as they form a basis for deep
learning in general. Overall, the goal of AI is to learn complex functions that have
much variation, in fact, more variation than training examples. True AI systems must
also learn with little human input and should have a computationally manageable
scaling with the number of inputs. They should be able to learn in an unsupervised
manner, as unsupervised learning is critical for dealing with unknown future tasks or
ill-defined tasks; once unsupervised learning is complete (and well-done) it can serve
as an input to supervised learning and simplify the tasks. Shallow architectures are
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limited in their applicability to AI in general because their computational complexity
becomes too large for a given problem. An example, which Bengio (2009) references
from Hastad (1987), is a parity function which adds d bits together and if the sum
is even the output is 1 and if it is odd the sum is −1. This is exponential as a sum-
of-products (its on the order of 2d) but a "deep" tree structure can implement the
function with only d− 1 summing or comparator functions. This anecdotal example
is not a formal proof that machine learning problems have the same requirements,
but given the difficulty in general AI over the years, clearly there is a good case that
complicated functions cannot be adequately represented with 1 or 2-depth shallow
architectures. Furthermore, while a given function could be implemented in two ways,
one shallow and one deep, the latter should be more efficient with less elements.
Based on current understanding of the hierarchical nature of the neocortex, the

many layers of the visual system comprise a deep architecture. Thus it is easy
to make an argument that truly bio-inspired or biomemetic approaches should be
deep architectures. Of course, examples of shallow architectures abound in machine
learning and the literature and can solve many problems. We discussed neural
networks earlier; a neural networks with an input layer and a hidden layer is
an example of a two layer algorithm. Networks with one or two hidden layers
constitute shallow networks and are the most practical implementation of these kinds
of algorithms. As another example, a kernel function can be expressed as Scholkopf
and Smola (2002)

f(o) =
�
i

αiK (o, oi) (2.21)

where K(o, oi) is the kernel computation. This function too has two layers; the first
being the calculation between the input o and the template vectors oi, and the second
being the linear combination of those initial results. The KNN algorithm is similar;
the first layer is the calculation of the distance or similarity between input o and the
database vectors, and the second is a counting or voting operation.
The most influential deep architectures in the literature are convolutional neural

networks and deep belief networks. There have also been several architectures
presented in the literature which we dub “cortical inspired” which are noteworthy
as well. In the following sections we review these architectures and describe their
operation in some detail.

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks or CNNs LeCun et al. (1998), Huang and LeCun
(2006) are a family of multi-layer neural networks particularly designed for use on
two-dimensional data, such as images. CNNs are influenced by earlier work in time-
delay neural networks (TDNN) which reduce learning computation requirements by
sharing weights in a temporal dimension and are intended for speech and time-series
processing Waibel et al. (1989), Lang et al. (1990). CNNs are the first truly successful
deep learning approach where many layers of a hierarchy were trained in a robust

20



manner. A CNN leverages spatial relationships to reduce the number of parameters
which must be learned and thus improves upon general feed-forward back propagation
training for image applications. In CNNs, small portions of the image (dubbed a local
receptive field) are treated as inputs to the lowest layer of the hierarchical structure.
Information propagates through the different layers of the network where at each layer
digital filtering is applied in order to obtain salient features of the data observed.
The method provides a level of invariance to shift, scale and rotation as the local
receptive field allows the neuron or processing unit access to elementary features such
as oriented edges or corners.

Figure 2.3: The convolution and subsampling process in a CNN. An input is
convolved with a trainable filter and biased to produce the convolution layer Cx. The
subsampling consists of summing a neighborhood (four pixels) followed by scaling,
biasing, and "squashing" to produce a smaller feature map Sx+1.

A depiction of a CNN is found in Figure 2.3. Essentially, the input image is
convolved with a set of N small filters whose coefficients are either trained or pre-
determined using some criteria. Thus, the first (or lowest) layer of the network
consists of “feature maps” which are the result of the convolution processes, with
an additive bias and possibly a compression or normalization of the features. This
is followed by a subsampling (typically a averaging operation on a 2 × 2 region of
pixels) which further reduces the dimensionality and offers some robustness to spatial
shifts. The subsampled feature map then receives a weighting and trainable bias and
finally propagates through an activation function. When the weighting is small, the
activation function is nearly linear and the result is a blurring of the image; other
weightings can cause the activation output to resemble an AND or OR function. These
outputs form a new feature map that is then passed through another sequence of
convolution, sub-sampling and activation function flow. This process can be repeated
an arbitrary number of times. It should be noted that subsequent layers can combine
one or more of the previous layers; for example, in LeCun et al. (1998) the initial six
feature maps are combined to form 16 feature maps in the subsequent layer. Some
variants of this exist with as few as one map per layer Chen et al. (2006).
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Figure 2.4: Conceptual example of convolutional neural network. The input image
is convolved with three trainable filters and biased to produce three feature maps
at the C1 level. Each group of four pixels in the feature maps are added, weighted,
biased and squashed to produce the feature maps at S2. After repeating the process
the outputs are presented as a single vector input to the “conventional” supervised
learning system, such as a neural network.

Finally, at the final stage of the process, the activation outputs are forwarded to
some supervised learning system, such as a conventional feedforward neural network
that produces the final output of the system. This final stage should be capable of
generating an error signal during training which can be used to set the weights and
biases of the previous layers through backpropagation.
We show the convolutional aspect of the CNN in more detail in Figure 2.5. In

this depiction, a single input field (the larger, 10× 10 pixel region) is multiplied by a
set of weights W0 and summed, along with a bias value b. These then pass through
a nonlinearity element, and a value in the 6 × 6 output region is produced. The
second figure shows a slight shift of a single pixel and the process is repeated; this
is the convolutional effect, and the entire image is processed in this way with the
same weight and bias used. Multiple input fields can be used, as shown in Figure
2.6. Furthermore multiple output fields can be generated as well, each with their
own trainable bias and weighting. From the literature, it appears that the choice of
the number of output fields and the number of units that are combined to produce a
given field is somewhat tuned by the designer, but the key learning benefit of CNNs
- learning the feature extractor for the problem at hand - is completely autonomous.
The sampling phase is shown in Figure 2.7. Here we see that a 2×2 windowed region
is scaled by a single value, with additive bias and nonlinearity, to produce an output
field that is 1

2
the size of the input. Thus this kind of layer has far fewer training
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Figure 2.5: The convolution process for a CNN is shown here. At left, the input
image or feature map is multiplied in a 5x5 window by a weighting factor W0. This
is summed together and added to a bias, which is then fed to a nonlinearity. In
the middle, we see the same process except on a different input field. Finally on
the right we have continued with yet another windowed region. This is actually a
convolutional process, except with the intervening nonlinearity. The implementation
itself is done in parallel, in this case with 36 instantiations of the weighting, summing,
and nonlinearity process (for a 6x6 output field). However, the bias value b and the
weight W0 is identical for all 36 processes.

values - two per input field - and far fewer connections as well, since the operation is
subsampling blocks as opposed to convolutional.
The intimate relationship between the layers and spatial information in CNNs

renders them well-suited for image processing, and they generally perform well at
autonomously extracting salient features from images. One of the seminal papers
on the topic LeCun et al. (1998) describes an application of CNNs to the problem
of handwriting analysis. In some cases Gabor filters have been used as an initial
pre-processing step to emulate the human visual response to visual excitation Kwolek
(2005). In more recent work, researchers have applied CNNs to various machine
learning problems including face detection Tivive and Bouzerdoum (2003), Chen et al.
(2006), document analysis Simard et al. (2003) , data fusion Szarvas et al. (2006),
and speech detection Sukittanon et al. (2004). CNNs have recently Mobahi et al.
(2009) been trained with a temporal coherence objective to leverage the frame to
frame coherence found in videos, though this objective need not be specific to CNNs.
In Bengio (2009), there is some speculation as to why CNNs can be trained even with
multiple layers. One idea is that the small fan-in of each neuron allows the gradients
to travel through the layers without much disturbance, thus keeping their significance
and allowing multiple layers to focus and converge on meaningful weightings. (The
small fan-in refers to the fact that each neuron has fairly few numbers of inputs,
just a few pixels.) Another idea is that the entire network begins in a favorable
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Figure 2.6: Depiction of multiple convolutional fields. In this case, the input field on
the left and the field on the right are summed together, with different sets of weights
but an identical bias value. In many implementations, such as the handwriting digit
application of LeCun et al. (1998), the input fields for this type of processing in a
CNN are the “S” fields, which are combined with various combinations to produce
the next layer.

starting position due to the hierarchical connectivity structure and thus is well-suited
for vision tasks.

2.3.2 Deep Belief Networks

A different DML approach which utilizes a hierarchy of specialized neural networks
is the Deep Belief Network or DBN. As opposed to the CNN, which overall takes the
form of a special purpose neural network, the DBN Hinton et al. (2006) is composed
of several layers of Restricted Boltzman Machines or RBMs. Therefore, to understand
RBMs, we begin by discussing associative neural network architectures which learn to
encode training vectors in an internal representation. There is a natural progression of
variants of these types of networks and we adapt the discussion from Rojas (1996) by
discussing basic associative networks including autoassociative and heteroassociative
networks, Hopfield networks, Boltzman Machines, and finally Restricted Boltzman
Machines.
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Figure 2.7: Depiction of the “S” layer. The overall effect is to scale the image to
1
2
the size of the input, through a trainable weighting factor and a bias value. The

weighting factor in conjunction with the bias can produce anything from a straight
averaging of the data to an AND or OR operation (min and max).

Associative Networks

An associative network consists of a mapping of a set of m input vectors, o, in n-
space tom output vectors, y, in k-space which should be robust to noise or distortions.
When o = y the network is an autoassociator Rumelhart et al. (1986) or AA; when
o �= y the network is a heteroassociator. The network is composed of an activation
from a weighted transformation of the input vector in the form

y = f (oW ) (2.22)

In general W is n × k but for autoassociators n = k. Thus when f(x) is a linear
function and there is no feedback the n× n weight matrix W can be found through
least-squares methods or even by exact solution, although the trivial solution of the
identity matrix compromises the ability of the network to generalize. More complex
behavior can be obtained through the use of feedback, but in the case of linear
activation the natural attractors of such a system are the eigenvectors of W and
repeated feedback operations will map any input x to the dominant eigenvector. If
the input at t is ot, then the output at t+ 1 is given as

ot+1 = otW (2.23)

A fixed point is reached where ot+1 = ot for all t which is the fundamental definition
of an eigenvector for an eigenvalue of 1. For some W (such as a rotation matrix)
there is a cyclical relationship where no fixed point is ever reached. Clearly the most
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desirable W are those with a complete set of eigenvectors which therefore should be
capable of storing n values. However with feedback the largest magnitude eigenvector
dominates and thus restricts the storage utility of this approach. A more powerful
solution is to introduce a nonlinearity into the system for the activation function f(x).
As a simple example the sign function can be used, defined as

sgn(x) =

� −1 x < 0,
1 x > 0.

(2.24)

The introduction of even this simple nonlinearity requires a different learning
approach than standard linear algebra. Hebbian learning is a method which uses
the correlation between desired outputs and inputs to create weight matrices and is
inspired by neurological studies Hebb (2002). Hebbian learning updates the weight
matrix elements by incrementing each element with a value given by

Δwij = ηoiyj (2.25)

where η is a constant learning rate. Ideally this produces a weight matrix which is
the sum of the correlation matrices for each input-output pair:

W =

m�
i=1

W i (2.26)

For a set of input vectors x which are orthogonal, this relationship provides the desired
output since the product between opand W is

opW =

m�
i=1

opW i (2.27)

opW = opW 1 + opW 2 + ...+ opWm (2.28)

Each individual component in the summation above then can be expressed as the
vector

opW j =
�
opyj1o

j opyj2o
j ... opyjno

j
�

(2.29)

opW j =
�
op, oj

	
yj (2.30)

When p = j the dot product is positive and the activation is simply

sgn (opW p) = sgn (�op, op� yp) (2.31)

sgn (opW p) = sgn (yp) (2.32)

When p �= j if the o vectors are orthogonal then the vector product is 0 and the
function is 0; thus the summation in (2.28) will be 0 for these contributions and the
network functions as a memory as desired. Vectors which are not in the input set will
have a non-zero residual or crosstalk term, but should converge to the desired output
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through the feedback recursion. However, generally autoassociative memories have
limited capacity due to correlation between patterns which increases these crosstalk
terms.
There are other methods for finding the weight matrix which can offer better

performance than Hebbian learning Rojas (1996). In Bourlard and Kamp (1988) it
is shown that an autoassociator with a hidden linear layer can be trained to create a
principle component analysis (PCA) representation of input data, where theN hidden
units represent the first N PCA components. The realization that these architectures
are performing PCAmake linear hidden layers more an academic curiosity rather than
a serious machine learning tool; however, when the hidden elements are nonlinear,
much different results are obtained as explained in Japkowicz et al. (2000). This
ability to extend the autoassociator to nonlinear functions but still easily train the
AA suggests that these elements can be part of a powerful deep learning architecture.
Past experiments and results have used different approaches to constrain or train
AAs to generalize. It is easy to imagine that some training methods could cause
overtraining and thus reduce the generalization power of AAs. As an example cited
by Bengio (2009), if an AA is given an input of dimension D and the encoding is also
D or greater, there is a fear that the AA will simply learn the training examples or
the identify function. There are a few strategies that have been deployed to defeat
this, such as stochastic gradient descent Bengio et al. (2007a) or constraints such as
sparseness Olshausen and Field (1997).

Bidirectional Associative Memories and Energy

We now introduce the concept of a network energy function through a special
associative network which uses feedback through shared input and output connection
weights, the bidirectional associative memory (BAM) or resonance network Kosko
(1988). In this case we consider an input at time t of o which maps to an output
value y in the usual manner as in (2.22), except that feedback comes from mapping
yt back through the same weights to produce ot+1. Depending on the weighting of
the network, repeated applications of this operation can cause the o and y values to
converge to stable values after some finite t. Consider vector o0 which is introduced
to a BAM and produces y0 through

y0 = sgn (o0W ) (2.33)

Applying this back through produces

o1 = sgn(Wy
T
0 ) (2.34)

If o1 = o0 then the vector pair(o0, y0) produces a stable state for the network. We
can see that if this condition is met then there will be high correlation between WyT0
and o0 and their product will be large. The negative of this product is used to define
the energy of the network, expressed here as

E(oi, yi) = −1
2
oiWy

T
i (2.35)
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The energy of the recurrent network gives a measure of how close a given pair of
values are to stable states for the network, or alternately the "natural" minima of
the system. The energy term is different for other activation functions, for example
a threshold followed by a step function has an energy of

E(oi, yi) = −1
2
oiWy

T
i +

1

2
θry

T
i +

1

2
oiθ

T
l (2.36)

where θl are the thresholds of the left units (where the o vectors are applied) and θr
are the thresholds of the right units (where the y vectors are applied).

Hopfield Networks

The Hopfield network Hopfield and Tank (1985) can be depicted as a BAM where
the computing elements do not fire in synchronous fashion but rather are randomly
selected, and thus the network energy is recomputed at discrete time intervals in
response to the change of a single element (as opposed to an entire application of
a new vector stimulus). In the Hopfield network an element has a binary state,
typically in the bipolar set {−1, 1} or binary set {0, 1}. An excitation is computed
using the current state settings and the weight matrix. Elements are then selected
at random and a selected element will change its state according to the excitation
and a threshold such that when the excitation is greater than the threshold the state
becomes 1, and when less becomes −1. Only one unit fires per time step. All units
are connected to all other elements except there is no self-connection. A Hopfield
network of n elements thus has a weight matrix which is sized n×n and the diagonal
elements are all 0 (due to the lack of self-connection). The energy function of a
Hopfield network is

E(o) = −1
2
oWoT + θoT (2.37)

where θ is the row vector of the unit thresholds. Hopfield networks have been used to
solve optimization problems such as the traveling salesman problem (TSP) Hopfield
and Tank (1985), although this approach requires fairly large compute resources and
is not guaranteed to find a global minimum. The TSP is a famous optimization
problem where a list of cities must each be visited at least one time by a salesman,
who must choose a route that has the minimum round trip distance.

Boltzman Machines

In the Hopfield network, the element selected for asynchronous update is chosen at
random, but the selected element uses a deterministic method for applying state
changes based on the activation value. The Boltzman Machine generalizes the
Hopfield network to a case where the state transitions are stochastic. The addition
of noise to the network allows the avoidance of shallow local minima and also is a
more reasonable approximation of true biological elements which have been shown to
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have stochastic properties Trappenberg (2009). In the Boltzman machine, a global
"temperature" T is chosen which represents the noise in the system and an element
is updated according to a probability distribution which is a function of T . When T
is small the probability of a transition is mostly a function of the excitation. When
T is larger, the updates become more random and less dependent on the activation.
Clearly so long as T is non-zero the Boltzman machine cannot be termed to be
"stable" in the sense that it can always change in some fashion. With a simulated
annealing approach the value of T can be decreased over time to allow the network
to settle into a stable state, however. When the probability of transitioning from a
state with energy Ej to Ei is given by

pij =
1

1 + exp
�
Ej−Ei
T

� (2.38)

the system will reach an energy equilibrium point which is governed by the Boltzman
distribution given as

pi =
exp(−Ei

T
)

Z
(2.39)

where the normalizing factor Z is given as

Z =

m�
i=1

exp(−Ei
T
) (2.40)

An element in a Boltzman machine can accept external inputs as well as fed-back
values from the other elements. An element which accepts external inputs is called a
visible unit and the group of elements with this property is called the visible layer,
with hidden inputs (and layers) consisting of the other elements which do not accept
external values.
In Boltzman learning Ackley et al. (1985),Hertz et al. (1991),Rojas (1996) the

network is trained to create an internal "generative" model. A generative model
means an observation which is "near" training examples will cause the network to
generate a probability distribution which attempts to explain the observation based
on past training examples. Generative models provide a joint probability distribution
over observable data and labels, facilitating the estimation of both p(o|�) as well as
p(ω|o) , while discriminative models are limited to the latter Bishop et al. (2006).
The network has m input units and k hidden units, with a total of n = m + k units
overall. Each unit is binary as in the Hopfield model. An input state for a network
with 5 units, for example, could therefore be [01011] , or [00011], or [11101], etc. Note
that the states of the input units are NOT set by the input themselves; the input
is only one factor in their state. With that caveat in mind, the probability that the
input units are in a particular state α is given by summing over all the states of the
hidden units β, given as

Pα =
�

β

Pαβ (2.41)
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The Boltzman distribution itself allows us to write this term as

Pα =
1

Z

�
β

exp(−γEαβ) (2.42)

where the Z term in the denominator is a normalization factor, and is given as

Z =
�
α,β

exp(−γEαβ) (2.43)

We see that the probability of entering a particular state thus depends on the energy
associated with that state across all the possible states in the hidden layers. This
energy term is given as

Eαβ = −1
2

n�
i=1

n�
j=1

ωijx
αβ
i x

αβ
j (2.44)

Here xαβ
i refers to the state value of node i when the overall system state is α for

the input nodes and β for the hidden nodes. The goal of Boltzman learning is for
the probability distribution Pα to match a desired input distribution Rα. This is set
by supplying an input vector to the system which provides each input node with an
external excitation (which is added to the rest of the self-excitation of the network).
A log distance between the desired distribution and the current distribution is given
as

D =
�

α

Rα log
Rα

Pα

(2.45)

Clearly if Pα = Rα the distance will be 0 thus the learning algorithm should minimize
D, which can be done by gradient descent using a weight update rule with learning
rate η:

Δωij = −η δD
δωij

= −η δ

δωij

��
α

Rα logRα −
�

α

Rα logPα

�
(2.46)

Since Rα is not a function of ωij, we remove that term and have

Δωij = −η δD
δωij

= η
δ

δωij

��
α

Rα logPα

�
= η
�

α

Rα

Pα

δPα

δωij
(2.47)

We can now combine the terms above (2.42),(2.44), and (2.43), focusing on the
derivative of Pα with respect to the weight:

δPα

δωij
=

γ
�
β

exp(−γEαβ)x
αβ
i x

αβ
j

Z
−
γ

��
β

exp(−γEαβ)

��
λ

�
μ

exp(−γEλμ)x
λμ
i x

λμ
j

Z2

(2.48)
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This simplifies to the expression

δPα

δωij
= γ

��
β

Pαβx
αβ
i x

αβ
j − Pα �xixj�free

�
(2.49)

where �xixj�free denotes the expected value of the product of states xi and xj when
the network is freely running. Substitute back into (2.47), we get

Δωij = ηγ

��
α

Rα

Pα

�
β

Pαβx
αβ
i x

αβ
j −

�
α

Rα �xixj�free
�

(2.50)

For final subtitutions, we note that the joint probability

Pαβ = Pβ|αPα (2.51)

can be substituted into the first term in the brackets of (2.50) to yield�
α

Rα

Pα

�
β

Pβ|αPαx
αβ
i x

αβ
j (2.52)

�
α

�
β

RαPβ|αx
αβ
i x

αβ
j (2.53)

Δωij = ηγ

��
α

Rα �xixj�fixed −
�

α

Rα �xixj�free
�

(2.54)

The summations weighted by Rα can be removed to get

Δwij = ηγ(�xixj�fixed − �xixj�free) (2.55)

We see thus that in Boltzman learning, the weights can be trained by setting a
fixed input (also called "clamping" an input) and running the network to compute
the value �xixj�fixed (the average correlation between the states of two nodes while a
fixed input is applied). A second pass then is run without the inputs (the "free" pass)
where again the average correlation between states �xixj�free is computed. Thus the
weight update is based on the correlation between network states generated when
inputs are applied but also seeks to measure and therefore ignore the results of noisy,
spurious correlations that are generated and are not indicative of the desired direction
of the local minimum of error. In summary, in Boltzman learning the application of
external inputs is used to stabilize the network at energy states that allow the network
to model the probability distribution of the inputs.
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Restricted Boltzman Machines and DBNs

Boltzman machines are an interesting academic construct but have not proven useful
beyond basic "toy" problems. The issue here is their large number of connections
which makes training process very long. A more useful network is the Restricted
Boltzman Machine or RBM, which limits layers to a single visible and hidden layer,
and does not allow connections within a layer. As shown previously, the hidden units
are trained to capture higher-order data correlations that are observed at the visible
units.
Training an RBM can be done by applying 2.55 in the following manner Hinton

(2002) (also described in simple terms in Trappenberg (2009)). A vector is presented
to the visible units that forward values to the hidden units. From 2.55, we can identify
the xi as the visible units, and the xj as the hidden units. This triggers a probabilistic
response based on the current weight values (i.e., wij), and the states that result are
used to form an initial estimate of the correlation between the nodes �xixj�t=0. The
next sampling phase simply uses the hidden layer states to recompute the visible
layer states, forming a new correlation estimate �xixj�t=1, and the process repeats an
infinite number of times to yield over time the weight change given in (2.55). Each
of these back and forth steps is known as a Gibbs sampling.
While clearly extending the sampling to t =∞ is not practical, it has been shown

that only a single step is needed to approximate maximum likelihood learning. This
process is improved by the use of multiple training examples, as each step for a
particular training example forms an approximation of the correlation, and over the
course of many examples a good estimate can be found. We note that there is a
trainable bias level applied to each input node, as well as to each hidden node. These
weights must be trained in a similar manner. When we seek to train the RBM to
perform a classification task, for example supervised learning, we add an additional
layer on top which we designate the “label layer’. This layer has an additional set of
biases as well as an additional set of weighting factors.
It is beneficial to understand the training of an RBM before proceeding into the

DBN discussion. We note that there is an excellent matlab source code for RBM
training demonstration purposes Karpathy (2011). Other source of RBM and DBN
code are available from Theis et al. (2010) and Hinton and Salakhutdinov (2006).
For this discussion, we have an RBM illustrated in Figure 2.8, with an input layer,
a hidden layer, and an additional output layer. In this case, we use a database of
handwritten digits which are 28× 28 in size, so each input is 784 elements (and thus
there are 784 units in the input layer). The hidden layer is set to have 90 units.
The output layer has 10 units, since we want to classify the digits from 0 to 9. For
training, we use the contrastive divergence in the following manner. First, one of the
input data samples is placed on the input, and its class label (a vector of D = 10,
which is all 0 except for element k, i.e., the 0th element for a “0” example image) is
placed on the output layer. At the hidden layer, we receive a stimulus that is equal
to oW + b+ cWc, where o is the observation (a 784-element vector), W is the input to
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hidden layer weight matrix (784× 90), b is the bias level at the hidden layer (a 90× 1
vector), c is the class label vector (10× 1), and Wc is the weighting factor from class
to hidden (10× 90). This composite 90-element vector now is applied to the sigmoid
function, which gives us the probability that each hidden unit is “on”.
We now sample the hidden units; essentially we generate a random value at each

unit, and turn the unit on or off stochastically (assuming binary nodes). We thus now
have a vector of 90 elements in the hidden layer which tells us which units are “on”
and “off”, which we will denote as h. We then go downward to the inputs, taking
the 90 element vector back through the weights and adding the bias value on the
inputs, hW + d, where d is the 784× 1 dimensional input bias level. We thus have a
784-element vector on the inputs, which after passing through the sigmoid functions
gives us the probability that each input node is “on”; we sample this as for the hidden
layer. Now, note that we have a signal on the input that was generated by the actual
data input, and a signal that is generated by the contrastive divergence, which we
will denote as ocd.
Because we are performing supervised training, we also take the h vector and apply

it away from the hidden layer toward the top layer. In this case we create hW �
c + f ,

where f is the trainable bias on the output layer. As with the input, we pass this
through a nonlinearity (such as a softmax function) and sample again, constraining
to a single element “on” since this is supposed to be a class label. This gives us an
output signal ccd generated by the contrastive divergence.
We can now proceed back inward again, toward the hidden layer from the output

signal ccd and the input signal ocd, and now generate our “final” hidden vector hfree.
We use the term “final” here since we are using contrastive divergence, and NOT
processing toward ∞ before updating the weight. The weight W is updated based
on 2.55, with the update increment weighted by oihi − ocdihcdi for W ; the bias on
input d updated by oi − ocdi; the bias on the hidden units b updated by hi − hcdi;
the hidden-to-output weight Wc increment weighted by cihi− ccdihcdi; and the output
bias f updated by ci − ccdi. These may then be applied by further weight by the
learning rate, and or by a variety of other weighting factors such averaging over many
samples, or smoothing over several samples. There are often other heuristics applied
as well, such as separating the data into batches and doing updates only after each
batch. In the absence of a supervised label, we can simply envision this process
with the weight matrix Wc forced to 0 for all iterations, so that we perform solely
unsupervised learning. The process is depicted graphically by example in Figures 2.9
to 2.10. After training, the response to a particular input can be found by applying
all candidate test labels and choosing the classification which gives the lowest average
energy in the system based on the sampled values of h.
In a DBN, layers of RBMs as described are linked by using the hidden node of

a lower layer as the input or visible layer for the next step in the hierarchy. Each
layer added to the network improves the log-probability of the training data, which
we can think of as increasing true representational power. The top layers of a DBN
are autoassociators which use supervised learning to define the system output, as
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discussed earlier. The difficult computation cost in DBNs is in the training of the
network. The training of the DBN consists of the following steps. First, the network
is trained layer-by-layer, just as described for the RBM. The bottom most layer is
trained by presenting images of the training set and using the greedy algorithm for
contrastive divergence. This can be repeated some number of times. Then, the next
layer is trained by again presenting input images to the bottom layer, propagating each
one through the bottom layer to the next layer, then using the contrastive divergence
algorithm to update the weights and biases for this layer. This is then repeated again
and again until the second layer is finished. Then, we repeat, propagating through
the bottom, next, and new training layer again. The top layer is trained with the
known labels as part of the input. The pseudocode of Bengio (2009) is very useful in
attempting to explain DBN greedy layer-by-layer training.
After the greedy layer-by-layer training, the network is “fine tuned” with

supervised learning and backpropagation to improve the system response. The
“up-down” algorithm of Hinton et al. (2006) starts by taking a sample input and
propagating through the network to stochastically set the values in the hidden units.
Then the weights are adjusted using multiple iterations of the Gibbs sampling. It is
unclear why it was determined that multiple iterations were needed, other than this
gives the ability to produce a more accurate answer at the cost of additional training
time. Finally, during the down pass the actual label is applied and backpropagated
down. However, in this phase only the bottom few layer weights are changed; the
top ones are not changed. The Gibbs sampling in this stage seems to require more
than a pair of iterations through the data; in the case of Hinton et al. (2006), for 100
epochs an up pass was performed, 3 iterations of Gibbs samples were used, then the
down-pass was performed. Then, for the next 100 epochs, six iterations were used,
and for the last 100, 10 iterations were used. Other training strategies have been
employed to improve the performance of DBNs on purely discriminative tasks Hinton
(2007).
It has been shown by Hinton and Salakhutdinov (2006) that the pre-training of

DBNs yield better performance than those trained exclusively with back-propagation.
This may be intuitively explained by the fact that the pre-training “gets the system
close” to the true weights, and then subsequent back-propagation for DBNs is only
required to perform a local search on the weight (parameter) space, speeding training
and convergence time in relation to traditional feed-forward neural networks alone.
One interesting property of DBNs is the ability to generate images of the target values
through a top-down procedure. This works by placing the desired target on the output
layer and using the activation through sampling to observe the input patterns.
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Figure 2.8: Top: An example RBM for supervised learning. This RBM has 728
input layers from a 28x28 pixel image, 90 hidden layers, and an output layer with
10 units to classify data as ten different labels. Bottom: An image is applied (an
image of a “0”) to the inputs, such that the image is rasterized at the input nodes.
The corresponding class label target is applied to the output. The weight matrices
are then applied, with additive bias, to produce a summed signal at the hidden layer.
Each is passed through the sigma function to yield a probability, p(h|data). Note
that the probability is a vector telling us the probability of setting each hidden layer
to a 1 or 0.
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Figure 2.9: Top: The probability is sampled by generating a random 0 or 1 based
on the computed probability. Middle: The hidden values are then propagated back
to the input and output, generating new probabilities at these nodes. Bottom: The
input nodes are then sampled, much as with the hidden nodes. The output sampling
is special, since the output is a target vector (all 0 except for a single unit set to 1).
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Figure 2.10: Top: As in the image input, the ocd and ccd signals are used to generate
a new hidden value. Bottom: The final sampling generates the hfree signal. The error
signal from hfree and h, along with o, ocd, c, and ccd, is used to generate the adjustment
signal for the weight matrices and biases as described.

37



Current Research Thrusts in DBNs

Performance results obtained when applying DBNs to the MNIST handwritten char-
acter recognition task LeCun et al. (1998) have demonstrated significant improvement
over feedforward networks. Shortly after DBNs were introduced, a more thorough
analysis Bengio et al. (2007b) solidified their use with unsupervised tasks as well
as continuous valued inputs. Further tests in Ranzato et al. (2007b), Larochelle
et al. (2007) illustrated the resilience of DBNs (as well as other deep architectures)
on problems with increasing variation. Some more recent work in this field has
established the computational hardness of RBMs Long and Servedio (2010).
DBNs do not inherently embed information about the 2D structure of an input

image, i.e. inputs are simply vectorized formats of an image matrix. Also, the
DBN structure does not scale well to different size images, since each input node is
connected to each hidden node. Thus, the number of connections is at least directly
proportional to the input image size, and is likely greater than that as the number of
hidden layers will increase with increasing image size. We note that Lee et al. (2009)
introduces the notion of Convolutional Deep Belief Networks (CDBNs) which are
geared towards image processing and utilize the spatial relationship of neighboring
pixels with "convolutional RBMs" to provide a translation invariant generative model.
We note also that DBNs do not currently explicitly address learning the

temporal relationships between observables, though there has been recent work in
stacking temporal RBMs Sutskever and Hinton (2007) or generalizations of these,
dubbed temporal convolution machines Lockett and Miikkulainen (2009), for learning
sequences.
We may categorize DBNs as one type of a more general architecture where stacks

of associators are used to create deep networks. In addition, work has continued on
the use of alternate building blocks in deep networks, including stacked auto-encoders
Bengio et al. (2007b), Ranzato et al. (2007b), Vincent et al. (2008). These efforts
produced deep multi-layer neural network architectures that can be trained with the
same principles as DBNs but are less strict in the parameterization of the layers.
Unlike DBNs, auto-encoders use discriminative models from which the input sample
space cannot be sampled by the architecture, making it more difficult to interpret
what the network is capturing in its internal representation. However, it has been
shown Vincent et al. (2008) that denoising auto-encoders, which utilize stochastic
corruption during training, can be stacked to yield generalization performance that
is comparable to (and in some cases better that) traditional DBNs.

2.3.3 Cortical-inspired Deep Learning Architecture

Biomemetics Bar-Cohen (2006) refers to the study and imitation of natural processes
and mechanisms in engineering and scientific innovation. A simple example is the use
of fins to improve swimming, but more sophisticated examples abound such as Velcro
(mimicking spiky, sticky plant seed transport mechanisms) and controlled adhesion
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based on gecko skin. Clearly artificial intelligence has long been inspired by biological
processes, particularly the human and animal ability to rapidly, concisely process real-
world information. Indeed the very field of machine learning can be interpreted as
bio-inspiration at its heart. As mentioned earlier the neural network computational
model is inspired by biology as well, but systems that seek to actually imitate brain
and cortical processes are fairly new in artificial intelligence.
There are several computational architectures that attempt to model the neocor-

tex. These models have been inspired by sources such as Marr et al. (2010), which
attempted to map various computational phases in image understanding to areas in
the cortex. Over time these models have been refined, however the central concept
of visual processing over a hierarchical structure has remained. These models invoke
the simple-to-complex cell organization of Hubel and Weisel Hubel and Wiesel (1962),
which were based on studies of the visual cortical cells of cats. Similar organizations
are utilized by CNNs as well as other deep-layered models (such as the Neocognitron
Fukushima (2003), Fukushima (2005), Fukushima (1980) and HMAX Serre et al.
(2007), Riesenhuber and Poggio (1999)), yet more “explicit” cortical models seek a
stronger mapping of their architecture to biologically-inspired models. In particular,
they attempt to solve problems of learning and invariance through diverse mechanisms
such as temporal analysis, in which time is considered an inseparable element of the
learning process. In Nordlie et al. (2009), a framework for biomemetic architectures
was posed which can be used to fit these new computing paradigms into a context of
brain-emulation.
One prominent example is Hierarchical Temporal Memory (HTM) George (2008).

HTMs have a hierarchical structure based on concepts described in Hawkins and
Blakeslee (2005) and bear similarities to other work pertaining to the modeling of
cortical circuits. With a specific focus on visual information representation, in an
HTM the lowest level of the hierarchy receives its inputs from a small region of an
input image. Higher levels of the hierarchy correspond to larger regions (or receptive
fields) as they incorporate the representation constructs of multiple lower receptive
fields. In addition to the scaling change across layers of the hierarchy, there is an
important temporal-based aspect to each layer, which is created by translations or
scanning of the input image itself. During the learning phase, the first layer compiles
the most common input patterns and assigns indices to them. Temporal relationships
are modeled as probability transitions from one input sequence to another and are
clustered together using graph partitioning techniques. When this stage of learning
concludes, the subsequent (second) layer concatenates the indices of the current
observed inputs from its children modules and learns the most common concatenations
as an alphabet (another group of common input sequences, but at a higher level).
The high layer’s characterization can then be provided as feedback down to the lower
level modules. The lower level, in turn, incorporates this broader representation
information into its own inference formulation. This process is repeated at each layer
of the hierarchy. After a network is trained, image recognition is performed using the
Bayesian belief propagation algorithm Pearl (1988) to identify the most likely input
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pattern given the beliefs at the highest layer of the hierarchy (which corresponds to
the broadest image scope). In later implementations of the HTM Numenta (2011a),
the algorithms have undergone substantial changes, with a more biomimetic approach
that combines an RBM-like neuron model with a spatial “inhibition” and “excitation”
method that is inspired by Kohonen self-organizing maps. The HTM concept seems
to be a work-in-progress, with each release featuring additions and modifications
over the past development. However, the work is not well documented in the open
academic literature, although the Numenta software packages are freely available for
download and usage Numenta (2011b). There are other architectures proposed in the
literature, which resemble HTMs, include the Hierarchical Quilted SOMs Miller and
Lommel (2006) that employ two-stage spatial clustering and temporal clustering using
self-organizing maps, and the Neural Abstraction Pyramid Behnke (2003). Although
interesting and innovative, most of these and related works are very active areas of
research at this point.
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Chapter 3

DeSTIN Formulation

3.1 Technical Approach

We introduce a novel DML architecture dubbed the Deep Spatio-Temporal Inference
Network or DeSTIN Arel et al. (2009b) Arel et al. (2009a). In the DeSTIN
architecture a hierarchy of layers is used, where each layer consists of multiple
instantiations of an identical circuit or node which follow a defined spatial orientation
for imaging applications. Each node learns to generalize and represent a temporal
sequence of observations through unsupervised learning. The lowest layer of the
hierarchy processes raw data input, such as image pixels, and continuously constructs
a belief state that attempts to characterize the sequences of patterns viewed. The
second layer, and all those above it, receive as input the belief states of nodes
at their corresponding lower layers, and attempt to construct belief states that
capture regularities in their inputs. In addition, feedback from the upper-layer (or
parent) node is received and utilized in the formulation of the belief state. The
architecture thus forms a hierarchical belief state across its layers which captures
both spatial and temporal regularities in the data - a key advantage over existing deep
learning schemes. The temporal changes may occur through movement of the imager,
movement of the subject, or a combination of both, but for our initial experiments
the movement and temporal change is induced through moving the field of view
of the imager. Higher layers receive temporally changing data by processing the
belief outputs of children nodes. These output beliefs capture regularities in their
inputs and thus extract features of the data which can be fed to a supervised learning
algorithm to perform classification. In principle, since each node is identical, the
architecture can be mapped to parallel computational platforms such as graphics
processing units, and since the overall processing is simple it is tractable for hardware-
oriented approaches as well. All processing is “online” so that large amounts of
memory are not needed during training.
The derivation of the learning / belief update rule for each node in DeSTIN is

described as follows. At each node, and during any particular time step, an observation
o is received. The node has a belief, b, which is a vector of real numbers with each
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element corresponding to a state variable, s. The node also receives feedback from a
parent node which is denoted by a. Note that the temporal nature of these values are
all suppressed, i.e., the observation is an explicit function of time as well. The node
seeks to formulate a new belief at the subsequent time step which we will denote as
b	, with the new state value s	. We therefore write the resulting expression as

b�(s�|a) = Pr(s�|o, b, a) = Pr(o, s�, b, a)
Pr(o, b, a)

(3.1)

We then expand the denominator to yield

b�(s�|a) = Pr(o, s�, b, a)
Pr(o|b, a) Pr(b, a) (3.2)

and expand the numerator to yield

b�(s�|a) = Pr(o|s�, b, a) Pr(s�|b, a) Pr(b, a)
Pr(o|b, a) Pr(b, a) (3.3)

and, finally, omit the terms common to the denominator and numerator Pr(b, a) to
obtain

b�(s�|a) = Pr(o|s�, b, a) Pr(s�|b, a)
Pr(o|b, a) (3.4)

We assume our observation o is only a function of the (true) state of the environment
s	, or

Pr(o|s�, b, a) = Pr(o|s�) (3.5)

Applying this simplification yields

b�(s�|a) = Pr(o|s�) Pr(s�|b, a)
Pr(o|b, a) (3.6)

We next note that we can expand the second numerator term with vector b into
individual elements b(s) as

Pr(s�|b, a) =
�
s∈S

Pr(s�|s, a)b(s) (3.7)

to yield

b�(s�|a) =
Pr(o|s�)

�
s∈S

Pr(s�|s, a)b(s)

Pr(o|b, a) (3.8)

The denominator term may be expanded using state variable s�� and s���:

Pr(o|b, a) =
�
s ∈S

�
s ∈S

Pr(o|a, b, s��, s���) Pr(s��|s���, a, b) Pr(s���|a, b) (3.9)
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If we assume the current observation is independent of the previous state s��� we can
write this as

Pr(o|b, a) =
�
s ∈S

Pr(o|a, b, s��)
�
s ∈S

Pr(s��|s���, a, b) Pr(s���|a, b) (3.10)

Next we note that given the state s��, there is no dependence of the observation o on
a or b, so

Pr(o|b, a) =
�
s ∈S

Pr(o|s��)
�
s ∈S

Pr(s��|s���, a, b) Pr(s���|a, b) (3.11)

Moreover, given the current state, the belief for that state is irrelevant, for which we
have

Pr(o|b, a) =
�
s ∈S

Pr(o|s��)
�
s ∈S

Pr(s��|s���, a) Pr(s���|a, b) (3.12)

Thus the fundamental belief update rule of DeSTIN is given as Arel et al. (2009b)

b�(s�|a) =
Pr(o|s�)

��
s∈S

Pr(s�|s, a)b(s)
�

�
s ∈S

�
Pr(o|s��)

�
s ∈S

Pr(s��|s���, a)b(s���)
� (3.13)

which maps the current observation o, the belief b (with argument the system state s)
and the belief state or advice of a higher-layer node a, to a new (updated) belief and
state b	(s	) at the next time step, with a normalization factor in the denominator.
One interpretation of (3.13) is that the (static) pattern similarity metric, Pr(o|s�),

is modulated by a construct that reflects the system dynamics,
�
s ∈S

Pr(s�|s, a)b(s).
For shorthand, the latter is denoted as P ass . Therefore the belief state captures both
spatial and temporal information and these two constructs are the main items which
must be learned from the observations. The former is learned using online clustering,
while the latter is learned from experience by adjusting of the parameters with each
transition from s to s	 given a (as a tabular method or using function approximation
methods). The advice generation method is learned using online clustering. The
result is a robust framework that autonomously learns to represent complex data
patterns, such as those found in real-life robotics applications and whose output can
be used as a generic feature extractor for a supervised learning system.

3.2 Steps of the Learning Process

Here we briefly discuss the different learning steps involved in a DeSTIN implemen-
tation. We cover these elements in more detail in Chapters 4 and 5.
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3.2.1 Adaptation of the Static Component

The static component of 3.13 is the term P (o|s�). This term represents the probability
of an observation, given a particular state s�. We elected to pursue an unsupervised
learning algorithm, in particular, an online clustering algorithm for this component.
The objective here is to learn a concise set of states s that can be used to generalize
the data. However, this is only one element for this component, as clustering with
associated labeling generally only allows us to estimate P (s|o), and in the hard-
threshold method this probability is unity for the selected class and 0 for all others.
In our initial work we approximated the P (o|s) with the equation 4.1, which is
actually a sort of fuzzy approximation to a probability. After initial study, we
determined an additional learned construct must be included in the static learning
component: a true (or at least better estimate) of P (o|s). This can be learned from
an initial set of cluster centroids by an estimate of a probability distribution. For our
work, we experimented with specific models (Rayleigh, Gaussian and exponential),
which was motivated by their simplicity and applicability based on an assumption of
Gaussian data distributions but measured with cosine similarity (see Chapter 4 for
additional details). We therefore estimate the parameters of the given model, then we
cycle through the different states s and for each one estimate P (o|s) by integrating
around the observation in a closed-form solution. Note that we also replace the
observation vector o with a scalar, simply the distance from the cluster s, which
reduces dimensionality and has some analogies to nonlinear dimensionality reduction
methods that are based on graphical models, as described in Chapter 4.

3.2.2 Adaptation of the Dynamic Component

The dynamic element of the DeSTIN formulation features two main elements. The
first, more obvious term, is the P (s�|s, a) term. This simply states the probability of
transitioning from state s to s’, with a given advice component. There are similarities
here to the reinforcement learning concept of the state-action table as discussed briefly
in Chapter 2, where the advice takes the place of the action, but here there is no
optimization component from the learned a; rather it must be unsupervised, at least
in this initial formulation. As in RL methods, the P (s�|s, a) table can be learned
from actual transitions. This is memory intensive, depending on the state-advice state
space, but is a reasonable approach and thus is our main method for this dissertation,
although we explore the use of function approximation methods here as well. We note
that we have assumed some small, non-zero element for each entry in the P ass table,
so that even unlikely state transitions will not return a response of exactly 0.
The second component is the advice. In early implementations, the advice or

belief of the parent node, a, was chosen using the selection rule

a = argmax bp(s)
s

(3.14)
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In other words, the parent basically fed back the label of the “winning” centroid
to the children nodes. The problem with this in practice was the static learning at
the parent level tended to jump repeatedly from state to state, so that there was
no clear coherence from observation to observation. In addition, the advice here is
more the “hard threshold” method, which tends to work well only in the face of no
noise or very clearly defined classes or clusters. Therefore, we have explored instead a
more temporally coherent advice generation method which looks across many different
observations to determine the parental advice, which is an assessment of the general
state of the children’s beliefs (and benefits from a viewpoint one layer up in the
hierarchy). This new advice state is based on performing unsupervised learning,
clustering, on the concatenation of children belief states across all the movements, up
to the final movement. Thus the advice is generated in fairly large temporal “chunks”,
albeit with an online system. These advice states are then fed back to the children
during learning, and the P ass tables (or function approximators) are built based on
that advice. This method is still a “hard threshold”, but when the actual responses
are delivered, the children do not actually use parental advice; instead, the cycle
through all possible advice states, and deliver a belief in advice vector denoted as
B(a). We consider this “passive advice” as a positive step toward true incorporation
of an evolving belief with confidence levels that can actually offer a level of control
over the observation process. These dynamic processes are described in more detail
in Chapter 5.

3.2.3 Supervised Learning

Once DeSTIN has been trained and has produced a set of responses for the given
testing and training set, we proceed to create a supervised classifier and test the
learned extracted features. In this work we did not seek to exhaustively search through
different supervised learning methods. Instead, we did some initial tests with kNN
classifier methods, due to their simplicity, and with neural network ensembles which
were chosen based on their performance with initial DeSTIN outputs. There are
certainly more work that could be done in this field, in particular a more intimate
linking of the DeSTIN feature generation process with the supervised learning aspect
would be interesting and very likely fruitful, but for the purposes of this dissertation
we limited the scope to simple evaluations of existing methods.

3.3 Implementation Details

We next describe the operation of DeSTIN in more pragmatic terms, focusing on
image applications. We refer to our main network experiments for clarity but of
course most of the arrangements of the hierarchy can be generalized. The network is
depicted in Figure 3.1 for a four-layer case. A major question with this architecture
pertains to the resource allocation regarding the number of layers and the parameters

45



of each layer’s nodes (especially with regard to the number of centroids), which we
explore in Chapter 4, 5, and 6. In contrast the spatial topology is straightforward,
building on a small clique at the lowest layer (a 4 × 4 pixel), and combining above
that in a 4:1 ratio or spatially a 2 × 2 set of nodes at the lower layer combining to
one node at the layer above it.
The network depicted has an 8×8 arrangement of spatial processing nodes at the

lowest layer. This lowest layer actually receives pure image pixels as inputs and each
node receives a small N ×N pixel section of the image. A set of discrete time steps
are used and at each time step the image is moved slightly (by one pixel either in x,
y, or both). At each time step the input data is clustered by the lowest layer nodes
by comparing a rasterized version of the input data with its "library" of centroids.
The winning centroid is chosen and a relative distance as given by Equation 4.1 is
computed. The initial belief state is assumed to be a uniformly distributed vector, and
so is updated at each step by the Pass table structure given the advice from the parent
node. The parent node advice, a, can be formed by many different mechanisms. The
Pass formulation was built therefore as a group of A tables, where A is the number of
states in the parent nodes, using Equation 5.2. As the temporal scanning proceeds
the belief values at each node are modified and evolve to produce a set of K values,
where K is the number of centroids for the particular node. These belief vectors are
saved at the end and input to a supervised learning system such as a neural network
to provide a mapping of unsupervised belief states to supervised labels.

3.3.1 Temporal Scanning

The DeSTIN network assumes some level of motion in the field of view which can in
principle be obtained through either motion of the subject (as in video sequences) or
through a controlled motion of the DeSTIN imager. There is a rough analogy here to
saccading, which is the rapid movement of the human eyes while analyzing a scene
Deubel and Schneider (1996). Saccading allows the eye to focus the highly resolved
central component of the visual system on items of interest in the field of view. The
approach taken by DeSTIN here is not a controlled sequence that responds to visual
feedback, but rather is a set sequence of scans through the visual field which allows
the system to convert a static image into a temporal sequence within each small
field of view. The DeSTIN scan motion we have chosen for our initial experiments
is shown in Figure 3.2. Some of our earlier experiments Arel et al. (2009b) used
different numbers of steps and different patterns. The scan pattern used here is
mainly motivated by ensuring a sufficiently long temporal period is used to analyze
the image and may not be the optimal scanning strategy. We assume that the scan
start and stop are known to the system such that the temporal position of scanning
is known at each time step and explicitly returns to the origin at the beginning of
the presentation of the next image. We envision that future implementations could
pursue a more rigorous strategy of exploration and learned search, motivated by the
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Figure 3.1: Depiction of the DeSTIN hierarchy for image studies. For a 32x32
input image, four layers are configured with 64, 16, 4 and 1 node per layer. At each
node the output belief b(s|a) at each temporal step is fed to a parent node. At each
temporal step the parent receives input beliefs from four child nodes to generate its
own belief (fed to its parent). An advice value is learned by the parent as well, which
is used when formulating a set of multiple observations for an estimate of b(s|a)

hierarchy learning algorithm and focus-of-attention algorithms Itti and Koch (2000),
but this dissertation work will focus on the simple scan of Figure 3.2.

3.3.2 Processing

DeSTIN training proceeds through the flow chart and pipeline depiction shown in
Figures 3.3 through 3.7. The initial processing is simply training DeSTIN in an
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Figure 3.2: Example of scan pattern for 64 "movements" or scans. Each arrow
represents the shift taken at each temporal sample.

unsupervised manner using a set of training vectors or images. The processing
proceeds in a pipelined fashion, shown in Figure 3.3 for a four-layer hierarchy.
Processing proceeds both left to right and right to left in the figure. At the top
of the figure we see an input image which is presented to the set of nodes in layer 0
at time t = 0 In the figure we show that the lowest layer has 8× 8 nodes. At t = 1,
in the second row of the figure, we look at layer 1 with 4× 4 nodes which is receiving
the output of layer 0 which was generated at t = 0. This is processed and feedback
(represented by the red line with the circle on the end) is passed back to layer 0,
which is now receiving the second presentation of the image, which has undergone a
slight shift or linear translation. This process continues in the third row, where layer
2 processes the output of layer 1 from t = 0 and passes feedback to layer 1...which
is now processing the t = 1 output of layer 0, and passing feedback to layer 0, which
is now processing the t = 2 presentation of the image. This process continues until
time t = L, where L is the number of scans (i.e., 64 as show in Figure 3.2).
The actual processing steps for the DeSTIN training and processing are shown in

a flow chart for each node in Figures 3.4 through 3.5. During initial training the node
is initialized by randomly assigning its centroid locations and setting the P ass table to
a uniform distribution (meaning any state could follow another with equal likelihood).
The processing then consists of making the observation, finding the cluster distances
and updating the "winning centroid", then receiving the parent advice and using the
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Figure 3.3: Pipeline for DeSTIN processing. At time t=0 an input image is shown
and the bottom layer nodes begin processing. At t=1, the outputs of the bottom layer
nodes are supplied to layer 1, which performs its processing and generates feedback
(the red line) back to layer 0, which processes the shifted input image. This process
repeats through the additional steps shown and beyond.

current P ass table to compute the expected belief which is passed to the parent. The
P ass table is updated and the node waits for the next time step. When the number
of time steps reaches the scan period T , the node is reset and is prepared to process
a new signal. (For the most part, the reset does not alter the node itself but some
debugging and diagnostic data which is included in the C++ implementation uses
the reset.) Processing after training is virtually the same except the centroids and
P ass table are not updated as shown in Figure 3.5.
We also note the processing for creating a supervised learning classifier for clarity

in Figures 3.6 and 3.7. This is a fairly simple process where the block “Unsupervised
DeSTIN Network” which has been conditioned by a sequence of training data, is
“frozen” and then its response to another set of training data is found. This
training data set may, or may not, contain some of the same vectors used in the
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Figure 3.4: DeSTIN processing steps for training the DeSTIN network.

unsupervised learning phase. These “Training DeSTIN Responses” are then presented
to a supervised learning classifier which is trained to map labels to the DeSTIN
response vectors. In the actual classification phase shown in Figure 3.7, a test vector
is presented to the DeSTIN network which extracts features by finding the response of
DeSTIN, and then this response is mapped to a class label by the supervised learning
classifier.
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Figure 3.5: DeSTIN processing steps for generating the response of the DeSTIN
network to input vectors after unsupervised training has stopped.

3.4 Comparing DeSTIN to Existing DML Schemes

3.4.1 Background

In this section we compare and contrast DeSTIN with other deep machine learning
methods with respect to their fundamental functionality and implementation. We
should point out that these definitions are not necessarily fixed in the sense that
architectures similar to CNNs or DBNs could be developed that attempt to improve
these basic approaches by creating, for example, an explicit temporal nature or spatial
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Figure 3.6: Training the supervised learning system with DeSTIN response vectors.

Figure 3.7: Using the supervised learning system to classify input vectors.

component. However, DeSTIN could as well be modified to use other aspects that
are similar to the other DML approaches; for example DeSTIN could be modified
to use an alternative data representation, but such a representation would not be in
keeping with the goals of DeSTIN (an online learning system) unless it is inherently
online and evolving. Finally, we discussion the relationship between multiresolution
methods and DeSTIN and deep learning in general.

3.4.2 Temporal Mapping

The largest contrast between DeSTIN and conventional CNNs and DBNs pertains to
the natural temporal representation of DeSTIN. The temporal component is explicitly
present in both the data presentation (through scanning in our cases), the training of
the network as beliefs propagate from state s to s	 which is the next temporal step, and
the response which are a set of temporally evolving beliefs. CNNs, although drawing
upon early work in TDNNs, are explicitly image-based (spatial only) and do not deal
with time inherently. Their predecessor, TDNNs, use a sequence of delays applied
to the temporal signal to generate inputs for digital filtering operations Waibel et al.
(1989),Lang et al. (1990), which CNNs replace with the spatial dimension. CNNs
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could be adapted to extend to the temporal dimension in this manner but the cost
in terms of additional network complexity would be enormous and also would require
a fixed estimate on the size of the temporal window which impacts the topology
specification. DeSTIN does not require any specification of the temporal size as the
system dynamics functions (the Pass constructs) adaptively learn the temporal scales
of the data. Work in Mobahi et al. (2009) takes advantage of the concept of temporal
coherence, or the assumption that adjacent video frames contain the same object, to
train a CNN using a modified backpropagation algorithm which attempts to force the
output of adjacent time steps to be "close" or "similar" in the internal representation.
Two cost functions are used, one for regular supervised learning by gradient descent
and a second unsupervised-based algorithm that strives to make adjacent video frames
"close" in the internal representation. This is a clever modification but does not truly
constitute temporal dependence of the architecture itself: instead, it is a method of
incorporating temporal knowledge into a semi-supervised learning environment, while
DeSTIN explicitly uses a single learning algorithm to include spatial information
spanning adjacent or many frames. DBNs also do not deal with the temporal evolution
of the observations as an inherent component of their operation. Work extending the
DBN base building block, the RBM, to a "Temporal Restricted Boltzman Machine"
or TRBM is described in Sutskever and Hinton (2007) and Lockett and Miikkulainen
(2009). The extension involves adding directed connections from the previous states
of the visible and hidden units which incorporates the temporal dependence. These
designs suffer from extremely long learning times, even using contrastive divergence.
In addition the temporal window must also be defined explicitly and the learning
time increases exponentially with the size of the window.

3.4.3 Spatial Mapping

The spatial mapping of DeSTIN is very natural due to the structural, spatial topology
of the DeSTIN hierarchy. The CNN also has a natural spatial mapping owing to the
two-dimensional nature of the CNN structure, and in fact this allows the CNN to
capitalize on spatial similarities and reduce the number of connections needed, making
the deep nature of the architecture tractable for learning. The DBN, in contrast, is
not structured as a natural spatial mapping, instead images are rasterized before
presentation and the spatial nature of the vectors is not preserved in this operation.
Again ,there is an important exception: the convolutional deep belief network Lee
et al. (2009), established a more image-oriented architecture by replacing the basic
RBM building block by a "convolutional RBM" where visible units corresponding
to image pixels are fed into groups of hidden units or "detectors". The detectors
each correspond to a different filter such that the response of a group is a filtered
representation of the input image where the filters are generated by contrastive
divergence with a CRBM-specific energy function. A sparsity constraint is added as
well to prevent trivial fits to the data. An additional step in the CRBM is introduced,
a "max pooling" layer which shrinks the detector outputs and is similar to the "S"
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units in the CNN. Stacks of CRBMs are then employed comparable to the DBN, and
training again proceeds in a greedy layer-by-layer fashion.
Another comparison point is the spatial mapping of the features from the hierarchy

to the supervised learning layer or system. In DeSTIN, the data available from any
node is suitable for inclusion in the supervised learning phase, which means DeSTIN
can draw upon both very coarse and find spatial dependencies in the data. This is
important when we consider aspects such as the similarity of faces; at a high level,
the similarity of faces draws more on spatial characteristics that are clear from a
low-resolution aspect such as the roundness of the head, while at lower levels, the
similarity depends on more subtle, fine features such as the orientation of the eyes
and small details in the face morphology. This aspect can be lost through potential
compression of the CNN and DBN as the data propagates through the hierarchy.

3.4.4 Learning Rules and Methodology

The learning algorithm for DeSTIN is simple and explicit from layer to layer, utilizing
feedback from the higher (parent) nodes to guide the evolution of the belief vector
without losing knowledge or information in the lower nodes. DeSTIN is inherently
an unsupervised process for feature extraction. Pattern recognition is performed
with DeSTIN by using the DeSTIN output as a set of response vectors which are
mapped to a labeled output with supervised ML methods. Conversely, CNNs are
explicitly supervised, and use backpropagation for training and feedforward only for
classification and formulation of analogous "belief" states. The learning algorithm
for DBNs rely on feed forward only and layer-by-layer, greedy unsupervised training.
They do have an explicit supervised training aspect for the top layers, after the
unsupervised pre-training has been completed.

3.4.5 Comparison with Multiresolution Methods

The hierarchical structure of DeSTIN and some deep learning systems is very
reminiscent of multiresolution or other pyramid-like approaches, such as Laplacian
or Gaussian pyramids Adelson et al. (1984), Bister et al. (1990), Burt et al. (1981).
In pyramids processing proceeds by using a kernel operation and resizing the image,
which is equivalent to processing the image with a larger kernel. These kinds of
operations emphasize different features of the image or signal in question by changing
the spatial content of the image to match that of the kernel (or filter). There are
numerous examples of these types of operations; the SIFT features and their ilk
are an example Lowe (2004), Bay et al. (2008), as are Gabor filters Gabor (1972)
and wavelet processes Strang and Nguyen (1996), with the latter usually imposing
orthogonality from scale to scale. (An interesting point for brain emulation is the
concept that cortical receptive fields can be modeled as Gabor filtering processes Jones
and Palmer (1987), Jain and Farrokhnia (1991)). Other pyramid-like approaches
include the pyramid Lucas-Kanade algorithm for point tracking Lucas and Kanade
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(1998), which allows the efficient detection or matching of feature points in motion
images regardless of the amount of motion (number of pixels moved) from frame to
frame.
However, these types of systems or methods are not deep learning, as they do not

actually use a hierarchy to learn different levels of details about a signal; instead, they
are using the hierarchy to efficiently repeat different detection or decomposition op-
erations rather than performing learning operations such as clustering or recognition
on a changing scale of data. Such operations could have a role in deep learning, of
course. In the case of DeSTIN, we argue that while the approach is indeed pyramidal
in structure, the processing of DeSTIN is not multiresolution in the sense that the
same operation is not applied across the board to the entire image; instead, small
pieces of the images are processed by the lowest level, and these are then reprocessed
or reinterpreted as larger components at the next level of the hierarchy. A DBN has
less resemblance to a multiresolution system, since the input at the lowest level is a
complete image and the processing proceeds on the entire image at each level without
accompanying spatial processing. Finally, for comparison, a CNN on the other hand
has an explicit multiresolution component, as the signals processed by the learned
filters at each level are followed by a downsampling operation and the next round of
processing is thus performed on a lower resolution "image-like" signal. However, the
CNN does not impose any kind of constraint from layer to layer regarding the kernels;
they can be completely independent and different from layer to layer.
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Chapter 4

Learning of Static Components

In this chapter we explore the static learning components of 3.13, which we refer
to as the P (o|s) element. We discuss two primary topics: state identification or
signal generalization and probability estimation. The formulation of the different
states for P (o|s) is achieved through online clustering. We discuss different criteria
for measuring the movement of centroids and learning rates which we have developed
and explored in this work. We then discuss the evolving cluster method (ECM)
Kasabov (2003), which we implemented in an effort to automatically set the number
of clusters used.
The second topic is the probability estimation. In our early DeSTIN work we

approximated this as the distance between the sample and the cluster centroids given
by

P (o|s) = 1− d−1s�
s ∈S

d−1s
(4.1)

This expression takes the distance of centroid s to the input vector and normalizes
by the sum of the distances to all centroids so when ds is small (i.e., 0) there is high
"belief" that this centroid is the correct one. The relationship is clearly motivated as
we would like the vector value to be normalized and each component should represent
similarity to each state or centroid. Indeed this expression can be seen in other
areas such as fuzzy clustering Duda et al. (2001) but this representation is simplistic
and does not consider the variance in the data associated with each centroid. In
addition, it very explicitly ties the distance from all centroids together through the
normalization factor, which may not be valid. We thus discuss different probabilistic
models for P (o|s), including Gaussian, Rayleigh and exponential models which use
the distance to the centroids in a probabilistic fashion, borrowing from the concepts
of nonlinear dimensionality reduction Kruskal (1964), Tenenbaum et al. (2000) and
nearest neighbor distance distributions Ding (1999), Korn et al. (2001).
We conclude with a comparison of batch and online clustering, using the ECM

and an online clustering winner-take-all methodology for a variety of test cases.
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4.1 Online Clustering

4.1.1 Overview

One goal of DeSTIN is to produce a system that scales efficiently with simple
hardware, so we have imposed a constraint that the system cannot iterate through the
entire training data set in memory. Consequently, an online clustering algorithm is
required. Our fundamental approach is based on the winner-take-all competitive
learning and each node of DeSTIN contains a processing engine to perform this
function. We have studied a variety of different methods for improving performance
and monitoring progress Young et al. (2010), with a goal towards determining a good
stopping criteria. In our hierarchy, we adopted a strategy of monitoring the progress of
the centroid formation and stopping when some criteria was met, as will be described
later. The same strategy applies to the online ECM method as well, which is still a
WTA method at its heart, but with extra constraints to adapt the number of clusters.
A summary description of the core algorithm with fixed number of centroids

is as follows. The estimated centroids are initialized to random values. A new
observation is then assigned to a single estimated centroid based on the minimum
distance computed by some similarity value such as Euclidean distance. The WTA
centroid selection simply performs argminx dx to select the winning centroid for
updates, however the algorithm always chooses the labeling centroid as the one with
closest distance (without regard to starvation trace). Then the update rule for the
winning centroid x is achieved by

xt+1 = x− α�x− o� (4.2)

where α represents the learning rate and o is the observation or input vector. The
learning rate may be constant or may decrease over time. The clustering changes
over time are monitored by a set of metrics of interest derived from the mean and
standard deviation of the changes made in the centroids. When some criteria is met,
the clustering terminates.

4.1.2 Learning rate

The learning rate in online clustering has been implemented in a variety of ways
in the literature, with constant learning rates and decaying rates commonly used
Bottou (1995). In competitive learning clustering algorithms the learning rate is
often adjusted to allow trade offs between faster learning in early phases of iterations
and stability in later phases. Typically the learning rate is adjusted so that it is
monotonically decreasing, for example a decaying exponential with the decay as
a function of iteration. One methodology for a decaying learning rate which is
analogous to k-means clustering is accumulating a count Ns of the samples assigned
to a particular centroid and setting the learning rate to its inverse, � = 1

Ns
. This is
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an intuitively appealing method, and ensures convergence since the rate decays with
each new data point selected for a particular cluster Bottou (1995).
The multi-layer DeSTIN hierarchy has some special features with respect to online

learning rates. During the early learning in DeSTIN, the output of each layer is
evolving and changing, and therefore the next layer up receives a non-stationary
input until its child nodes are stabilized. In this environment, the learning rate could
be adjusted based on the data as measured by a few performance and behavioral
characteristics Karnowski et al. (2010a). For the DeSTIN hierarchy, during network
initialization the learning rate was adaptively modified on a layer by layer basis but
learning proceeds in parallel for all layers until a layer is terminated. We monitor the
nodes of layer 0, and initialize the learning rate to αF for layer 0 and αS for subsequent
layers. The mean across all centroids for ρ was computed at each observation. When
the mean value was less than a threshold Tρ, clustering terminates for the node. When
half the nodes were terminated the entire layer clustering was stopped. The learning
rate for the next layer was then reduced to αF and the process repeated until the top
layer clustering was terminated. This functioned well and we show some results in
Chapter 6. For an evolving system with a changing number of centroids, however, a
different strategy must be used to enable simultaneous learning. We discuss this in
more detail in Section 4.2.3.

4.1.3 Starvation Trace

A problem with clustering in general is that the dynamics of the clustering change
depending on the initial centroid selection. This problem has several practical
implications, one of which being that in some cases centroids may be underutilized if
they are not near the original data itself. Thus we introduce the concept of starvation
trace, ψx, which is used to include clusters which are initially too far from observations
to update. The starvation trace allows idle or starved centroids to accumulate credit
over time when they are not the selected centroid (and lose credit when they are the
selected centroid). In our case, the starvation trace is initialized to a constant vector
of length D where D is the dimensionality of the observation. For each observation
where centroid χ is chosen the starvation trace for all non-selected centroids is reduced
by some value. The starvation trace is employed to weight the distance calculation and
thus render "starved" clusters a chance to make movement towards data samples. A
summary description of the application of ψx is as follows. The estimated centroids
are initialized to random values. A new observation o is then assigned to a single
estimated centroid χ based on the minimum distance computed by some similarity
value such as Euclidean distance. This distance metric is weighted by the starvation
trace as:

dx = dist(x, o) = �x− o�{1− ψx} (4.3)

where ψx is the starvation trace. Thus as the starvation trace increases, the distance
metric appears to decrease and gives the "starved centroid" an opportunity for
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updates. The WTA centroid selection simply performs argminx dxto select the
winning centroid for updates, however the algorithm always chooses the labeling
centroid as the one with closest distance (without regard to starvation trace).
An example of how the starvation trace works is shown in Figures 4.1 through 4.2.

In this illustration there are three actual centroids, all with uniform probability of
occurence, and we attempt to fit three cluster centers to the data. For the purposes
of illustration, all estimated cluster centers are set to initial values of (0.5,0.5,0.5).
The initial configuration is shown at the top of Figure 4.1 where we see the three
actual data centroids in red, and the estimated centroids are the blue circle, green
triangle, and cyan star. After several samples we see that the estimated centroids
have shifted where the green triangle has successfully selected the upper distribution,
the blue circle is drawn between the lower distributions, but the cyan star is starved.
Using the starvation trace presents a different picture after several iterations (Figure
4.2) where the starvation trace credit for the cyan star has reached the point that the
lower right distribution attracts an estimated centroid. After additional iterations all
centroids are representing a different data cluster.

4.1.4 Monitoring centroid changes

We may easily accumulate estimates of the standard deviation and mean of the
centroid changes for each estimated centroid. These are computed on-line and are
given by the following formulas where dx is the distance between an observation and
winning centroid χ with mean μx:

μt+1χ = aμtχ + (1− a)dx (4.4)

σt+1χ = bσtχ + (1− b)�μtχ − dχ� (4.5)

where a and b are constants with a < 1 and b < 1. Both vectors are initialized to all
1. These estimates are smoothed metrics for the changes made to the centroids over
time. Ideally, as the winning centroid comes to represent the actual centroid the value
of the mean change estimate μχ should approach 0 (since dχ should become smaller
and smaller) and the value of the change standard deviation estimate σx should also
approach 0 (because both dx and μ should become smaller and smaller).
To effectively utilize these metrics, we define a functional relationship between μ

and σ as
ρ̂(μχ,σχ) =

2

1 + e
−γ

σχ
1+μχ

− 1 (4.6)

In this function, we see that when the centroids are not changing much μ and σ
should be small and consequently ρ̂ should be 0. Periods of large change in centroids
will force ρ̂ to be nearly unity. As a final note we smooth our estimate of ρ using the
following rule with ρ initialized to unity:

ρt+1χ = cρtχ + (1− c)ρ̂ (4.7)
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Figure 4.1: Top: No starvation trace, initial iterations. Bottom: the centroid
represented by the blue circle is "trapped" between the two actual centroids while
the centroid represented by the cyan star is "starved".
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Figure 4.2: Top: With the starvation trace, eventually the green triangle gets
"credit" for not being selected and is drawn toward the actual centroids even when
it is not the winner. Bottom: After more iterations with the starvation trace all
centroids are used.
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4.1.5 Momentum

The momentum concept uses the idea that several updates in the same direction
indicate future updates will be in the identical direction. The momentum can be
used to thus modify the step size or add an extra update in the case of a constant
learning rate. If we define the prior centroid update for centroid χ to be �χ then the
new step size δχ is computed as δχ = eα(λ−1) where α is a constant and

λ = 0.5(1− (χ− o)�χ

�(χ− o)���χ�) (4.8)

In this computation, the scalar value λ is a measure of the cosine of the angle between
the prior update center �χ and the new direction of the update (χ − o). This
adjustment is intended to weaken the step size when the direction of the update is not
close to the vector direction as the prior update, and strengthen it when the vector
direction is the same. The idea is that when the direction is similar the estimated
centroid is moving consistently to the same general direction, and once it gets close
to the true cluster centroid the direction is noisier and thus the step should be scaled
back.
As a simple illustration of this concept, consider a clustering algorithm where the

step size is the cosine direction scaled by a fixed constant 0.1. The direction is still set
based on the difference in the observation and centroid as before. Thus the update
rule is given as

χt+1 = χ− � (χ− o)�χ− o�
(χ− o)�χ

�(χ− o)���χ� (4.9)

Take a simple case of a single initial estimated centroid at (1,1) and a true centroid
at (0.5,0.5). Observations are slightly noisy. The first few iterations of the algorithm
produces results such as shown in the top two plots of Figure 4.3, where the red star
is the previous estimate, the blue star is the current estimate, and the green star is
the next estimate. Note that the step size between is nearly constant. By iteration
14 (bottom of Figure 4.3), we see that the step size is definitely changing in response
to the cosine of the angle as described.
We may perform various measures to provide the robustness of this momentum

measure against noise. One method is to smooth the step size over time by the
relationship

δt+1χ = kδtχ + (1− k)δχ (4.10)

Another method to achieve robustness with the momentum concept is to simply count
the updates that are in the same consecutive direction and apply them for a single
update Young (2011).
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Figure 4.3: Effect of momentum calculation on step size. In all plots the red is the
previous estimate; the blue is the current estimate; the green is the next estimate.
Top: Iterations 0,1,2. Middle: iterations 3,4,5. Bottom: Iterations 15,16,17.
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4.1.6 Pseudo-Entropy Measure

We examine a metric we have named pseudo-entropy or 
 as it is a measurement
derived from information entropy Cover and Thomas (2006). A very similar metric
has been used in the past in batch clustering Chinrungrueng (1995). The formulation
for the 
 of a vector v of length D is given as


(v) = 1−
�
vi log(vi)

log( 1
D
)

(4.11)

where
�
vi = 1. From the definition, we see this is clearly related to the entropy

of v (assuming it is normalized), but scaled by the maximum entropy possible for a
vector of size D. The scaling and subtraction from unity means the 
 is 0 when the
elements of v are all equal (a uniform distribution) and is maximum at unity when
all elements but one are 0. The value of 
 serves to estimate how well the overall
available centroids are adapting to the input data and helps dampen or freeze the
clustering but allows the algorithm to remain responsive to changes in the input data
stream.
As an illustration of this, see Figure 4.4 where we show a 16-dimensional vector

where each element is the count of the times a particular element is chosen. Initially
the vector is all 0s with a single 1 when the first element is chosen, which represents
maximum 
. As elements are chosen the vector begins to resemble a uniform
distribution and the 
 drops with some noise until sample 101, at which time the
data probability distribution changes to always select element 1. Thus the 
 begins
to rise again over time. As used in Chinrungrueng (1995), the 
 adapts the learning
rate based on the within-cluster variation which is computed as the mean distance
between the cluster centroid and the data vectors assigned to that cluster.
The 
 measurement can be used on a variety of input vector data. In our

formulations we have experimented with its effectiveness as a measurement of the
number of vectors assigned to each centroid, which requires a small buffer and a
running sum, possibly with some level of "forgetting" by weighting the current value
more than past values. Another metric which can be evaluated is the ρ measurement,
which would essentially measure how the centroids are deviating with a goal of having
all reach a comparable amount (ideally a very small fluctuation).

4.2 Evolving Clustering Method of Kasabov

While the different mechanisms described above can yield learning improvements, a
fundamental question about clustering is the choice of K. Clustering algorithms
seek to solve the optimization problem of finding the minimum error between a
collection of K cluster centers and the data. There has been research into selecting
the optimal number of clusters, and generally this involves imposing additional
constraints. One example of such an algorithm is the evolving clustering method
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Figure 4.4: Example of 
 over time. At sample 101 the pdf of input vectors changes
from a uniform distribution to always choosing a single vector.

(ECM) of Kasabov from Kasabov (2003) and Kasabov and Song (2002), which is
inherently online although offline or batch versions have been created. This algorithm
can be summarized as follows:

• The first sample of data is used to create the first cluster C1. An associated
cluster radius R1 is created, with an initial value of 0.

• For each successive sample:
— Compute the distance of the new sample to each cluster and assign the
new sample to the cluster of minimum distance.

— If this distance is less than the associated cluster radius, then the sample
is labeled by that cluster and no updates are performed.

— Otherwise, for each cluster compute Sj = Dj +Rj.

— Choose the cluster with minimum S and if S < Dthresh, adjust the selected
centroid and increase the radius for that centroid to S/2.

— If the distance is greater than twice a distance threshold Dthresh, then a
new cluster centroid is added, with a value of the new data point.

• The algorithm terminates when there is no remaining data.
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The algorithm ensures that the maximum distance from a cluster centroid to its
samples is not greater than Dthresh. This is a very simple but elegant algorithm.
However, there are some issues with it in the DeSTIN context. The main problem is
that when the data is non-stationary, the algorithm will create cluster centroids that
are meaningful initially in the data stream, but are wasted later as these values are no
longer needed. This is a problem with DeSTIN since the lower layers stabilize first,
and until they do the upper layers must work with data whose statistics will likely
change. Other related issues include practical issues such as we want to limit the
maximum number of clusters obtained since we assume practical hardware limits.
Therefore, in our work, we modified the approach slightly by introducing a few
additional constraints and implementation details: a monotonicity measurement,
limiting the number of clusters, and adaptations to nonstationary data.

4.2.1 Monotonicity measurement and adaptive thresholds

The monotonicity measurement is intended to avoid cases where two distinct data
clusters cannot be properly split due to the hard distance threshold. In this
adaptation to the ECM algorithm, each centroid accumulates a measure of the
distance of the vectors assigned to it. The monotonicity measurement simply
consists of accumulating, in pre-set bins, a histogram of the distance between the
selected centroid and the data samples. When a cluster has good cohesion, this
histogram should show a monotonic distribution as a simple approximation to the
probability distribution function of the data members. Periodically in the processing
the monotonicity is evaluated by normalizing the histogram, then computing the sum
of differences as

M(h) =
�
i

(hi − hi−1) (4.12)

When this value is above some threshold, the distance threshold Dthresh is reduced by
some scalar multiple. In principle this distance will change as the centroid changes,
but in practice this is not much of an issue since the monotonicity metric induces
splitting up to a point; once the clusters have split sufficiently, the centroid will begin
to change less and the distance metric will stabilize. It is true that the accumulation
of the distance metric does require some measure of memory to the system, but the
monotonicity measure is based on a simple counting and binning scheme so this is a
minimal detraction.
A case for illustration is shown in Figures 4.5. Here the original centroids are

very close together but are very distinct. As the algorithm progresses, the centroid
eventually settles in the center of the two centroids, but the distribution of the data for
the centroid is not monotonic; rather it has a more uniform value as seen by intuition.
When the monotonicity metric is used, and set to a modest value (-0.5), the distance
threshold can be reduced until the centroid splits off a new entry. Subsequently, the
original centroid chosen will then migrate to the true location.
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Figure 4.5: Top: Example data transformed to cosine space, where data is
normalized to unit vectors and the angle is used to distinguish the vector position.
Without the monotonicity criteria the single centroid meets the distance criteria of
ECM. Bottom: With monotonicity introduced, we can refine the region and introduce
an additional centroid, getting a better representation of the data.
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4.2.2 Limited number of clusters

In a real environment, even in software but especially in hardware, it is realistic to
impose a limit on the maximum number of cluster centers that can be formed. In our
case we imposed this limit for practical implementation aspects. This is a trade-off
between the implementation details (fitting each DeSTIN node in a given platform
space) and the performance of the selected centroid group in terms of minimummean-
square error. We note that if the data itself does not have cohesive clusters, the ECM
algorithm as implemented will likely extend to the maximum number of centroids
available. This is illustrated in Figure 4.6 where we show the behavior with an
input of uniformly distributed data. The accumulated cluster data histograms never
exhibits a good monotonicity property, and consequently the algorithm keeps splitting
thresholds until eventually a uniformly distributed set of centroids is achieved. In
effect, this is the optimal solution given the maximum number of allowed centroids,
so it is not necessarily a problem with the algorithm.

4.2.3 Non-stationary observations at higher layers

Generally, the ECM algorithm assumes the data is nonstationary and simply evolves
more centroids as needed. In DeSTIN as the network learns the inputs to the upper
layers are indeed nonstationary initially, but over time as the lower layers stabilize the
data becomes stationary again. We have already established that DeSTIN need not
learn layer-by-layer Karnowski et al. (2010a), but the adaptive nature of the ECM
algorithm can cause changes in the observations output from the child nodes over
time, until the clustering has stabilized or been halted. For our implementation, we
perform this adaptation in the higher layers by starting with the maximum number
of clusters allowed by our platform. Each centroid is then adjusted using the winner-
take-all method, including the adaptations and metrics discussed previously. This
essentially bootstraps the centroids and gives a good approximation to the correct
locations. Then, once the lower layer has stabilized sufficiently, the ECM algorithm
takes over. The pool of existing centroids is queried and if the winning centroid is
within 2Dthresh it is used and adjusted as in ECM, and is “claimed” as an actively
used centroid. Any data points that are outside this threshold, which ECM dictates
would create a new centroid, instead capture any currently available centroids in the
“unused” pool. When learning is deemed completed, any unused centroids in the pool
are deleted. In an implementation with fixed dimension sizes, these values are simply
set to 0. This is important because in DeSTIN, the lower layers are initially moving
about and therefore ECM may waste resources unnecessarily.
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Figure 4.6: ECM with uniformly distributed data on unit circle to illustrate
reasoning behind limiting number of clusters. Top: The first few samples create
two centroids. Middle: over time, two centroids have evolved, but the distances of
members are somewhat uniform, causing additional centroids to be evolved. Bottom:
More evolution produces more centroids but each still has a uniform histogram. Over
time more centroids will evolve in this situation.

69



To illustrate this, we performed an experiment which is summarized here. In
this experiment four normally distributed processed were used in 2D to create four
different classes of data. For each true centroid, we randomly initialized a starting
estimated centroid value, then with each iteration “moved” each current estimated
centroid toward its final value to simulate a lower layer of DeSTIN adapting centroid
values. At each iteration one of the centroids was chosen and then we generated a
normally distributed random value with that current centroid value as the mean. The
centroids were moved toward the “true” value with an update rate of 0.0001 (using
the below Matlab code, with CentroidMovementRate set to 0.0001).

Directions = ActualCentroids-CurrentCentroids;
Step = CentroidMovementRate*abs(sum(Directions’));
Step = Step’;
Step = repmat(Step,1,size(Directions,2));
CurrentCentroids = CurrentCentroids+Step.*Directions;
CurrentCentroidsNormalized = CurrentCentroids;

The experiment ran for 20000 iterations. We illustrate the movements over time with
a few “snapshots” of the process in Figure 4.7. The true centroids are shown as
diamonds overlaid with crosses, with the moving centroids shown as circles. The
evolving “winning” centroids over the current time step and the previous 1000
iterations are shown as the small colored circles. At iteration 3500, we see there
are actually the correct number of centroids in play, but by iteration 8500 a new set
has arrived in the upper region of the plot. By the final iteration, the noise level
of the signals is such that we still have “winning” centroids but they are not well
aligned with the true centroids. The main point of this exercise is to illustrate the
potential resource waste of the moving centroids, which is problematic for the upper
layers of DeSTIN. The proposed solution, of allocating the maximum centroids and
letting them track changes as needed, using our online non-evolving WTA method,
then transitioning to an evolving system using the current centroids as the pool of
values makes intuitive sense here. As further illustration, we show the change in
the number of centroids with iteration in Figure 4.8, showing that the ECM method
over-estimates the number of centroids significantly due to the nonstationary inputs.
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Figure 4.7: Evolution of the centroids over time. The true centroids are shown
as diamonds overlaid with crosses. The different centroid values over the past 1000
iterations are shown here. Top: Iteration 2501-3500 There are fewer centroids shown
than the final result because we only show those active in the last 1000 iterations.
Middle: Iterations 7501-8500, showing ten different labels applied. The moving
centroids are close to their final position. Bottom: Final centroids at the end of
the data run.

71



Figure 4.8: The number of centroids used in ECM as a function of time, or data
sample shown to the system. We see that the system continues to create new clusters,
well above the true number, because ECM algorithm cannot effectively “forget” old
clusters which are no longer needed.

4.2.4 Stopping criteria

Ideally the ECM, like the online WTA algorithm, will stop “on its own”, in
that centroids will stop getting updated due to the data. However this is not
guaranteed and highly unlikely except in contrived situations. Instead, we propose
two complimentary methods: first, the monotonicity criteria, which in addition to
monitoring the distance threshold can also be extended to produce “well behaved”
clusterings by canceling clustering when the monotonicity is below some threshold
TM . Another useful criteria is the ρ metric, which again monitors the movement of
the centroids over time. A final concept is the use of the k-means-like learning rate,
1
N
, which does not actually stop clustering but eventually will drive the ρ metric to

stability.

4.3 Probability Models

Our static modeling using the centroids to represent data states is well motivated, but
the true objective given these states is performing an estimate of P (o|s). There are
a variety of ways to perform this estimate. One popular method is the expectation-
maximization method (EM) Dempster et al. (1977), Majdi-Nasab et al. (2006),
which is often seeded or started by performing a k-means clustering very analagous
to our method here. However, applying EM using a Gaussian Mixture Model in
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high-dimensional space often requires some level of manipulation or assumptions, as
often the covariance matrix can become singular. As an alternative, other authors
have used probabilistic measurements based on the similarity measurement alone,
which effectively converts a high-dimensional signal into one-dimensional distance
or similarity measurement for the modeling of the stochastic nature of a signal.
By drawing upon the distribution of the distance value itself, we can formulate a
meaningful estimate of the probability P (o|s�). This borrows from the basic concept
of most nonlinear feature reduction methods such as Multi-Dimensional Scaling
Kruskal (1964) and Isomap Tenenbaum et al. (2000) where distance measurements
between members of a dataset are employed to create a meaningful projection space
through various methods such as singular value decomposition. In addition, work in
Ding (1999) and Korn et al. (2001) have explored mechanisms for this and rely on the
actual distance similarity metric, reducing the problem to a simple one-dimensional
space. Our approach here does not involve such decompositions, but rather seeks
to simply characterize each centroid by the mean and variance of the vectors that
are attracted to it in the training phase. This suits our goals of low computational
resources as well.
In this section, we study the probability distribution of the distance data when

we use a cosine similarity metric by transformation of variables, assuming the data
is Gaussian distributed in the initial space. We then fit an exponential, Rayleigh
and Gaussian model to the data and show a comparison for these models. Note that
clustering in such a cosine similarity space is also known as “spherical” clustering,
since the data is constrained to lie on a hypersphere Banerjee and Ghosh (2004).

4.3.1 Probability Model in Cosine Similarity

Since our work focuses largely on the cosine distance, we derive the probability
distribution of the cosine distance based on a two-dimensional jointly Gaussian
distribution functions with independence between the two dimensions. In this case,
an observation consists of a normally-distributed random variable point (xo, yo), with
the angle Θ from the centroid (mean) uniformly distributed and the distance ρ from
the centroid Rayleigh distributed. We can assume the centroid is located at (xc, yc),
has already been normalized, and we seek to find the probability distribution of the
angle φ as shown in Figure 4.9. Thus we can write the observation as

(xo, yo) = (xc + ρ cosΘ, yc + ρ sinΘ) (4.13)

The observation must be normalized by the factor

R =

 
(xc + ρ cosΘ)

2 + (yc + ρ sinΘ)
2 (4.14)

So the normalized observation is
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(xn, yn) =

⎛⎝ xc + ρ cosΘ 
(xc + ρ cosΘ)

2 + (yc + ρ sinΘ)
2
,

yc + ρ sinΘ 
(xc + ρ cosΘ)

2 + (yc + ρ sinΘ)
2

⎞⎠
(4.15)

The cosine similarity is simply the dot prodct between (xn, yn) and (xc, yc), which is
equivalent to cos(φ).

cos(φ) = (xn, yn).(xc, yc) = xnxc + ynyc (4.16)

cos(φ) =
x2c + ρxc cosΘ 

(xc + ρ cosΘ)
2 + (yc + ρ sinΘ)

2
+

y2c + ρyc sinΘ 
(xc + ρ cosΘ)

2 + (yc + ρ sinΘ)
2

(4.17)
We can make a substitution without loss of generality, by making xc = 1 and yc = 0.
This is equivalent to changing the coordinate system and therefore does not cause
loss of generality.

cos(φ) =
1 + ρ cosΘ 

(1 + ρ cosΘ)2 + ρ2 sin2Θ
(4.18)

The distance term is then

d = 0.5(1− cos(φ)) = 0.5
⎛⎝1− 1 + ρ cosΘ 

(1 + ρ cosΘ)2 + ρ2 sin2Θ

⎞⎠ (4.19)

To find the probability distribution of d, we must find the cumulative distribution
function by integrating the uniform distribution on Θ and the Rayleigh distribution
on ρ with limits defined by d above, then differentiating with respect to d.

C(d) =

��
L



1

2π

�

ρ

σ2
e−

ρ2

2σ2

�
dρdΘ, (4.20)

where L is defined by

0.5

⎛⎝1− 1 + ρ cosΘ 
(1 + ρ cosΘ)2 + ρ2 sin2Θ

⎞⎠ < d (4.21)

We are simply integrating the joint distribution of the angle and distance of
observation to centroid within the limits established by the cosine distance. The
integral is simple and is given by
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f(d) =



Θ

2π

�
e−

ρ2

2σ2 (4.22)

The function value was computed numerically by iterating through values of d and for
each value, summing the function (plotted in Figure 4.10) over those regions where the
values were d or less. Example regions for d = 0.05, 0.125, 0.25 and 0.5 are shown in
Figure 4.11. The result is the cumulative distribution function shown in Figure 4.12
which is then fit using linear interpolation over a uniform sampling interval from 0 to
1 and the derivative is calculated to produce the estimate of the PDF of d, depicted
in the bottom of Figure 4.12 for σ = 1. A few different models are considered for
fits: Exponential, Rayleigh, and Gaussian. For all models we computed the first and
second moments by numerical integration on the numerical PDF. This was performed
for σ = 0.5, 1, and 2 and the RMS error is shown in Table 4.1.

Exponential Model

The exponential model, while not perfect, serves as the best fit of the candidates and
also has the benefit of having a simple cumulative distribution function form.

FE(d|s) = 1− exp (−λsd) (4.23)

Rayleigh Models

While a Rayleigh distribution governs the probability density function for the distance
from an observation to the mean for a Gaussian process, this is only true when the
distance is measured in Euclidean space. The Rayleigh distribution is the worst fit
tested, but also has only a single parameter to compute.

FR(d|s) = 1− exp


− d2

2σ2

�
(4.24)

Gaussian Models

The Gaussian model is popular but is the second best candidate here. Intuitively
a Gaussian model is symmetric about its mean and the numeric PDF is very
asymmetric. We can also consider a "truncated Gaussian" which resembles the
Gaussian distribution but is bounded (and scaled appropriately); we can compute
the variance by reflecting the numeric PDF about the origin and computing the
variance assuming the mean is now 0. However, this is not a good fit either as shown
in Table 4.1. The likely reason for this is the variance is too large given that the
numeric model, after the sharp descent at d = 0, does not diminish quickly enough
to make a good fit to the Gaussian model. The Gaussian CDF is also more difficult
to compute, requiring the evaluation of the erf function as shown below.
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Table 4.1: Model Fitting to Cosine Distance

Sigma Exponential Rayleigh Gaussian TruncGauss

0.5 3.36 5.51 5.08 4.97

1.0 2.80 3.80 3.47 3.40
2.0 1.95 2.63 2.36 2.28

FG(d|s) =


1

2

��
1 + erf



d− μs
σs
√
2

��
(4.25)

Figure 4.9: Derivation of cosine similarity probability distribution function by
transformation from Gaussian distributed data.
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Figure 4.10: Antiderivative of joint pdf for Gaussian process expressed as product
of uniform density with angle and Rayleigh distribution of distance.

Figure 4.11: Regions of integration for distribution with varying distance d. In
these images the white represents the regions of integration, where d is less than (top
left) 0.05, (top right) 0.125, (bottom left) 0.25, and (bottom right) 0.50.
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Figure 4.12: Top: CDF from numeric integration. Bottom: PDF after uniform
sampling of CDF
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Figure 4.13: Comparison of different PDFs with experimental numerical PDF.
Each PDF was computed by calculating the first moment and the second moment
(for Gaussian).

Based on this analysis, we believe the exponential distribution is a good choice
for the PDF for P (o|s), especially with the cosine similarity metric. In Chapter 6 we
compare these with our DeSTIN studies of a handwriting digit database.
In the implementation, the estimate of P (o|s�) was therefore made by first

computing the parameters of the given distribution from the data online up until
the node clustering is terminated, on a centroid-by-centroid basis based on the
winning centroid. This represents a set of probabilistic models for observations
given each different label and then the P (o|s�) can be computed from the cumulative
distribution function for each distribution by integrating around a small region around
the observation-centroid distance d. For the Gaussian distribution this requires
programmatic calls to the erf function, while for the Rayleigh and Exponential models
a call to an exponential function is needed.
As a final note, in Korn et al. (2001) the authors use a power law model to fit

the distribution of similarities in nearest-neighbor algorithms, which would be an
additional option for this probability distribution. Other similarity measures may
have different distributions of interest, and some means of actually computing a
nonparametric estimate would be of interest as well.
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4.4 Online clustering and batch clustering com-
parison

In this section we compare online clustering and batch clustering performance. We
used our online implementation of winner-take-all, with the starvation trace metric
and the ρ based stopping criteria, and our implementation of the ECM algorithm. In
the WTA and batch algorithms we used the correct number of clusters, which is not
necessarily a fair comparison with the ECM algorithm but a reasonable approach for
this work.
We note this is not an exhaustive comparison. Instead we have selected several

interesting cases and compare the relative performance. We draw conclusions at the
end of this section, but note that the scope of this study is necessarily limited.
We show the results graphically with selected representative plots. However, to do

a fair comparison between the methods, 20 trials were conducted for each method with
different random seeds. This allowed us to compare the methods more thoroughly.
These are shown in the tables in the following sections. The final learned centroid
locations were compared to the data as a whole to determine the total distance. For
each observation, we compute the distance

dj =< o,Cj >, (4.26)

where j ranges from 1 to K and gives the distance between observation o and each
centroid Cj. Then the total distance D is given as

D =
N�
i=1

min(d) (4.27)

This is shown in the tables as the median, mean, and standard deviation in the tables
under the heading “MedianD”, “MeanD”, and “STDD”. Note that in the tables the
learning rate method of 0 is a constant learning rate; 1 is adjusted by 1

N
, which we

also call the “k-means learning rate”; and 2 is a constant until 1
c
are accumulated, at

which point we transition to the k-means learning rate. For the ECM methods, we
show the median evolved K value across all the trials, but for the WTA and batch
methods we used the “correct” number of centroids. A maximum of 25 centroids were
used, and the monontonicity threshold was set to -0.7. The value of Dthresh = 0.5
with adjustments by α = 0.5 every 500 samples. The constant learning rate was set
to 0.01, which means after 100 labeled data samples for a centroid the rate decayed.
As mentioned earlier, each of the five methods (batch, WTA with correct number
of centroids, and three different learning rate methods with ECM) was repeated 20
times with different random centroids selected or a different random sequence of data
applied. Finally, in each case the data was generated with 4000 points per class, with
additive Gaussian random noise of standard deviation σ. The data was generated as
Gaussian, with a standard deviation of 0.10, with mean values set by a zero mean,
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unit standard deviation Gaussian random process. However, we note that in the
cosine space we normalize the data.
The iterations required requires a special note. Generally the WTA method used

the maximum allowable iterations, especially for smaller numbers of centroids. The
ECM methods used a monotonicity criteria, stopping when the monotonicity value
was below some threshold (-0.7) after a minimum number of sample evaluations (the
last 500 samples evaluated in groups). Note however that we simply noted this
stopping point but continued to evaluate the data; this is why the next plots show
the performance through the entire data set. The WTA method was also run for
the entire data set. From our earlier results, we had set a specification that half
the ρ values should be below 0.05 to terminate clustering. Thus, in many of the
cases here the clustering was not terminated by the completion of the runs. For the
kMeans case, the iterations was computed by taking the number of batch iterations
and multiplying by the data size. This is not entirely a fair comparison either, as some
strategies could be employed to attempt to reduce the number of data points needed
(such as clustering a smaller data set and validating) but the values are included here
regardless for scope.
The kmeans algorithm was implemented with Matlab, with a maximum of 100

iterations. According to the Matlab documentation, Mathworks (2012), the algorithm
performs batch clustering followed by an online method where each point is updated
individually if it lowers the overall mean-square-error. Consequently this is more
properly termed a hybrid method.
For our comparison we have selected a variety of particular combinations of K,

D, and noise level σ. In particular:

• A low dimensional case with a low number of centroids (D=2, K=4)
• A low dimensional case with a large number of centroids (D=4, K=15)
• A comparison between cases with different levels of noise, in low dimension with
large number of clusters (D=2, K=15), with noise levels standard deviation of
0.2, 0.1, and 0.05.

• A high-dimensional, moderate number of clusters (D=100, K=10)
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Table 4.2: Online and Batch Clustering Comparison for low dimension, low number
of clusters

Method LRM K MedianD MeanD STDD Med Iter
kMeans NA 4 76.83 182.49 187.76 64000
WTA 0 4 77.37 77.45 0.40 16001
ECM 0 4.00 77.16 77.22 0.29 5708
ECM 1 4.00 76.88 99.09 99.05 1950
ECM 2 4.00 79.54 103.48 98.64 5773

4.4.1 Low dimension with small number of clusters

In this experiment we use aD = 2 dimensional space, withK = 4 clusters. We see the
data plotted for the four clusters as normalized vectors for the cosine similarity metric
along with an example (ECM constant learning method) of the resulting centroids
in Figure 4.14 . The clustering works well for all online methods, so this plot is
representative of all methods. The median number of clusters is correct for all ECM
methods. In fact, only a single trial of the kmeans learning rate and constant-kmeans
learning rate evolved 3 centroids instead of 4, as shown in Figure 4.15.
The “sum D” measure of the system of centroids is shown in Figure 4.16. The

majority of all methods have the minimum total distance of approximately 75, but
some of the batch trials had a larger distance, most likely due to an inferior local
minimum. The constant learning rate method seems to give the most consistent
result, but the most striking trait is the more rapid convergence for the k-means
learning rate as shown in Table 4.2.
We plot the ρ metric for the WTA online method in Figure 4.17. We see that the

metric gives the desired result of good decay over time and will function as a good
stopping criteria, but it does decay more slowly than the other methods.
The monotonicity over time is shown in Figures 4.18 for the k-means ECMmethod

for illustration. In this plot, the monotonicity for a cluster is set to unity for points
prior to when it enters the set. We see that the monotonicity drops very rapidly
as expected, since the initial sample should be very close, but generally does not
change much over time for the ECM methods. We also plot the monotonicity of the
WTA method in Figure 4.19, which shows a gradual decay which is expected since
the centroids start to navigate toward the true position. Overall the ECM methods
converge faster, and all online methods have less error than the batch method and
are more consistent for this data.
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Figure 4.14: Example of clusters for the ECM method with constant learning rate
as a representative case for the low-dimensional, low number of centroids case.

Figure 4.15: Histogram of the evolved number of clusters for ECM methods for the
low-dimensional, low-K case, for all trials.
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Figure 4.16: Total distance from closest centroid to data points for low dimension,
low-K case for all five methods. Each trial is shown but the data is sorted for clarity.

Figure 4.17: The rho metric plotted for the WTA method for the low-dimensional,
low-K case.
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Figure 4.18: Example of monotonicity for the k-means learning rate ECM method
for the low-dimensional, low-K case

Figure 4.19: Example of monotonicity for the WTA method for comparison for the
low-dimensional, low-K case.
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Table 4.3: Online and Batch Clustering Comparison for D=4, K=15 case

Method LRM K MedianD MeanD STDD Med Iter
kMeans NA 15 299.28 529.86 425.10 3450000
WTA 0 15 181.95 184.19 10.79 56523
ECM 0 12.00 263.56 256.50 17.15 60000
ECM 1 12.00 262.56 262.64 0.20 60000
ECM 2 12.00 262.74 257.33 12.99 60000

4.4.2 Higher-dimensional with higher number of clusters

This experiment involved a higher dimension, D = 4 with a large number of clusters
(K=15) as shown in Figure 4.22 with a clustering results example. For this case the
median number of clusters was slightly under the true number (roughly 12 instead
of 15) as shown in Figure 4.20. Generally however the online methods perform
consistently, and have better or equal error performance than the batch case for
most of the trials (Figure 4.21) with the k-means learning rate showing the most
consistency. In terms of actual cluster locations, the batch method also does not lead
to the necessarily correct clusters either, as shown in Figure 4.22 for example. One
disappointing aspect here is that the monotonicity metric does not seem to help us
reach a stopping point here; all the evolving methods run for the entire duration of
the data set, however most centroids generally do show good monotonicity as shown
in Figure 4.25. This suggests some additional criteria could be added to monitor
the monotonicity, since the additional threshold splits did not succeed in producing
additional centroids or reduce the monotonicity below the threshold for some clusters.
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Figure 4.20: Evolved number of clusters for ECM (D=4, K=15 trials).

Figure 4.21: Total summed distance from closest centroid to data points for case
D=4, K=15.
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Figure 4.22: Example of the final evolved clusters for the batch method, using D=4
and K=15.

Figure 4.23: Example of the final evolved clusters for the k-means learning rate
method, using D=4 and K=15.
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Figure 4.24: Case with D=4, K=15, example of the rho metric for the WTA case.

Figure 4.25: Example monotonicity for the ECM method, k-means learning rate,
for the case of D=4 and K=15. At least one centroid does not fall below the threshold
of -0.7.
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4.4.3 Noisy observations with high number of clusters

For these cases, we seek to use a high number of clusters (K=15), in low dimensional
space (D=2), changing only the noise level. These cases are summarized in Tables 4.4
through 4.6. The data itself is also illustrated in Figures 4.26 through 4.27. For these
cases the comparison is made with respect to each feature we are examining, so we first
compare the evolved numbers of clusters. This is shown in Figures 4.28 through 4.30.
The median number of clusters evolved does not change much between methods and
noise levels, at roughly 8, but the noisiest case does show more variability, evolving
more clusters more frequently (although never to the “correct” number).
The batch clustering seems to work the best with respect to minimizing the total

distance between data and centroids with the lowest error and variance, although
part of this can be attributed to the use of the “correct” number of clusters. This
is especially true at the highest noise level, even compared with the WTA method
(which also used the “correct” number of centroids). As the noise decreases the WTA
method become more comparable, and the other online methods do better as well.
The evolving methods generally did not terminate based on our criteria generally,

although the constant followed by k-means approach does show some promise in this
regard. As the noise decreases, the ECM methods do terminate, again with the k-
means method terminating the fastest with roughly equivalent minimization of the
distance metric.
As a final note, although the number of centroids evolved is fairly steady, we do see

more variability and a tendency to more centroids with more noise. This is counter-
intuitive because we would expect that we would get “more accuracy” as the noise
drops. The reason for this behavior is primarily two reasons. First, the clusters are
fairly crowded, with 15 centroids in 2D space. Thus, even small levels of noise cause
some loss of cohesion and confusion in the algorithm, so less noise does not necessarily
correlate to the “right” number of clusters. The second is that the increase in noise
caused worse monotonicity scores, forcing the algorithm to lower the Dthresh value
and increase the number of splitting. With the lower noise cases, the algorithm was
not able to distinguish two labeled groups that were close together with little spread;
they essentially appeared as the same cluster to the algorithm within the parameters
we established. Note that when we say “worse” monotonicity scores we simply mean
the values do not drop to the level where the algorithm terminates; instead, they
hover at a negative level but not at the desired low range (see Figure 4.34). Certainly
setting the value with a less-strict threshold (such as -0.5) or some other criteria could
be explored here, but care must be taken to assess the effect of additional heuristic
additions to the algorithm.
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Table 4.4: Online and Batch Clustering Comparison for low-dimension, high cluster,
with highest noise level

Method LRM K MedianD MeanD STDD Med Iter
kMeans NA 15 153.24 158.01 19.46 6000000
WTA 0 15 209.26 213.72 19.43 60000
ECM 0 9.00 321.04 321.44 27.33 60000
ECM 1 8.00 346.66 345.21 7.77 60000
ECM 2 9.00 319.33 318.41 21.77 52927

Table 4.5: Online and Batch Clustering Comparison for low-dimension, high cluster,
with moderate noise level

Method LRM K MedianD MeanD STDD Med Iter
kMeans NA 15 92.17 109.40 62.91 3570000
WTA 0 15 106.80 112.89 24.02 60000
ECM 0 8.00 195.02 212.17 44.74 10987
ECM 1 8.00 197.95 228.88 77.72 7148
ECM 2 8.00 195.85 196.35 1.82 10456

Table 4.6: Online and Batch Clustering Comparison for low-dimension, high cluster,
with lowest noise level

Method LRM K MedianD MeanD STDD Med Iter
kMeans NA 15 57.60 78.63 65.64 1920000
WTA 0 15 63.98 64.10 20.17 60000
ECM 0 8.00 134.86 163.93 69.71 9565
ECM 1 8.00 136.57 240.60 140.90 6981
ECM 2 8.00 136.33 186.86 90.93 9293
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Figure 4.26: Data for D=2, K=15, noise = 0.2, normalized view.

Figure 4.27: Data for D=2, K=15, noise = 0.05, normalized view.
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Figure 4.28: Evolved number of clusters for ECM method for highest noise case,
for all trials.

Figure 4.29: Evolved number of clusters for ECM method for moderate noise case,
for all trials.
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Figure 4.30: Evolved number of clusters for ECM method for lowest noise case, for
all trials.

Figure 4.31: Total summed distance from closest centroid to data points for highest
noise case.
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Figure 4.32: Total summed distance from closest centroid to data points for
moderate noise case.

Figure 4.33: Total summed distance from closest centroid to data points for lowest
noise case.
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Figure 4.34: Example of monotonicity over time for noisiest case, with D=2, K=15,
noise = 0.2.

4.4.4 Comparison with very high dimension and high num-
ber of clusters

For a final comparison, we examine a high dimensional experiment (D=100) with
a fairly large number of clusters (K=10). This was chosen because this is ideally
the type of situation we expect in DeSTIN; high dimensional space, with fewer true
clusters relative to the space. In this case the ECM methods perform quite well, as
they are able to more quickly focus on the true dimensionality of the space. The
batch method has rather large stand deviations and even the median distance value
is rather large. One problem here is convergence; in these experiments the batch
method failed to converge after 100 iterations. It is certainly feasible that this could
be improved by longer iteration times but this is not necessarily our goal here. We
note that the ECM methods evolved the correct number of centroids quite easily and
had good overall performance, as shown in Figures 4.36 through 4.42.
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Table 4.7: Online and Batch Clustering Comparison for case 11

Method LRM K MedianD MeanD STDD Med Iter
kMeans NA 10 2204.64 1979.01 1130.32 3520000
WTA 0 10 102.62 102.62 0.02 30998
ECM 0 10.00 102.67 102.67 0.05 5067
ECM 1 10.00 102.42 102.44 0.08 5224
ECM 2 10.00 102.99 103.13 0.32 5067

Figure 4.35: High dimensional case (D=100, K=10), view of normalized data.
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Figure 4.36: Evolved number of clusters for ECMmethod for high dimensional case,
for all trials. The methods consistently evolve the correct number of clusters.

Figure 4.37: Total summed distance from closest centroid to data points for high
dimensional case.
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Figure 4.38: An example of the ECM clustering algorithm results, constant learning
rate method for the high-dimensional case.

Figure 4.39: An example of the batch clustering algorithm results for the high-
dimensional case.
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Figure 4.40: An example of the monotonicity with time for ECM, with constant
followed by k-means learning rate method for the high-dimensional data.

Figure 4.41: An example of the monotonicity with time for WTA method with the
high-dimensional data.
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Figure 4.42: An example of the rho metric over time for the WTA method, high
dimensional data case.

4.4.5 Summary

We compared clustering algorithms from batch (k-means) and online (ECM, with
different variations of the learning rate, and WTA using starvation trace). This
comparison was motivated by an attempt to create a static learning module for
DeSTIN which featured online learning with an adaptive or evolving number of
clusters, along with an interest in comparing online and batch methods. Overall, all
algorithms worked well, but the online algorithms seemed to offer better performance
with respect to robustness, except possibly for the cases of high numbers of clusters in
low dimensional space. Intuitively, we would expect k-means batch to function better
since it has access to all the data simultaneously, but there are a few fallacies here.
First, the initialization of the method which we used was random choice of centroids,
so it can be sensitive to the initialization process. This is a known issue with random
initializations and there have been proposed solutions to this Xu and Wunsch (2005),
but we limited our comparison to the random initialization. The online WTA method
with random initializations often outperformed the batch algorithm, which initially
is surprising but this has been reported before in Zhong (2005), Martinetz et al.
(1993), Banerjee and Ghosh (2004). Our different variants to the ECM algorithm
specifically the use of monotonicity as an adaptive distance threshold and stopping
criteria seem to be effective in these cases, both in experiments and from heuristic
arguments. Finally, it appears that generally the k-means derived learning rate is
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the most effective under ideal circumstances, especially with respect to termination,
but the constant followed by k-means has merit too, especially in the lower-noise,
low-dimension but high-K case.
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Chapter 5

Dynamic and Supervised Learning

In this chapter we explore the temporal dynamic aspect of DeSTIN and how it is
learned and applied. We start by showing how the temporal process, denoted P ass ,
learns and generates a composite belief across multiple time steps. We start with
a tabular assumption for the learning - which consists of simply counting states or
“winning cluster labels” - due to its simplicity. As a related processing function,
we discuss the advice generation process. Since these methods require considerable
memory using tabular implementations, we also discuss methods for using function
approximation to create these same functions. In this chapter, we also cover the
process of selecting nodes for supervised learning. We summarize three main method
we call hand-selected for historical comparison, topological, and PCA-based. We seek
to use these methods as unsupervised, requiring no advance knowledge of class labels.

5.1 The Temporal State Transition Process

The P ass from Equation 3.13 simply states the probability of transitioning from state
s to s’, with a given advice component. We can represent the P ass component as a
set of tables which are learned by simply counting the number of transitions from
a state s to a state s’, when the advice is element a. There are similarities here
to the reinforcement learning concept of the state-action table as discussed briefly
in Chapter 2, where the advice takes the place of the action, but here there is no
optimization component from the learned a; rather it must be unsupervised, at least
in this initial formulation. As in RLmethods, the P ass table can be learned from actual
transitions. This is memory intensive, depending on the state-advice state space, but
is a reasonable approach and thus is our main method for this dissertation, although
we explore the use of function approximation methods here as well. We note that we
have assumed some small, non-zero element for each entry in the P ass table, so that
even unlikely state transitions will not return a response of exactly 0.
For the implementation, each node at a layer has a set of A tables or matrices,

each size S × S, initialized to a uniform value of 1
S
so that each row sums to unity.
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After some number of iterations (possibly as few as zero) have passed to allow the
clustering and belief state estimates to stabilize, we begin the process of P ass updates.
These updates proceed by finding the estimated current belief state as simply the
maximum of beliefs,

b̂ = argmax
s
bs, (5.1)

which is essentially the index of the winning centroid label. This is followed by
updating the estimate of P ass using this winning state and the advice a from the
parent node. When Pass is the matrix associated with advice state a, the update
proceeds as

P a
(t+1)

ss = (1− κ)P atss + κδ(b̂) (5.2)

where δ(b̂) is the Kronecker delta function. The belief state of each node is then
approximated as the following matrix-vector operations, where b is the S × 1 vector
of previous beliefs:

vk = bkP (o|sk), (5.3)

and

b� = P assv. (5.4)

Note that entry r, c in the P ass table is the probability of transitioning from state c to
state r given we are in state c. As a final step in the belief state update we normalize
b to sum to unity. We show this in matrix form in the following equations.

b� = P ass P (o|s)b (5.5)

b� =

⎛⎜⎜⎜⎝
P ass (1,1) P ass (1,2) · · · P ass (1,n)
P ass (2,1) P ass (2,2) · · · P ass (2,n)
...

...
. . .

...
P ass (S,1) P ass (S,2) · · · P ass (S,n)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
POS1 0 · · · 0
0 POS2 · · · 0
...

...
. . .

...
0 0 · · · POSS

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
b1
b2
...
bS

⎞⎟⎟⎟⎠
(5.6)

5.1.1 Limitations with Cluster Labels

In our initial DeSTIN work the original intention was that the belief formulation
given by Equation 3.13 would temporally evolve a single consistent set of beliefs
about a group of states s which represented the underlying data distribution found by
unsupervised learning and a probability distribution P (o|s). However, we eventually
became aware that this formulation as itself would not function well. The basic
concept suffers from a need for consistent labeling from temporal movement to
temporal movement. As an example, if the observation is a 4× 4 pixel region which
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is all black except for a single element, a single shift will create a cosine similarity
of 0, since the resulting vectors have completely different directions. Other distance
metrics could be imposed, but even then the method has issues as illustrated in Figure
5.3, where we show the failure to arrive at a consistent belief in the case of a very
simple example.

Figure 5.1: Belief propagation with clustering. Whenever a “2” is presented for
four movements, the observation clusters to labels 0, 1, 0, 3 with probabilty 1.

Figure 5.2: State transition diagram. This is deceptive because in reality we never
go from state 0 to state 3 without first passing through state 1; thus the system is
not Markov.
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Figure 5.3: Example of belief propagation after a new “2” is shown. The first
movement is on top; The P (o|s) is on the diagonal, which is then multiplied by the
PSSA table and the initial b (set to a uniform distribution). The output relies on
the input and essentially validates it. In the second movement we again validate the
input; a transition from the previous belief (state 0) with the new P (o|s) (state 1)
gives a new belief that we are indeed in state 1. Next we transition from state 1 back
to state 0, then finally at the fourth movement we note the belief vector is not stable;
it changes with a pattern, but is different after each movement.
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5.1.2 Overcoming the limitations with multiple observations

To combat this problem, in Karnowski et al. (2010b) the temporal dynamics module
was replaced by simple sampling of the estimated beliefs at intervals T , which are
discussed in Chapter 6. Although we achieved good results with this approach,
the resulting feature space was much higher than desired and also did not utilize
hierarchical feedback in any form. Instead, we propose to use the advice in a multiple-
observer model to formulate a set of "belief in advice states" or B(a) which serves
as a cumulative estimate of the belief in the advice state of a node. This allows
each node to incorporate learning from the parent node over time to generalize to
long temporal scales, but retain a level of local knowledge and thus ideally capture
sufficient variation to make good supervised learning classifiers. In this mechanism,
the system dynamics thus vary from movement to movement and the temporal
dependence must be maintained. Each child node retains a brief history of its recent
observations and beliefs within a single subject presentation corresponding to the
temporal scans discussed in Chapter 3, such as Figure 3.2. Then when the parental
advice is available, the P ass is learned across the past observations and movements.
We show the basic concept in Figure 5.6. Finally, during testing (when the network
has stabilized and responses to presentations are sought, the B(a) is computed using
a multiple observer model. Each possible advice state is interpreted as a different
observer, with multiple attempts at observation as well (one for each movement), and
thus the belief in that advice state is computed as a cumulative prediction given as

B(a) =
�
m

�
s

b(sm|a) (5.7)

where s are all possible states and m are all movements. When there are a total of A
advice states, this produces a vector of dimension A for the output of each node. The
resulting vector is accumulated over the entire movement sequence and thus results in
a single estimate across the entire temporal scope. The advice component is passive,
meaning we simply compute the value for B(a) and test for each advice state using the
model residing in each node for each different advice state learned during the training
process. This approach is more robust in the sense that we do not depend on “good”
advice in real-time from the parent, and also occasionally unforeseen observations
with zero probability do not cause the entire evolution to grind to a halt.
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Figure 5.4: Cumulating beliefs movement-by-movement given advice state 0. At
the top, from the uniform start we see b’ which we add to our cumulative belief,
initialized as 0. In the second movement we get a new belief which is added to the
entire observation sequence, which is then accumulated again for the third and fourth
movements for a final B(a = 0) = 3.25. 108



Figure 5.5: For another advice state, the transitions are always 0. Here we walk the
same P(o|s) sequence through, for the first movement at the top through the fourth
movement at the bottom. Now the cumulative advice B(a = 1) = 0.5, as opposed to
B(a = 0) = 3.25.
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Figure 5.6: Conceptualization of state transition tables. There is one KxK size
table for each movement and advice state.

5.2 Advice Generation

We now move to how the advice is actually computed. In early implementations, the
advice or belief of the parent node, a, was chosen using the selection rule

a = argmax bp(s)
s

(5.8)

In other words, the parent basically fed back the label of the “winning” centroid to
the children nodes. We found that this selection rule was not robust to evolving belief
conditions in the online learning process. The problem with this in practice was the
static learning at the parent level tended to jump repeatedly from state to state, so
that there was no clear coherence from observation to observation. In addition, the
advice here is more the “hard threshold” method, which tends to work well only in
the face of no noise or very clearly defined classes or clusters.
Instead we use an online advice generation rule where each parental node examines

the temporal sequence of input beliefs and performs unsupervised online clustering on
the concatenation of children belief states across all the movements, up to the final
movement. Thus the advice is generated in fairly large temporal “chunks”, albeit
with an online system. The resulting label is then passed to the child nodes at the
end of the movement observation sequence. The children interpret the advice as a
sort of passive learning mechanism in that the advice is used to train the dynamic
patterns. Thus instead of a set of A tables, we now have a set of LA tables where
L is the number of movements in the observation sequence. The tabulated table is
still simply a count of the probability of transitioning from cluster label from s to
s	 given a, except it is tabulated on a temporal basis using the “long time scale”
advice provided by the parent during the training phase. We note that there are
some similarities here with the temporal pooling method of George (2008).
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This is a more temporally coherent advice generation method which looks across
many different observations to determine the parental advice, which is an assessment
of the general state of the children’s beliefs (and benefits from a viewpoint one layer
up in the hierarchy). This method is still a “hard threshold”, but when the actual
responses are delivered, the children do not actually use parental advice; instead, the
cycle through all possible advice states, and deliver a belief in advice vector denoted
as B(a). One interpretation of this process is that the parents teach the children
what situations to “look out for”, but then during the response process the children
must rely on the parental teachings to actually generate beliefs. We consider this
“passive advice” as a positive step toward true incorporation of an evolving belief
with confidence levels that can potentially offer a level of control over the observation
process.

5.3 Function Approximation

The tabular representation is ill-suited for scaling as it imposes an O(N3) memory
complexity. Even without the temporal dependence discussed above, the P ass
tables are still rather large, with AS2 units required. Furthermore, the temporal
observations add a further dependence on the number of movements which are used
to formulate the advice. Thus the memory requirements of this scheme using a
tabular approach are quite formidable, computed for a single node as

Mtab = K
2AL, (5.9)

where K is the number of centroids for the node, L is the number of movements or
sequence length, and A is the number of advice states from the parental node.
As an alternative to this approach, we seek to create a function approximation

method, where the transition probability is estimated by a learned function. This
is performed by simply estimating the subsequent state given the current state and
advice. In practice this means a very short memory mechanism must be used to
train the function approximator, but this is easily achievable with trivial constraints.
Furthermore, the advice states and movements can be represented by sparse binary
input vectors in the case where the advice data is interpreted as a "hard label".
Thus the function approximator must estimate the next state s� given input advice
a, movement number m, and the previous state s. There are thus A+K +L inputs,
with K outputs. This is best achieved with a nonlinear function approximator such as
a neural network Hornik Maxwell and White (1989). The essential idea is depicted in
diagram form in Figure 5.7. The memory required to implement the neural network
varies with the number of layers and hidden nodes chosen. However, if we assume a
single layer with H nodes can achieve the desired result, we can define the memory
constraints for the implementation. There are A+K +L inputs with each linked to
H hidden nodes, with a weight for each connection. At each hidden node an additive
bias is used, then there are K outputs with connections from each hidden node to
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the output, with another additive bias per output. Thus we can express the number
of memory elements as

MFA = K +H [1 + 2K + A+ L] , (5.10)

which is linear in dimension K,A, and L and greatly reduces the memory load,
assumingH is not a high-order function ofK This should result in substantial memory
savings.

Figure 5.7: Function approximation for state transition tables, mapping L+K +A
vector to K outputs to emulated “table”.

5.4 Node Selection for Supervised Learning

We discuss the process of node selection for supervised learning in this section.
Generally, in pattern recognition the feature selection problem has been address
through a variety of methods in supervised and unsupervised learning, including
Guyon and Elisseeff (2003), Dy (2008), and Mitra et al. (2002). For DeSTIN our
objective was to leave the processing unsupervised through the entire process except
the final supervised classifier. Thus, we investigated a few different concepts for
node selection. Each node can output either the beliefs as a time-domain signal or
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Table 5.1: Number of Unique Vectors in first layer per Row,Column for Cluster
Metric Study

0 1 2 3 4 5 6 7

0 1 46 390 1351 2218 1567 431 29
1 120 2145 11680 29383 41219 32262 12306 1687
2 636 9417 40725 81295 98904 79600 34484 5412
3 982 15821 59799 99964 111033 90396 39300 5818
4 925 18497 63472 99299 109267 86724 35705 5068
5 1205 19782 63053 98565 106894 77893 29735 4255
6 857 13428 47881 82299 83252 49171 14828 1794
7 159 3297 15408 29495 27334 12642 2733 275

the “belief in advice” B(A) values as a single composite output across the entire
observation time. For our earlier work, we used a single selection method which we
dub “hand selected”, which we describe next. We also enumerate methods which
we call “topographical”, where we used nodes solely based on the DeSTIN topology
(layer and node number). Finally, we used specific node selection methods which
were based on principle component analysis or (PCA).

5.4.1 Hand picked node selection

The nodes selected for temporal sampling processing mentioned previously are refered
to as the “hand picked” nodes. Because this level of work involved a very high feature
dimension, where we sampled every T movement from each node, we tried to reduce
the numbers of nodes actually used. We used all the top layer nodes, from layer 1
and up, for a total of 16 + 4 + 1 = 21 nodes. For the bottom layer, we examined the
number of unique vectors seen on the input through an search sampling every 25th
MNIST digit in the training set. The number of unique vectors is shown in Table 5.1.
We clearly omit nodes with less activity, essentially choosing none from the left side
of the grid. Most of the nodes in the 3rd and 4th column are chosen, then a random
sampling are selected in the final two columns. Thus, the “hand picked” nodes are
the following. They consist of all nodes of layers 3, 2, and 1 were used and 18 selected
nodes of layer 0 were used. These nodes are (2,6), (3,6), (5,7), (6,6), (7,3), (0,3),
(1,4), (2,3), (2,4), (3,3), (3,4), (4,3), (4,4), (5,3), (5,4), (6,3), (6,4), (7,4). They are
also shown in Table 5.2.

5.4.2 Topological methods

For these methods we rely on the actual spatial and layer placement of nodes. There
are four main methods for performing these node selections and they simply consist
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Table 5.2: Nodes used for layer 0

0 1 2 3 4 5 6 7

0 N N N Y N N N N
1 N N N N Y N N N
2 N N N Y Y N Y N
3 N N N Y Y N Y N
4 N N N Y Y N N N
5 N N N Y Y N N Y
6 N N N Y Y N Y N
7 N N N Y Y N N N

Table 5.3: Topographical Node Selection Methods

N D

L3 1 25
L23 5 125
L123 21 525

L123Core 30 750
All 85 2125

of choosing each group of layers in combination. We used the top only node, denoted
L3; the top two layers denoted L23; the top three, L123; and finally a mode we call
L123Core, which uses the top three layers and the 9 inner most nodes of the bottom
layer. These were chosen as they are the central nodes in the bottom layer and thus
should see as much variation as the outer edges given our movement scans. In Table
5.3 we show the number of nodes for each method, along with the option of using all
nodes together (which was not explored). The example assumes we use 25 belief or
advice states per node with the B(a) composite observer output.

5.4.3 PCA methods

The PCA methods consist of two main methods. The first, called “PCAAll”, simply
uses all nodes and performs PCA analysis, keeping some fraction of the total variation
(generally 90%) and attempts to remove correlated signals and instead represent them
by weightings of an orthogonal basis. The second, called “PCAByNode”, performs
PCA on each node alone then ranks the nodes according the number of dimensions
needed to achieve the specified level of error. The node (or nodes in case of ties) with
the most dimensions is chosen first, then the next node, etc. Note, however, that the
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PCA projections are not used here, instead we use the original data. This attempts
to minimize faults of PCA such as cases where signals which can be discriminatory
are nevertheless somewhat correlated. In DeSTIN, we know there is a large degree of
correlation between nodes, based on their common parentage (or child nodes), and
spatial proximity. Thus the PCAByNode method is an attempt to use PCA to assess
variation in a node without limiting ourselves to the attempted projection.

5.5 Summary

In this chapter we further developed two aspects of DeSTIN: the dynamic learning
processing, and the node selection process for supervised learning. For the former,
we showed how the P ass construct can be used to generate a temporal advice state
which is learned through the beliefs created by parent nodes through unsupervised
learning over long time scales. As a related processing function, we discussed the
advice generation process. Since these methods require considerable memory using
tabular implementations, we also discussed methods for using function approximation
to create these same functions.
For the node selection process, we discussed three main methods we called hand-

selected, topological, and PCA-based. None require advance knowledge of class labels,
and the PCA-based can be performed online as well if necessary. These methods will
be demonstrated in the results shown in Chapter 6.
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Chapter 6

DeSTIN Benchmark Results

In this chapter we apply the DeSTIN architecture and methods to three different
image application domains. We first discuss the application of DeSTIN to the classi-
fication of handwriting digits and explore a variety of parameters and configurations
of DeSTIN, including temporal sampling, the effect of different parameters, and other
experiments. We next cover the application of DeSTIN to a face detection problem,
and explore different automatically selected collections of nodes. Finally, we apply
DeSTIN to a third application domain, the detection of optic nerves in retina images,
using a single automatic node selection method.

6.1 Handwriting Digits

During the course of the DeSTIN development, we performed initial experiments
using a very simple, three-character training set using alphabetical characters “A”,
“B”, and “C”. The results of these experiments have appeared in Arel et al. (2009a)
and Arel et al. (2009b), but the toy-like nature of these studies (the set contained
only one example of each letter) was designed primarily to demonstrate the DeSTIN
concept and viability. The results in Karnowski et al. (2010a) represent a true step
beyond such “toy” problems, as these used the MNIST data set. The MNIST data
set LeCun and Cortes (2009) is a collection of handwritten digits and has been used
extensively in many machine learning algorithms and papers. The dataset has 60,000
training images of digits 0-9 and 10,000 testing images. All images have been roughly
centered and are gray-scale. A sampling of 10 examples of each digit is shown in
Figure 6.1. This dataset is challenging in the sense that good results can be obtained
by very simple machine learning algorithms such as the k-Nearest Neighbor algorithm
which obtains 94.6% in our testing (Figure 6.2). The best performance of reported
machine learning methods Labusch et al. (2008) achieve over 99% accuracy. A fusion
of several different methods and comparison with humans reveals the best possible
performance is likely 99.8% Keysers (2007), while LeCun and Cortes (2009) contains
a summary of different performance achievements.
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For our handwriting analysis, we discuss a variety of experiment using DeSTIN
and the MNIST dataset. We begin by reviewing the experimental configuration
for DeSTIN, then we discuss some non-DeSTIN results on the image database as a
baseline. Next, we discuss the results of DeSTIN with a temporal sampling (omitting
the system dynamics) and the use of the fuzzy-distance based estimate of P (o|s).
Some discussion of the fixed clustering methods follow as well. We then cover our
work with the different probability models, the use of the multiple observer model for
B(a) both with tabular and function approximation methods, and then we discuss
our newest findings, the use of the ECM algorithm and automatic node selection
methods. Finally, we examine the effect of different numbers of maximum clusters
for both each node’s static representation and the advice states.

Figure 6.1: Example images from the MNIST training data set.

6.1.1 Experimental Implementations

The experimental architecture topology here is identical to that in Karnowski et al.
(2010b). The MNIST dataset images were padded from 28 x 28 pixels in size to 32
x 32 pixels. A hierarchy of 4 layers of sizes 8 x 8 nodes, 4 x 4 nodes, 2 x 2 nodes,
and a single node at the top layer was used as depicted in Figure 3.1 At the lowest
layer each input node is presented a 4 x 4 pixel region of the input image.
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We used two main centroid configurations. In the first, each layer uses a different
number of centroids, choosing 25, 16, 12, and 10 for each layer. This was motivated by
a study where we took the first layer, middle node (3,3) of the DeSTIN hierarchy and
stepped through the training set of data. We then performed a batch clustering using
k-means, with a variety of different choices for K. The gain in the mean-square-error
reached a “knee” at roughly 25 centroids, so we chose this value for the lowest layer.
For the top layer, since we had 10 total classes, we chose 10 centroids (although
we should note that there is no optimization strategy, beyond the unsupervised
clustering, that would orient or drive the learning toward a 10-class solution). For
the intermediate layers we simply reduce the number of centroids by roughly 2

3
. In

the second unsupervised learning configuration, we used the ECM method with a
maximum of 25 clusters per node.
Regardless of the method, an image presentation is made by taking an MNIST

image, and shifting through the sequence of 64 different movements which are offset
by a single pixel and form a serpentine pattern as shown in Figure 3.2. The movement
ranged from (0,0) pixels to (7,7) total pixels, so the input image was padded to cover
boundary regions. The movement pattern was not optimized for this problem, and
may not be the best sequence for a complete online system that iteratively derives a
best belief for the input image but served as a good case for initial study.
After a DeSTIN network was trained, features were extracted by choosing

particular nodes according to some methodology as discussed in Chapter 5. The
response of the DeSTIN network was saved and presented to a supervised learning
system, in our case a neural network implemented with the MATLAB Neural
Network toolbox. In all experiments the output was standardized to zero-mean,
unitary standard deviation (omitting features with a standard deviation of 0). The
implemented neural network used two hidden layers of 40 nodes each and was trained
by using the training set split into a true training set (using 70% of the input images)
and a validation set of 30% to prevent overtraining. Ten different network training
sequences were used and the results were averaged together.

6.1.2 Basic image dataset testing

The MNIST data set has been used many times in the past as mentioned and is
therefore a well-tested dataset. We verified the performance of the kNN algorithm on
the MNIST data set, by simply performing the kNN testing across multiple values of
k (from 1 to 130). These results are shown in Figure 6.2, where we see that the best
performance is with K = 3 at 94.6% correct or 5.4% error.
As another experiment, the neural network configuration was used on the raw

MNIST data set as well. For one experiment each pixel was normalized by the
subtracting the mean and normalizing to zero standard deviation based on the
training data. A second experiment was conducted without normalization. We expect
this to be a better test of the feature extraction nature of DeSTIN, since the supervised
learning method is identical. We achieved composite performance of 96.19% correct
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on the unnormalized case, with 97.03% correct on the normalized case. These results
are summarized in Table 6.1.

Figure 6.2: Results of KNN processing on MNIST image sets. Best performance
was 94.6% at K=3.

Table 6.1: Results of neural network ensemble on raw MNIST image data

Type Norm AllPerf BestPerf MedPerf

RawImage No 96.19 96.35 85.86
RawImage Yes 97.03 97.21 97.05

6.1.3 Temporal sampling experiments

As a starting point, early DeSTIN experiments were performed using the fuzzy-
distance based construct given by Equation 4.1. Another “simplification” was the
use of temporally sampled data instead of formulating the P ass computation through
the evolving B(a) structure. This was done to simplify the initial development, but
it caused some issues with very high feature dimensionality. Note that the extracted
features are from the clustering performed at different layers in the hierarchy on the
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beliefs computed by Equation 4.1, and there is still a level of temporal inferencing
which is invoked by the use of sampling the temporal outputs of each relevant node
which is fed to the neural network in the supervised learning phase. Finally, in these
experiments the “hand selected” method of Chapter 5 was used.

Cluster analysis

We examined the clustering characteristics for these tests, noting that the clustering
metrics described earlier were simplified greatly. A constant learning rate was used
and only the starvation trace mechanism was included. The centroid clustering
metrics (μ, σ, and ρ) were retained for monitoring purposes but are not directly tied to
the learning rate. The problem with using all the mechanisms is that we had difficulty
forcing the clustering to a stable point; generally in online clustering convergence is
not guaranteed unless the learning rate monotonically decreases. However, we did
use some clustering monitoring based on the earlier described methods to modulate
the clustering, albeit in a largely heuristic manner.
The first experiments used a sampling of the MNIST training set (every 25th

image) and examined the effect of learning rate on the values of μ and ρ for layers
0 and 3. For layer 0, node (3,4) is reviewed as this node sees the most variation
from the input sequence (see Table 5.1). The top layer is chosen also as it gives the
highest "overview" of the entire processed sequence. These are plotted in Figures 6.3
and 6.4 with the observation number on the x-axis (where there are 64 movements
or observations per input MNIST digit) for learning rates of 0.001 and 0.0001. These
plots show that little is gained in the sense of the clustering stability after roughly
6000 observations for the first layer. However the final layer shows that the mean
change increases for some centroids, indicating that they are not in a stable position
but the change relative to the standard deviation indicates the centroid learning may
be reaching a reasonable bounding value. For the slower learning rate, the value of ρ
shows that the learning takes longer, as expected, since the value of the largest entry
does not reach a comparable level to the faster rate until around 9000 observations.
The value of μ at the top layer shows more erratic behavior, reaching a plateau
around 6000 then increasing throughout the rest of the sequences before decreasing
again after about 10000 observations. This is likely due to the stabilization of most
of the lower level nodes around 6000 which causes the highest layer to settle a bit,
but later observations cause additional changes that are not as well matched and thus
the centroids drift again.
An online error was generated by computing the difference between each input

vector and the adjusted, winning centroid. These plots are shown in Figure 6.5 for
layers 0 and 3 again. A smoothing window is applied to the plots of size 64. For layer
0, we see that the error decreases fairly rapidly to a roughly constant level. For the
top layer, we see that a sort of minimum error is reached rather early in the sequence
but the smoothed error increases to a significantly larger amount than layer 0. The
minimum error is likely where the online clustering has reached a good match relative
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Figure 6.3: Top: μ for learning rate of 0.001. Left is bottom layer, right is top
layer. Bottom: μ for learning rate of 0.0001. Left is bottom layer, right is top layer..

to the immature response of the lower layers. The higher upper level error can be
partially explained from the smaller number of centroids (10 instead of 25) at this
layer. With the lower learning rate, we see a similar behavior for layer 0 although
the error decline is slower. The top layer in the slower learning rate case shows an
increase in the error after reaching a sort of plateau as seen in plots of μ as well. The
error then begins to decline gradually.
In another experiment the learning rate was monitored and heuristically modified

to automatically terminate clustering. In this schema, we evaluated the innermost
nodes of the initial layer and all nodes of subsequent layers. (As shown in Table
5.1, the edge nodes of layer 0 do not show as much variation.) The learning rate
was initialized to 0.001 for layer 0 and 0.0001 for subsequent layers. The mean value
of ρ across all centroids was computed at each observation. When the mean value
was less than 0.05, clustering terminates for the node. When half the nodes were
terminated the entire layer clustering was stopped. The learning rate for the next layer
was then reduced to 0.001 and an additional 1000 non-monitored digit presentations
were performed followed by renewed monitoring of the value of ρ. This process was
repeated until the top layer clustering was terminated. The clustering termination
point is shown in Tables 6.2 and 6.3 for each node. Note that "N" denotes a node that
either was not included or did not finish clustering before half the candidate notes
completed. The top layer stopped at 14050 digits and layer 2 stopped at 10984 and
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Figure 6.4: Top: ρ for learning rate of 0.001. Left is bottom layer, right is top
layer. Bottom: ρ for learning rate of 0.0001. Left is bottom layer, right is top layer.

11043 digits (nodes (0,1) and (1,0)). The resulting error plots are shown in Figure
6.6. The first layer response is as expected, with the error dropping quickly to a fairly
constant value. The second layer response is more complex as the error increases
initially then slowly drops, settling out around digit presentation 5000. In fact, the
clustering of layer 0 stops adapting after digit presentation 4808, so layer 1 adapts
slowly with the slow learning rate, then the increase in the learning rate does not seem
to change the response much. Layer 1 has its clustering stopped at presentation 8400
and we see that shortly afterward layer 2 reaches a relative constant value. However,
the first 4000 or so presentations to layer 2 have a very low error rate. In this case,
analysis of the data showed that the response was dominated by a single cluster which
closely matched the output of layer 1, but was somewhat meaningless because layer 1
had not begin to adapt. Once layer 1 adapts, we see that the error of layer 2 begins to
increase to a peak around presentation 4000 and then it declines as layer 1 stabilizes.
A similar phenomena is shown for the top layer, although its adaptation is not as
pronounced after approximately presentation 12000.
It is instructive here to observe the cluster centroids formed for some nodes to

illustrate the method. In Figure 6.7 we show the centroids formed at one of the inner
nodes of the initial layer. The cosine distance metric was used and so consequently
the visualization is imperfect, but we clearly see that the centroids are converging to
structures that resemble components of handwritten digits such as corners and lines.
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Figure 6.5: Top: error with learning rate of 0.001, with (left) layer 0 and (right)
layer 3. Bottom: error with learning rate of 0.0001, with (left) layer 0 and (right)
layer 3.

For example, the top right centroid shows a bright diagonal edge. The sample beneath
that shows a similar edge, but translated toward the upper left, and the one below
that shows yet another diagonal but not translated as much. The second column,
first row shows a corner point, and this is also seen in the second and third column
of the third row. There are also vertical edges (such as second row, third column)
and horizontal edges (top row, third and forth columns for example). One may note
that the clusters do not show invariance, but that is perfectly reasonable and even
sensible; the overall group achieves invariance by multiple examples. Higher nodes
are more difficult to visualize since they are clustering on beliefs and thus do not have
the same spatial meaning or context that the centroids of the lowest layer offer.
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Figure 6.6: Error rates for node (3,4) of layer 0, node (1,2) of layer 1, (0,1) of layer
2, and (0,0) of layer 3 using the adaptive learning rate and automatic termination of
clustering.

Table 6.2: Cluster stopping points for nodes of layer 0

0 1 2 3 4 5 6 7

0 N N N N N N N N
1 N N N N N N N N
2 N N N 3002 2511 2985 N N
3 N N 3883 2598 2423 2739 N N
4 N N 4808 2715 2383 2980 N N
5 N N 3554 2616 2418 3393 N N
6 N N 4663 2949 3203 N N N
7 N N N N N N N N
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Table 6.3: Cluster stopping points for nodes of layer 1

0 1 2 3

0 N N 9337 N
1 N 6712 6647 8400
2 N 6751 6642 N
3 N 7092 6898 N

Figure 6.7: Visualization of cluster centroids for bottom layer of DeSTIN hierarchy
with MNIST data set, for node (3,3).
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Supervised learning

The results of the supervised learning experiments are shown here. Four different sets
of experiments were performed. These all use the same configuration of unsupervised
clusters at the layers of the hierarchy, the 25-16-12-10 model, with the “hand selected”
nodes.
Case 1 represents a fixed number of iterations (20,000) along with sampling the

temporal output every 16 movements for 4 samples per digit. Case 2 is also fixed
iteration but the temporal output is sampled every 12 movements for a total of 6
samples per digit sequence. In Case 3 we use the adaptive number of iterations and
also sample every 12 movements.

Table 6.4: Experiment overview

T Iter D AllPerf BestPerf MedPerfSingle

Case 1 12 20000 4584 97.7 97.82 96.89
Case 2 16 20000 3056 97.43 97.59 96.51
Case 3 12 14050 4584 97.86 97.98 96.94

Table 6.5: Confusion matrix for MNIST data set for best performance of case 3

0 1 2 3 4 5 6 7 8 9 Perf

0 975 1 0 0 0 0 2 1 1 0 99.49%
1 0 1126 1 1 0 1 2 1 3 0 99.21%
2 5 2 1011 4 1 0 0 8 1 0 97.96%
3 0 0 4 988 0 4 0 4 10 0 97.82%
4 0 0 1 0 963 0 4 1 2 11 98.06%
5 2 0 1 4 0 873 4 2 4 2 97.87%
6 3 2 1 0 1 8 939 0 4 0 98.02%
7 1 3 11 2 0 0 0 1004 2 5 97.66%
8 3 0 4 6 4 4 1 5 941 6 96.61%
9 2 3 1 4 6 2 0 4 9 978 96.93%

The best resulting composite performance was 97.98% accuracy (2.02% error)
as shown in Table 6.5. In this table, the sampling period is labeled as column
T. The next column, labeled Iter, is the number of iterations performed which
is fixed at 20,000 for cases 1 and 2 and was automatically terminated at 14050
for case 3. The data dimensionality is column D. The AllPerf column identifies
the performance of all the neural networks combined, while the BestPerf column
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indicates the best possible performance obtained by selectively using some neural
networks in an exhaustive search. Finally the MedPerfSingle columns is the median
performance of all the neural networks, which is significantly lower for the raw image
case. Overall we note that our experimental results are significantly better than a
basic kNN classifier applied to the image data, but are not at the state-of-the-art for
this data set. Furthermore, running the same neural network configuration and voting
scheme on the raw image pixels produced a best performance of 96.35% or composite
performance of 96.19% so we are confident DeSTIN is serving as a beneficial feature
extractor.

Mixture Models Comparison

In this experiment, we compared the use of the "true" Pr(o|s�) estimate afforded by the
distance-based estimate of 4.1 by that from the Gaussian, Rayleigh and Exponential
probability distribution models. In this experiment we used sampled temporal beliefs
only, using every 8th movement. Four different trials were performed with each model
including network training and supervised learning. These are summarized in Table
6.6.

Table 6.6: Performance with distribution models for P(o|s)

Model Trial1 Trial2 Trial3 Trial4

Exponential 98.54 98.49 98.48 98.42
Rayleigh 98.15 98.41 98.56 98.20
Gaussian 98.15 98.32 98.24 98.18

The exponential model seems to offer better performance overall, given the
relatively equal running conditions, but all offer improvements over the simplistic
distance-based estimate; as a comparison, the performance we achieved in Karnowski
et al. (2010b) with the supervised learning on the extracted DeSTIN features was
97.98% accuracy (2.02% error). Thus we see that the probabilistic models offer a
performance improvement, albeit with some cost in computational load (especially
for the Gaussian function). The different models may require different operational
conditions to more fully extract their full performance improvements, for example
longer training periods may permit better estimates of the Gaussian and Rayleigh
functions which will improve their performance.
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Tabular and Function Approximation Comparison Experiments

For the next experiment we incorporated the multiple-observer model for B(a) and
compared the performance of the supervised learning system on DeSTIN features
using ten different DeSTIN networks, with each one trained with both the tabular
method and function approximation method for belief formulation. A total of 25
advice states were trained for each parental node, with an additional "oversight"
parental node at the top layer. The function approximator was implemented using
the Fast Artificial Neural Network Library Nissen (2003). For each node the neural
network was implemented with a single hidden layer of 10 nodes, with a learning
rate of 0.001 which was not changed through the network training. The memory
comparison between the function approximator and the tabular method is shown in
Table 6.7. Overall, the function approximation method requires roughly 1/600 of
the memory as the tabular method, but does have a slight increase in computational
cost. As in the sampled belief experiments, 39 nodal outputs were used making the
output feature space 975 in size. While this is still large it is much smaller than the
space of the previous experiments, and as shown in Table 6.8, the performance was
essentially identical to the more complex case. Indeed, after feature normalization
for the tabular method most cases had a reduce feature space of roughly 700 owing to
features rejected to a standard deviation of 0. However, the function approximation
method did not achieve any reduction in feature space from pathological cases of 0
standard deviation.

Table 6.7: Memory comparisons for function approximation and tabular methods

Layer Nodes K Tab F.A.

0 64 25 1000000 1425
1 16 16 409600 1236
2 4 12 230400 1152
3 1 10 160000 1110

ECM and Automatic Node Selection Comparison

After these preliminary results, as discussed previously, we return to the tabular
method and tested the ECM method from Chapter 4 with the automatic node
selection methods discussed in Chapter 5. We also switched from the 25-16-12-9
cluster model to the ECM method, with a maximum of 25 clusters per layer. The
advice was also set to a level of 25 clusters per layer, but it was not configured as
an ECM, rather as WTA. A set of 10 different experiments were run, with different
random initializations of the data presented and initial cluster locations for layers
above the initial or bottom layer. The bottom layer was set to the ECM method,
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Table 6.8: Performance comparison using tabular and function approximation
methods

Trial Tabular F.A.

1 98.3 98.43
2 98.27 98.33
3 98.34 98.57
4 98.42 98.38
5 98.32 98.59
6 98.51 98.45
7 98.47 98.42
8 98.45 98.43
9 98.35 98.53
10 98.47 98.41

while layers above this were set to ECM after an initialization period of “cluster
pooling” as described in 4. The learning rate for the ECM method was the k-means
1
N
method. The learning rate for the upper layers was set to a constant η = 0.0001,

with the starvation trace construct used as well, until the layer beneath it stabilized,
at which point it adopted the ECM method with the 1

N
method. Clustering was

stopped when either the monotonicity constraint was reached, or half the nodes had
a ρ value below the threshold of 0.05. Interestingly, the monotonicity constraint was
the only factor for termination, and for the upper layers it always occurred within
the window of the forced 1000 initial digit presentations. The exponential model
alone was used for these experiments as well, with the λ parameter estimated based
on the running average of the sample distances from the winning centroid. Upon
the completion of the clustering, exponential parameter estimation, and P ass tabular
learning, the response for each network type was created for the testing and training
set, then the supervised learning phase was performed as described earlier.
Since there are many “sets” of automatic node selections per experiments, the

best way to present these results is in terms of a scatter plot with the dimensionality
shown. The hand selected, PCAAll, PCAByNode, L123, L123Core, L3 and L23 are
presented as separate symbols at the proper dimension. The best results obtained
in this work used the L123Core configuration, which used all the nodes of layers 1,
2 and 3 as well as the “center” 4 × 4 nodes from the bottom layer, which achieved
a maximum performance across 10 different trials of evolving DeSTIN networks of
98.78% correct or an error rate of 1.22 %. However, many of the different network
choices achieved very similar performance. If pressed to simply choose a configuration,
the Auto selection methods above a dimensionality of 300 are a reasonable choice, as
they seem to outperform most methods of comparable dimension (for example, PCA
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reduced the dimension to roughly 400 with a performance of 98.18%, but the auto
processing of similar dimension scored 98.50%).
We also note that the algorithms tended to use the maximum number of allocated

clusters for each node. This was slightly surprising, but we believe the experiments
and discussion from Chapter 4 showed why this would be the case. Some other means
of constraining the clustering to a different number of clusters than the ECM method
of the minimum distance could produce different effects, but overall we believe the
system has proven itself robust.

Figure 6.8: Performance of DeSTIN on the MNIST set using different node selection
methods.
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Table 6.9: Performance comparison example between supervised learning methods
with auto selected nodes

Nodes Number D kNN NN

Auto 1 25 63.13 67.14
Auto 2 100 92.83 95.7
Auto 3 200 95.49 97.44
Auto 4 275 96.81 98.1
Auto 5 300 96.84 98.1
Auto 6 400 97.26 98.5
Auto 7 450 97.41 98.51
Auto 8 500 97.38 98.6
Auto 9 575 97.28 98.61
Auto 10 650 97.08 98.68
Auto 11 675 97.08 98.57
Auto 12 700 97.03 98.62
Auto 13 725 97.05 98.47
Auto 14 850 96.94 98.53
Auto 15 875 96.9 98.67
Auto 16 1050 96.62 98.51
Auto 17 1125 96.59 98.62
Auto 18 1250 96.44 98.62
PCA NA 390 92.94 98.16

PCAByNode NA 556 96.13 98.41
Hand NA 975 96.57 98.26
L3 NA 25 77.15 82.93
L23 NA 125 86.52 91.51
L123 na 525 91.50 96.39

L123Core na 925 96.83 98.66
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Table 6.10: Performance comparison example between supervised learning methods
with auto selected nodes

Method Dim min max mean median std

Hand 975 98.21 98.54 98.36 98.38 0.09

PCAAll 394 97.94 98.46 98.18 98.18 0.17

PCAByNode 568 98.16 98.53 98.35 98.30 0.13

L123 525 95.82 97.13 96.30 96.20 0.40

L123Core 925 98.39 98.78 98.56 98.56 0.11

L3 25 81.79 83.84 82.85 82.93 0.78

L23 125 91.47 91.88 91.63 91.65 0.16

Auto 25 67.31 95.70 75.62 68.53 12.11

Auto 50 81.31 81.71 81.45 81.34 0.22

Auto 75 87.29 87.29 87.29 87.29 0.00

Auto 100 91.26 97.44 94.16 93.44 2.39

Auto 125 95.80 95.80 95.80 95.80 0.00

Auto 150 96.22 96.22 96.22 96.22 0.00

Auto 175 96.72 97.41 97.06 97.06 0.49

Auto 200 97.54 98.10 97.74 97.70 0.21

Auto 225 97.79 97.88 97.82 97.80 0.05

Auto 250 98.03 98.08 98.06 98.06 0.04

Auto 275 98.10 98.10 98.10 98.10 0.00

Auto 300 98.14 98.50 98.29 98.28 0.12

Auto 325 98.34 98.45 98.38 98.37 0.05

Auto 350 98.37 98.37 98.37 98.37 0.00

Auto 375 98.32 98.41 98.36 98.36 0.05

Auto 400 98.37 98.53 98.48 98.50 0.07

Auto 425 98.28 98.52 98.38 98.35 0.09

Auto 450 98.38 98.60 98.50 98.51 0.11

Auto 475 98.35 98.45 98.40 98.41 0.05

Auto 500 98.42 98.61 98.50 98.46 0.10
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Table 6.11: Performance comparison example between supervised learning methods
with auto selected nodes (Continued)

Method Dim min max mean median std

Auto 525 98.29 98.46 98.38 98.38 0.12

Auto 550 98.45 98.47 98.46 98.46 0.01

Auto 575 98.34 98.68 98.51 98.51 0.16

Auto 600 98.44 98.44 98.44 98.44 0.00

Auto 625 98.54 98.54 98.54 98.54 0.00

Auto 650 98.35 98.59 98.50 98.53 0.11

Auto 675 98.50 98.62 98.56 98.56 0.06

Auto 700 98.47 98.58 98.51 98.48 0.05

Auto 725 98.44 98.62 98.54 98.55 0.07

Auto 750 98.50 98.71 98.58 98.55 0.10

Auto 775 98.50 98.57 98.55 98.56 0.03

Auto 800 98.44 98.59 98.49 98.44 0.09

Auto 825 98.38 98.63 98.55 98.61 0.11

Auto 850 98.48 98.67 98.57 98.57 0.08

Auto 875 98.51 98.53 98.52 98.52 0.01

Auto 900 98.44 98.62 98.53 98.52 0.06

Auto 925 98.48 98.56 98.51 98.50 0.04

Auto 950 98.62 98.68 98.65 98.65 0.04

Auto 975 98.50 98.54 98.52 98.52 0.03

Auto 1000 98.45 98.69 98.54 98.51 0.10

Auto 1025 98.53 98.70 98.62 98.63 0.07

Auto 1050 98.56 98.68 98.63 98.62 0.05

Auto 1075 98.47 98.66 98.59 98.63 0.09

Auto 1100 98.51 98.59 98.55 98.55 0.06

Auto 1125 98.53 98.62 98.57 98.56 0.04

Auto 1150 98.57 98.65 98.61 98.61 0.05

Auto 1175 98.58 98.63 98.60 98.60 0.04

Auto 1200 98.60 98.71 98.65 98.64 0.05

Auto 1225 98.50 98.70 98.59 98.56 0.10

Auto 1250 98.51 98.62 98.58 98.62 0.06

Auto 1275 98.46 98.46 98.46 98.46 0.00

Auto 1300 98.62 98.62 98.62 98.62 0.00

Auto 1325 98.49 98.49 98.49 98.49 0.00
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We show an example of a confusion matrix from these methods in Table 6.12,
and compare the performance of each digit with that of the temporal sampling, case
3 in Table 6.13. The most striking item of the comparison is the improvement in
discrimination of digit “9”, which rose from 96.93% to 97.03%, and “8”, which rose
from 96.61% to 98.36%, and digit “3” (97.82% to 99.4%). We should note that if
we were truly trying to improve performance for this particular task at hand, at this
point we would “hand engineer” the system to force better recognition of the worst
cases, the digits 9, 8, 7 and 2. An effort such as this would also require an additional
validation set, however, to ensure we were not over training on the training and testing
set.

Table 6.12: Confusion matrix for MNIST data set for best performance of all

0 1 2 3 4 5 6 7 8 9 Perf

0 977 0 0 0 0 0 2 1 0 0 99.69%
1 0 1130 1 1 0 0 3 0 0 0 99.56%
2 3 3 1016 2 1 0 1 6 0 0 98.45%
3 0 0 0 1004 0 1 0 2 3 0 99.40%
4 0 0 2 0 972 0 3 0 2 3 98.98%
5 2 0 0 6 0 881 2 1 0 0 98.77%
6 1 1 0 0 3 2 948 0 3 0 98.96%
7 0 2 6 2 0 0 0 1013 1 4 98.54%
8 4 0 1 3 1 2 1 2 958 2 98.36%
9 1 5 1 5 6 3 0 5 4 979 97.03%

Maximum Cluster States Comparison

As a final test, we ran a single sample of the DeSTIN network formulation with a
different number of maximum clusters per node (Table 6.14), and also ran a single
sample with different number of advice states per node (Table 6.15). This basic test
was designed to determine what effect, if any, this fundamental parameter would have
on the overall performance. We show a slight dependence on the maximum number
of clusters from Table 6.14, with comparable results to our best performance with
as few as 5 clusters per node, and possibly even better results with 10 or 20 clusters
instead of with the default setting of 25. Similarly, with the number of clusters per
node set to 25 but with the number of advice states set lower, we again see similar
performance, even with 10 advice states (although below 10 we do see a decline in
performance).
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Table 6.13: Comparison between Case 3 (temporal sampling) and best overall
performing automatic method

PerfBest Perf3

0 99.69% 99.49%
1 99.56% 99.21%
2 98.45% 97.96%
3 99.40% 97.82%
4 98.98% 98.06%
5 98.77% 97.87%
6 98.96% 98.02%
7 98.54% 97.66%
8 98.36% 96.61%
9 97.03% 96.93%

Table 6.14: Comparison of performance with different number of maximum clusters
per node

MaxK NN

2 97.64
5 98.39
10 98.65
20 98.63
25 98.54
30 98.54

Table 6.15: Comparison of performance with different number of advice states per
node

MaxA NN

5 96.87
10 98.14
20 98.35
25 98.54
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6.2 Face Detection

During the course of this dissertation work, experiments were performed on the
MNIST handwriting dataset, although no particular tuning was applied for that
dataset (for example, we did not attempt to specifically taylor development towards
handwritten character recognition in terms of parameter tuning). Consequently, it is
desirable to test the algorithms and work on other datasets. For our tests, we elected
to not alter nor tune the networks or evolution parameters, as we believed this would
give the best means of comparison since we seek a general architecture which can solve
a variety of problems in different application domains. We selected the CBCL Face
Database 1 from the MIT Center for Biological and Computational Learning which
was recommended as a representative facial dataset for face recognition Moon (2010).
The data set consists of a training and testing set drawn from different sources. The
training set consists of 2429 face images from Sung (1996) which were obtained from
collections of images. In many cases, some subjects were added multiple times with
slight rotations of five degrees. The training set also contains a randomly selected
4545 non-faces from the non-face database of Sung (1996), which originally contained
19932 non-face images. These non-face images were obtained by creating 19×19 pixel
windows which were used in the detection methods of Sung (1996) across the images,
and choosing randomly non-face images. The testing set was drawn from the CMU
Image database Vision and Center (2003) and consists of test sets A,B, and C which
together comprise“CMU Test Set 1”. This is a total of 130 images, with 507 faces,
but line-drawn faces and non-frontal faces were removed, so the total number of faces
is 479 as described in Heisele et al. (2000). For the non-face dataset, in Heisele et al.
(2000), the CMU test set 1 was processed by using 19× 19 pixel detection windows.
This consists of over 56,000,000 low-resolution “images” (really “windows” from true
image files). Of these windows, a subset of 23,573 non-face images were selected for
the test set; they were selected because they were the most "face-like" of the windows
after classification by a a 2nd-degree polynomial kernel SVM trained on histogram
normalized gray level images as described in Heisele et al. (2000). Some examples of
the face and non-face images of the training and testing set are shown in Figures 6.9,
6.10, 6.11, and 6.12.
We note that no pre-processing was done on the data set besides a resizing from

19×19 to 32×32 (using bilinear interpolation), and a rescaling of the image intensities
using Equation 6.1

I(x, y) = 255
I(x, y)−min(I)
max(I) +min(I)

(6.1)
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Figure 6.9: Examples of face images from the training set.

Figure 6.10: Examples of non-face images from the training set.
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Figure 6.11: Examples of face images from the testing set.

Figure 6.12: Examples of non-face images from the testing set.
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6.2.1 Experimental results

Since the data set only uses two classes, with very unequal numbers of each class,
we elected to show the results in terms of receiver operating characteristics (ROC)
curves. These were generated by using the same supervised learning techniques in the
previous work, but the neural network ensemble additive results were then thresholded
at various points to generate the ROC curves. The ROC curve comparison also allows
easier comparison with Heisele et al. (2000). A set of 10 DeSTIN networks were
evolved using the maximum of 25 centroids per node as in the previous chapter,
using the exponential probability model. We then compared their results using
the L123Core method, the PCAAll method, the PCAByNode method, and the
Autoselection methods. The L123Core method used the same nodes as in the previous
MNIST results. We see that the best node selection methods and networks perform as
well or better than the ROC curves in Heisele et al. (2000), which is superimposed on
the sample ROC curves, but without specific design for face detection. Sample ROC
curves are shown in Figures 6.13 through 6.18. Overall the hand-selected, L123Core,
and PCAAll seem to show fairly good performance, with the exception of one network
outlier in both cases. The PCAByNode performance seems to be slightly less; this is
confirmed by the summary in Table 6.16. One interesting finding is that the omission
of bottom layer nodes, the L123 case, is also competitive with these best methods.

Figure 6.13: Face detection ROC curves for the hand-selected nodes. Each curve is a
different trial of 10 total trials, with the results from Heisele et al. (2000) superimposed
with circle markers.
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Figure 6.14: Face detection ROC curves for the PCAAll “node selection” method.
Each curve is a different trial of 10 total trials, with the results from Heisele et al.
(2000) superimposed with circle markers.

Figure 6.15: Face detection ROC curves for the PCAByNode “node selection”
method. Each curve is a different trial of 10 total trials, with the results from Heisele
et al. (2000) superimposed with circle markers.
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Figure 6.16: Face detection ROC curves for the top three layers only “node
selection” method. Each curve is a different trial of 10 total trials, with the results
from Heisele et al. (2000) superimposed with circle markers.

Figure 6.17: Face detection ROC curves for the L123Core “node selection” method.
Each curve is a different trial of 10 total trials, with the results from Heisele et al.
(2000) superimposed with circle markers.
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Figure 6.18: Face detection ROC curves for the auto selection method, using the
“ranked 14” best nodes. Each curve is a different trial of 10 total trials, with the
results from Heisele et al. (2000) superimposed with circle markers.

Figure 6.19: AUC as a function of total dimension, for the auto-selected nodes.
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Table 6.16: Area under curve (AUC) for different node and feature selection methods
across all trials

Method MeanAUC MedianAUC MaxAUC
PCAAll 0.890 0.894 0.905

PCAByNode 0.879 0.881 0.889
Hand 0.900 0.904 0.905
L123 0.889 0.891 0.900

L123Core 0.894 0.897 0.904
AutoSelection01 0.791 0.789 0.838
AutoSelection02 0.848 0.851 0.879
AutoSelection03 0.858 0.856 0.883
AutoSelection04 0.866 0.868 0.873
AutoSelection05 0.859 0.853 0.880
AutoSelection06 0.854 0.852 0.864
AutoSelection07 0.859 0.856 0.870
AutoSelection08 0.850 0.853 0.863
AutoSelection09 0.855 0.859 0.876
AutoSelection10 0.860 0.857 0.879
AutoSelection11 0.875 0.876 0.888
AutoSelection12 0.884 0.886 0.900
AutoSelection13 0.888 0.889 0.901
AutoSelection14 0.887 0.892 0.899
AutoSelection15 0.885 0.889 0.890
AutoSelection16 0.888 0.888 0.888
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These results are summarized in terms of the area-under-the-curve or AUC
measurement, which allows us to create a single, composite score for performance.
Although we believe this method is competitive with the methods discussed in Heisele
et al. (2000), we recognize there is room for improvement. We also note, however,
that the chosen images were designed to be difficult; thus, running the DeSTIN face
detectors on normal images likely would produce much better performance. However,
our core purpose here for this work is to show the use of DeSTIN as an unsupervised
feature extraction method for demonstration. In particular, we note that nothing
was changed from the MNIST experiments, except that the dual-class nature of this
problem allowed us to change the supervised learning system output to create ROC
curves as opposed to a single classification to more properly compare with Heisele
et al. (2000).

6.3 Optic Nerve Detection

In Chapter 1, we discussed “hand engineered approaches to feature extraction in
images and specifically focused on an example of optic nerve detection Tobin et al.
(2007). While the hand-engineered features in that example are not as specific as in
other domains (such as minutiae in fingerprint classification), they are an example
of how we can apply domain knowledge to solve an image understanding problem.
Since a large part of the motivation for DeSTIN is to avoid such hand-engineered
approaches, we close by including a test case for optic nerve detection.
The main cause of blindness in the industrialized world is diabetic retinopathy,

a disease associated with diabetes. The retina has a variety of specific anatomical
structures which can be easily identified, including the optic nerve (ON) which is
a circular spot, often somewhat bright in appearance, where the nerves leave the
back of the retina; the vasculature which consists of the blood vessels and veins in the
retina that make a sort of parabolic shape emanating from the ON; and the macula or
fovea (where most human vision is concentrated), which is a darker spot in the center
of the main vessel area. The American Academy of Ophthalmologists recommends
individuals with diabetes undergo retina screening annually Panel (2008), but with
the growing and projected number of diabetics in the world is making wide spread
screening by healthcare personnel intractable Abràmoff et al. (2010). Thus automated
retina disease diagnosis can potentially have very high public health impact. For
automated screening of the human retina, systems generally attempt to automatically
locate these different structures to help establish a sort of coordinate system, then
specific lesions are located and diagnosis is performed Teng et al. (2002). For a good
overview of this type of processing, see Abràmoff et al. (2010).
The training database was derived from a set of images from the Retina Image

Screening and Analysis (RISA) system Li et al. (2011). This dataset consisted of
1391 images which had been screened with a quality detection test Giancardo et al.
(2008). The test database was obtained from the Messidor dataset (kindly provided
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Figure 6.20: Example of a retina image from the Messidor data set. The optic nerve
is the circular object on the left; the vascular tree emanates in a parabolic shape from
the optic nerve; and the macula is the darker region in the center of the image.

by the Messidor program partners Partners (2008)). This set consists of 1200 images.
In both sets, the optic nerve was manually selected for each image and cropped, then
resized to fit a 32×32 pixel region. Non-ON regions were then randomly chosen from
each image, repeatedly sampling but eliminating previously selected regions. About
25 non-ON regions were selected for each image.
For an interesting comparison, two sources of image data were used. The

first was “raw image pixels” where the green channel of each image was used,
with normalization as described in Chapter 6.1. In addition, part of the quality
measurement process generates a vessel-segmented image using the method of Zana
and Klein (2001) which is also used in the optic nerve detection method of Tobin et al.
(2007). Thus, we also extracted ON and non-ON regions from these vessel segmented
images for comparison. Examples of both are shown in Figures 6.21 through 6.28.
The ON regions for the vessel images have a sort of “spiderweb” appearance, generally
consisting of vertical and slightly diagonal vessels emanating from the ON center.
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Figure 6.21: Example non-ON images from the training set without vessel
segmentation.

Figure 6.22: Example ON images from the training set without vessel segmentation.
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Figure 6.23: Example non-ON images from the testing set without vessel
segmentation.

Figure 6.24: Example ON images from the testing set without vessel segmentation.
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Figure 6.25: Example non-ON images from the training set with vessel
segmentation.

Figure 6.26: Example ON images from the training set with vessel segmentation.
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Figure 6.27: Example non-ON images from the testing set with vessel segmentation.

Figure 6.28: Example ON images from the testing set with vessel segmentation.
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6.3.1 Optic nerve detection results

Rather than an exhaustive study of the different DeSTIN configurations, we used the
same DeSTIN topology as the previous experiments, limiting to the ECM clustering
method with 25 maximum states and tabular method for P ass . We also used the
L123Core nodes for processing. The ROC curve was generated in the same manner
as the face detection task and is shown in Figure 6.29. In this case, the two methods
performed much better than the face detection set, but we should note that generally
optic disk detection is a simpler task Karnowski et al. (2009) especially in normal
retina screening environments. The vessel segmentation case had a AUC of 0.951 and
the non-segmented case had even better performance, 0.973. The crossover point,
where the sensitivity matched the specificity, was approximately 88.3% and 92.3%
respectively.

Figure 6.29: ROC curve comparing detection using DeSTIN L123Core on vessel
segmented examples and non-vessel-segmented (raw image) examples. The raw image
case has better performance especially in the 0.05 to 0.5 FPR range.
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6.4 Results Summary

We covered three distinct application areas in this chapter. In the first application
area, handwriting digits, we discussed a variety of different experimental configu-
rations for DeSTIN, although they were all based on the same 64-16-4-1 topology
as depicted in Figure 3.1. We first discussed the MNIST test set and results of
simple experiments on the raw image data, both with a kNN classifier and a neural
network ensemble. These initial tests confirmed the relatively high performance of
the most basic supervised learning strategy on the dataset, which is a known fact in
the literature, and also set a baseline for the performance of DeSTIN.
We then reviewed the effect of temporal sampling of the belief states, including the

use of a rough fuzzy-based estimate of the P (o|s) static construct given by Equation
4.1, which yielded top performance of 97.98% or 2.02%. These results were then
improved by using a true P (o|s) model; for all tested cases, the exponential, Gaussian
and Rayleigh model, performance improved by approximately 0.5
We built on these results, which were flawed in two matters: first, they were

very high-dimensional and did not form an evolving consensus belief state for each
node, and second, they used a heuristic hand-selected set of nodes. For our next
experiments, we added the P ass construct which created a multiple observer model
and formulated a final overall belief B(A) across a variety of different parental
advice states. We compared these results with a function-approximation model which
yielded comparable results, at a great memory savings albeit with some additional
computational cost both in training and in response evaluation.
For our next experiments, we performed a test of 10 different DeSTIN networks,

with evolving cluster formulations using the ECM algorithms described in Chapter 4,
and a variety of different selected node configurations, including our previous “Hand”
selected nodes, and methods based on PCA. The best results obtained in this work
used the L123Core configuration, which used all the nodes of layers 1, 2 and 3 as
well as the “center” 4× 4 nodes from the bottom layer, which achieved a maximum
performance across 10 different trials of evolving DeSTIN networks of 98.78% correct
or an error rate of 1.22 %. However, many of the different network choices achieved
very similar performance. If pressed to simply choose a configuration, the Auto
selection methods above a dimensionality of 300 are a reasonable choice, as they seem
to outperform most methods of comparable dimension (for example, PCA reduced
the dimension to roughly 400 with a performance of 98.18%, but the auto processing
of similar dimension scored 98.50%).
We also note that the algorithms tended to use the maximum number of allocated

clusters for each node. This was slightly surprising, but we believe the experiments
and discussion from Chapter 4 showed why this would be the case. Some other means
of constraining the clustering to a different number of clusters than the ECM method
of the minimum distance could produce different effects, but overall we believe the
system has proven itself robust.
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We then performed a small test of the effect of the different number of maximum
clusters and advice states. Relatively small numbers of individual node clusters are
needed for success, which seems to validate the notion that the training phase (where
we learn the prototypes of the data) is less important than the encoding phase (how
we generate features from the functional combination of prototypes and the data), as
mentioned in Coates and Ng (2011).
We next applied DeSTIN to a different image recognition problem, face detection.

As in the MNIST results, the DeSTIN networks created and tested for this face
detection problem generated useful features for supervised learning, with ROC curves
that exhibited similar performance to Heisele et al. (2000). We found that the hand-
selected nodes seemed to give the best performance, but many of the automatic
selection methods worked well, and as with the MNIST set, the L123Core method
was generally a good choice. We note that one issue with testing the DeSTIN scheme
on additional data sets is the scalability of the method; in our current implementation,
we are most well-suited to processing relatively small images (32x32). This can be
addressed in the future through more advanced implementations, as discussed in the
future work section of the final chapter.
Finally, we tested the DeSTIN processing on a third problem, the detection of

optic nerves in retina images. The DeSTIN system performed quite well on this task,
with no changes to the algorithm or topology used in the previous two test cases.
Note that other domain knowledge could likely improve the detection results; this
is simple information such as we expect the ON to be on the side of the image for
macula-centered images, and we only expect one ON per image. Overall however we
believe these results nicely close the circle on this work and illustrate the utility of
automated unsupervised feature extraction using a system such as DeSTIN.
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Chapter 7

Resource and Noise Analysis

In this chapter we discuss and analyze two additional aspects of DeSTIN. The first is
the relative computational load of DeSTIN, in particular we compare DeSTIN with
convolutional neural networks and deep belief nets. The second is a noise analysis
of the DeSTIN architecture. For both topics, the analysis is conducted by first
attempting to generalize across the different parameters of the DeSTIN topology and
node operations, then drawing upon a specific test case, the MNIST images studied
in Chapter 6, for further illustration of these points.

7.1 Computational Analysis

The direct comparison of DeSTIN to other deep learning architectures is somewhat
problematic for several reasons. First, without an actual implementation there can be
aspects of the architecture that are more difficult or computationally intensive than
we may learn from reviewing the literature on the subject. Second, when iterative
processes are required, as are often needed for unsupervised learning (and some
supervised learning algorithms), the comparisons may be difficult to make without
experimental analysis over a broad range of parameters. Next, in the specific case of
DeSTIN, CNNs and DBNs, the architectures have slightly different objectives. For
example DeSTIN is largely an unsupervised feature extraction engine, while CNNs
combine feature extraction and supervised learning in an integrated architecture.
Finally, from the literature on CNNs and DBNs as applied to the MNIST data
set, it would appear that there is some level of tuning - not of the features, but
of the architecture and training regiment - which has been undertaken to improve
results. Therefore it is difficult to understand exactly what we are comparing in these
cases. Nonetheless, we proceed with these caveats in mind and attempt a first-order
approximation of the computational load. We will therefore present this discussion
in four sections, one for each targeted architecture, then compare their values for the
MNIST data set based on published literature and our results.
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7.1.1 DeSTIN computational resource requirements

There are two distinct phases of DeSTIN where the computational load is an issue.
The first is the training phase, where the network is initialized and presented
sequences of target images. The second is the “response” phase, where a trained
network is again presented images and an output feature vector is generated. These
response vectors are then used for supervised learning. Therefore, we distinguish
between these two modes of operation for clarity. We also note that DeSTIN consists
of a series of nodes that have some independence to one another, but essentially run
the same algorithm. We examine the computational components of a single node.
This node is assumed to have K total cluster centroids in its static library, which we
will generalize as a maximum requirement. We also assume the node is working on a
D-dimensional space for these centroids. For the dynamic component, we assume that
the node has A total cluster centroids formulated over L movements for the system
advice element, which generally is in a vector space of dimension L×C ×Kc, where
C is the number of children, and Kc is the number of centroids from each child’s
static process. Finally, we assume a single computational element of complexity T is
needed for each static centroid to compute the value of P (o|s). We assume we work
in cosine similarity space. Thus, in one movement, the following steps must be taken:

• Input data vector o must be normalized, to form vector on. This requires D
multiplications, the computation of a square root, and a scalar division between
D elements, for a total of 2D + T operations.

• Vector on is compared with each ofK centroids by cosine distance. This requires
D multiplications for each of the K clusters, followed by a sorting operation of
order K log(K).

• The winning vector is updated. Regardless of the exact methods discussed in
our online clustering section, this requires roughly D multiplications and D
additions.

• Various metrics regarding the clustering progression are monitored and recorded.
These include adaptation of the learning rate requiring a single division, evalua-
tions of the μ, σ, and ρmetrics each requiring a multiplication and addition, and
an estimate of the parameters of the chosen probability distribution requiring
an additional multiplication and addition. Furthermore, the ρ calculation
requires an additional transcendental function, T for each dimension. In our
implementation we have also monitored other items of interest, including the
online error rate, but these are not included in this comparison. Thus, we
estimate these online metrics require roughly 3D + 4 operations.
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This is summarized as

N static
train = L [(2D + T ) + (KD +K log(K)) + (2D) + (3D + 4 + TD)] (7.1)

N static
train = L [7D + T (D + 1) +K (D + log(K))] (7.2)

(Note that we must multiple the entire process by the number of movements L as
shown.)
The advice generation component is very similar except there is only one operation

per L movements, and it uses a different number of centroids and dimension as
described above. This step thus requires

N advice
train = 7LCKc + T (LCKc + 1) + A(LCKc + log(A)) (7.3)

Following the advice generation, the dynamics operation must be estimated. For
the tabular method there is minimal cost with respect to computational resources.
However, for the function approximation method, there is some issues, and therefore
we assume a neural network with H hidden nodes. The function maps LKA values
to K values, and we assume a single hidden layer, with T the cost for each activation
function. The computational load is approximated as the number of weights to adjust
along with a single application of the transcendental function. We also have HK
weights for the output layer.

N FA
train = LH (L+ 2K + A+ T ) (7.4)

After training, the response generation requires the following at each movement:

• Input data vector o must be normalized, to form vector on. This requires D
multiplications, the computation of a square root, and a scalar division between
D elements, for a total of roughly 2D + T operations.

• Vector on is compared with each ofK centroids by cosine distance. This requires
D multiplications for each of K clusters. The sorting operation is not needed
in this step, although it is done for debugging purposes in our implementation.

• The probability P (o|d) is computed for each centroid, requiring KT nonlinear
functions.

• The belief is computed, requiring a vector-matrix multiplication of K2 opera-
tions along with K additions. Furthermore, these beliefs are computed for each
value of A.

• Finally all operations above are performed at each movement.
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Thus, the response component is

N static
response = L

�
2D + T +DK +KT + A

�
K2 +K

��
(7.5)

N static
response = L [2D + T +K (AK +D + T + 1)] (7.6)

Note that with the function approximation method, an additional calculation is
required since the P ass “table” is effectively generated by function calculation instead
of simple look-up methods. Thus an extra computational effort at each movement
and advice state is needed.

N FA
response = LA [H (L+ 2K + A+ T )] (7.7)

The memory requirements are also of interest. We discussed the memory
requirements of the dynamic component in Chapter 5, where we also compared the
neural network function approximation with the tabular method.
The static component requires a much more modest level of memory, in particular

largely just the centroid library. The memory requirement isK(D+6) total elements,
which includes the online calculations for ρ, μ, σ, and the parameters of the probability
model for P (o|s) and its online calculation (including learning rate). There is also
a dynamic component which is not included here, but during training the advice
generator is required. This requires a measure of memory comparable to the static
clustering methods, but with different parameters as described above. Also, we do
not require the computation of an equivalent probability distribution, so the additive
constant is 4 instead of 6:

Mstatic = K(D + 6) + A(CLKc + 4) (7.8)

The total cost is summarized in Tables 7.1, 7.2, and 7.3, along with an estimate
for the evolved cases described in the previous chapter. Note that C is 4 for all nodes
except layer 0, where it is 0, and for layer 3, where it is 1 (since the top layer generates
“self-advice”). Note that the function approximation effort takes roughly 50% longer
to run.
As a final note, DeSTIN has a number of free parameters which must be trained.

One issue of note here is that the training procedure is fairly simply in all cases,
lending itself easily to online adaptive processing. At each node, the process must
learn K centroids of size D, a probability distribution for each of the K clusters (with
a single parameter), A centroids of size LCKn, and the dynamics method requiring at
most LAK2. While the latter component is very large, as discussed earlier, it is very
simple to learn by counting transitions, so in truth the total number of parameters
to learn per node for the static component and the advice generation component is

P = K(D + 1) + A(CLKc) (7.9)

• Layer 0: 27200 (425 per node)
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Table 7.1: Summary of DeSTIN computational cost during training phase, in
MFlops

Layer Nodes D Static Advice DynamicsFA TotalFA TotalTab
0 64 16 3.27 0 6.1 9.37 3.27
1 16 100 4.43 4.30 1.52 10.26 8.73
2 4 100 1.11 1.08 0.38 2.56 2.18
3 1 100 0.277 0.067 0.095 0.44 0.34

TOTAL 85 -- 9.08 5.44 8.10 22.63 14.53

Table 7.2: Summary of DeSTIN computational cost during response, in MFlops

Layer Nodes D Response Additional FA TotaWithFAl
0 64 16 66.94 6.10 73.04
1 16 100 19.06 1.52 20.58
2 4 100 4.76 .38 5.14
3 1 100 1.19 0.095 1.29

TOTAL 85 -- 91.95 8.10 100.05

• Layer 1: 2600400 (162525 per node)
• Layer 2: 650100 (162525 per node)
• Layer 3: 42525

This is a total of 3320225, or over 3 million parameters which must be learned.
For the final analysis, assuming 20,000 digit presentations for the DeSTIN case,

the estimated training operations to obtain features in DeSTIN is 290 GFlops for the
tabular method or 452 GFlops for the function approximation method. The additional
time to train our default supervised learning method adds additional computational
load. This load can be approximated as, for a single sample, IH1 + H1H2 + H2O,
where O = 10 is the number of output labels, and H1 = 40, H2 = 40. This is a total
of 42,000 values. There are H1 + H2 + O nonlinear operations required, for a total
of 900 operations. Assuming we can still approximate the training requirements as
2(P + C) +NL, where here P = C = 42000, and I = 1000 for worst-case, the total
load is 169 MFlops for a single pass. However, we used all 60000 training samples,
for roughly 150 epochs. This means a single neural network requires 1.5 TFlops; if
we use the ensemble average for 10 neural networks, we are now approximately 15
TFlops for training.
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Table 7.3: Summary of DeSTIN memory cost in 106 units

Layer Nodes D Static Table FA TotalTab TotalFA
0 64 16 0.04 64 0.091 64.04 0.13
1 16 100 2.60 16 0.023 18.60 2.63
2 4 100 0.65 4 0.006 4.65 0.66
3 1 100 0.043 1 0.0014 1.04 0.044

TOTAL 85 -- 3.34 85 0.121 88.3 3.46

7.1.2 CNN computational resource requirements

For this discussion, we focus on the implementation of LeNET 5 from LeCun
et al. (1998), which is very thorough with respect to implementation details and
computational requirements. First, we note that there are two main classes of layers
in CNNs. The first, a convolutional layer, consists of one or more feature maps.
Each map has one or more inputs, which are either images of the maps from previous
layers. The convolution is performed by taking a windowed region of the input map
and applying a multiplicative weighting and adding all values together across all the
input maps. A bias is then added and a nonlinearity is invoked. This operation is
repeated across each region, which can be interpreted as “sliding” around the input
space, so that the overall operation is a convolution (although the convolution is not
computed as a true sliding window operation). To summarize:

• The convolutional layer has M feature maps.

• Each map has I inputs, where an input is a map or image from the previous
layer. Each input is assumed to be of size F × F .

• Each N ×N region in the input is weighted, summed, and a bias added. This
is reproduced for all N ×N regions in the input layers.

• A nonlinearity is applied to each weighted-sum-biased result.
Thus the number of parameters which must be computed in the learning process

in a convolutional layer is given by

NCCNN
parameters =M

�
IN2 + 1

�
. (7.10)

The number of connections is given by

NCCNN
connections =MF

2
�
N2 + 1

�
(7.11)

The number of connections is important because each connection has a weighting
factor applied. The number of nonlinearities is given by
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NCCNN
nonlinearities =MF

2 (7.12)

The second type of layer is the sampling layer. This, too, consists of one or more
feature maps, with one or more inputs from the previous layer, but the difference here
is that the output is not a sliding convolution, but rather a sub-sampling to reduce the
overall size of the field. This sub-sampling is accomplished through a single weighting
factor applied to all pixels in the window. The windows are non-overlapping, as
opposed to the convolutional layer. As in the convolutional layer, after the weighting
is applied, a bias is added and a nonlinearity is applied. To summarize:

• The sampling layer has M feature maps.

• Each map has I inputs, where an input is a map or image from the previous
layer. Each input is assumed to be of size F × F .

• Each non-overlapping 2×2 region in the input is weighted, summed, and a bias
added. This results in an output that is size F

2
× F

2
. (In principle the regions

could downsize by a factor that is not 2, but all implementations found in the
literature use a factor of 2.)

• A nonlinearity is applied to each weighted-sum-biased result.
Thus the number of parameters which must be computed in the learning process

in a sampling layer is given by

NSCNN
parameters =M (I + 1) (7.13)

The number of connections assuming a 2-to-1 reduction in size is given by

NSCNN
connections = 5MF

2 (7.14)

The number of nonlinearities is given by

NSCNN
nonlinearities =MF

2 (7.15)

The CNN typically has a final output layer that is the mapping to the actual
class labels. For our analysis, we can effectively ignore it as it is fairly small, at least
in the implementations in the literature. The memory requirements of the CNN is
essentially identical to the number of free parameters to compute.
In the case of LeNET-5, there are 6 separate layers, denoted as C1, S2, C3, S4,

C5, and F6, as well as an output layer implemented as a radial basis function, with 10
outputs (one per digit). Interestingly, each RBF has a prototype which is a 7× 12 or
84 pixel“image” of an ASCII character 0 through 9. Thus the supervision is performed
by a physical image which creates a target for the learning algorithm to transform the
input data. The F6 layer contains 84 feature units, and each has as inputs the 120
feature maps of C5 which are sized 1 × 1. Each feature of F6 corresponds to a pixel
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Table 7.4: Summary of CNN computational cost (LeNET-5)

Layer Maps I F Param Conn NL MFlops
C1 6 1 28 156 122304 4704 0.17
S2 6 1 14 12 5880 1176 0.02
C3 16 3 to 6 10 1516 156000 6000 0.22
S4 16 1 5 32 2000 400 0.006
C5 120 16 5 48120 48120 1920 0.07
F6 84 1 120 10164 10164 10080 0.11

TOTAL -- -- -- 60000 344468 24280 0.587

in the prototype for the RBFs, and thus we see that through the learning process the
output of F6 is made to resemble the relevant prototype embedded in the RBF for
that digit. In addition, the connection between S2 and C3 is a little unusual, in that
the 6 maps of S2 contribute differently to the 16 maps of C3:

• The first 6 maps of C3 have, as inputs, all combinations of 3 consecutive maps
of S2

• The next 6 maps of C3 have, as inputs, all combinations of 4 consecutive maps
of S2

• The first 3 maps of C3 have, as inputs, some combinations of 4 non-consecutive
maps of S2

• The final map of C3 has all 6 maps from S2 as inputs

These peculiarities apparently arose from the development cycle of LeNET-5 and
its predecessors. We note that while some small details of the implementation of
LeNET-5 were undoubtedly tuned to improve performance, the CNN implemented
truly does learn features; the topology may have some small amount of hand-tuning,
but the features it learns are not.
Regardless, we summarize the computational resources of LeNET-5 in the

following table.
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The RBF layer is excluded above, but it consists of 10 RBFs (one per class) with
84 inputs each. Each RBF computes the Euclidean distance between the 84-pixel
prototype and the output vectors from F6 as shown in Equation 7.16. Thus there is a
total of 84 differences, 84 multiplications, and 84 additions for each RBF, for a total
of 2520 operations which is negligible overall.

RBFi =

j=83�
j=0

(xj − wij)2 (7.16)

For a single digit presentation, then, we expect a total of 587,268 operations
(assuming a non-linearity operation takes roughly a factor of 10 longer than a
regular operation (this was experimentally calculated using a comparison between
multiplication operations and exponential functions)).
A special note is required regarding training, which uses stochastic gradient

descent. We can approximate a single training pass with one sample as we did earlier
by a set of X nonlinearities and 2(P + C) arithmetic operations, where X = 24280
is the total nonlinearities, C = 344468 is the total number of connections, and
P = 60000 is the total number of parameters from table 7.4. This is a total of 808936
operations and 24280 non-linearities. The paper describes training as proceeding with
20 iterations through all 60,000 data samples in the MNIST training set, which is a
total of approximately 9707 GFlops and 29 GNL (giga-non-linearities). This is very
close to 1 TFlop for total training.

7.1.3 DBN computational resource requirements

A deep belief net is comprised of layers of Restricted Boltzman Machines. The
computational cost for an DBN is actually fairly small, as each unit is largely a
simple weighted sum of inputs, which is used to change the state of the unit in a
probabilistic manner. For an RBM, the number of weights is equal to IH, where I is
the number of inputs and H is the number of hidden units. A random variable call is
assumed to require R operations. Roughly 2IH + R operations are needed for each
node to compute the activation function:

p(si = 1) =
1

1 + exp
�
−bi −

�
j sjwij

� (7.17)

In addition, there are a total of H nonlinearities needed in each RBM as well (the
exponential function from 7.17).
The difficult computation cost in DBNs is in the training of the network. The

training of the DBN, at least for the MNIST problem for comparison, consists of the
following steps. First, the network is trained layer-by-layer. The bottom-most layer
is trained by presenting images of the training set and using the greedy algorithm for
contrastive divergence. This can be repeated some number of times. Then, the next
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layer is trained by again presenting input images to the bottom layer, propagating
each one through the bottom layer to the next layer, then using the contrastive
divergence algorithm to update the weights and biases for this layer. This is then
repeated until the second layer is finished. Then, we repeat, propagating through the
bottom, next, and new training layer. The top layer, which is an associative memory,
is trained with the known labels as part of the input.
After the greedy layer-by-layer training, the network is “fine tuned” with

supervised learning and backpropagation to improve the system response. The
“up-down” algorithm of Hinton et al. (2006) starts by taking a sample input and
propagating through the network to stochastically set the values in the hidden units.
Then the weights are adjusted using multiple iterations of the Gibbs sampling. It is
unclear why it was determined that multiple iterations were needed, other than this
gives the ability to produce a more accurate answer at the cost of speed. Finally,
during the down pass the actual label is applied and backpropagated down. However,
in this phase only the bottom few layer weights are changed; the top ones are not
changed. The Gibbs sampling in this stage seems to require more than a pair of
iterations through the data; in the case of Hinton et al. (2006), for 100 epochs an up
pass was performed, 3 iterations of Gibbs samples were used, then the down-pass was
performed. Then, for the next 100 epochs, six iterations were used, and for the last
100, 10 iterations were used.
The network of Hinton Hinton et al. (2006) which was used to generate their

MNIST results consists of an input layer with 768 inputs (for 28 × 28 sized input
images), a layer of 500 units, a layer of 500 units, a layer of 2000 units, and finally
a layer of 10 units for the output. This architecture seems to be experimentally
determined for this problem, as was LeNET-5. The computational load of the network
for system responses is shown in Table 7.10. Their training regiment was somewhat
complicated. In the training, they took the 60,000 input samples and used 44,000 of
them, and divided them into a balanced set of 440 batches, each with 100 digits
(10 examples of each class). Note that the training time for the layer by layer
representation was roughly a few hours per layer using Matlab on a 3 GHz processor
Hinton et al. (2006). The total time is thus likely about 10 hours, with 30 epochs
specified; and this is presumably on all mini-batches. However, it is difficult to tell
if that implementation was optimized since Matlab was used. The performance of
the network at that point was 2.49% error, or 97.51% correct. In any event, this pre-
training time was minimal compared to the fine-tuning training which followed, where
a 10,000 sample validation set was taken from the remaining (60000-44000=16,000)
images. The up-down algorithm was used for this fine-tuning by running 300 total
epochs. At this point the network performance was 1.39% error or 98.61% correct.
An additional 59 epochs were then applied using the entire 60,000 training images,
by running until the performance on the 60K training set matched the performance
on the 44K training set. At this point the error rate was 1.25%, or 98.75% correct.
This apparently took “about a week” or 7 days.
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If we assume the 30 epochs used for the pre-training took 10 hours, we can assume
roughly 3 epochs per hour were needed. Therefore the additional approximately 360
epochs used to fine-tune the weights in the supervised phase likely took approximately
120 hours, which is likely the source of the time period cited. From another
perspective, one complete fine-tuning pass was likely not the same as a pass in the
pre-training due to the additional Gibbs sampling steps used.
We shall attempt to estimate the time for this work by using an assumption of

a single pass, either up or down, through a layer with G Gibbs sampling steps. We
assume there are I inputs and H hidden nodes. A random variable call is assumed
to require a R operations. Thus a sampling requires 2IH +HR +HT operations as
before. A Gibbs sampling step requires two samples (to go from h to x and back to
h), with the second sampling invoked on the input nodes, and an extra 2IH steps to
estimate the probability of achieving that final sample; thus, all total, we have the
operations given as

G [4IH + (H + I)(R + T )] + 2IH (7.18)

To pretrain layer L, we must take an input and generate a sample from layers 1
to L− 1. Then at layer L we perform operations given by Equation 7.18 with G = 1.
Finally a weight matrix update of cost 3HI+4H+4I operations is needed. All total,
to perform a single pre-train to layer L requires

N =

�
l=L−1�
l=1

(2IlHl +HlR +HlT )

�
+ [G [4ILHL + (HL + IL)(R + T )] + 2ILHL]

+ [3HLIL + 4HL + 4IL]

If we are running E epochs of N samples each we must multiply this value by EN .
To run a tuning phase, we perform a single up pass with weight adjustments,

assuming G = 1. This can be approximated as a summation of operations given by
7.18 summed up from l = 1 to L then with the weight adjustments as well

l=L�
l=1

[[4IlHl + (Hl + Il)(R + T )] + 2IlHl + 3HlIl + 4Hl + 4Il] (7.19)

In the down pass we have a different value for G, and we also note that only the
bottom layers are effected, so the upper bound on the summation is Lu.

l=Lu�
l=1

[G [4IlHl + (Hl + Il)(R + T )] + 2IlHl + 3HlIl + 4Hl + 4Il] (7.20)

Experimentally, we found R requires roughly 10 operations, equivalent to a T
operation.
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Table 7.5: Summary of DBN computational cost pre-training (Hinton MNIST)

Layer Inputs Units MFlops All Epochs (GFlops)
1-2 768 500 3 460
2-3 500 500 3 403
3-4 500 2000 10 1366
4-5 2000 10 4 469
TOTAL - - - 2698

Table 7.6: Summary of DBN computational cost tuning first 100 epochs (Hinton
MNIST)

Layer Inputs Units UpPhaseMF DownPhaseMF All Epochs (GFlops)
1-2 768 500 3 7 44421
2-3 500 500 2 4 28987
3-4 500 2000 9 0 39864
4-5 2000 10 0 0 1004
TOTAL - - - - 114276

To estimate the computational cost for the network described by Hinton et al.
(2006), we group the layers as 1 − 2, 2 − 3, etc for easier understanding. In Table
7.5 we show the cost to pretrain each layer, assuming 30 epochs with 4400 samples.
In Tables 7.6, 7.7, and 7.8 we show the cost to do the tuning with 44,000 images,
with G = 3 for the first 100 epochs, G = 6 for the second 100, and G = 10 for the
final 100. Finally we show the cost for tuning with 60,000 images and 60 epochs for
G = 10, presumably the value used for the last set of fine-tuning epochs, in Table
7.9. Note that the value of Lu = 2.
Finally, we find the cost to actually perform an evaluation of an input sample.

There are several ways of performing this evaluation, as described in Hinton et al.
(2006), but the method which they indicated worked the best from performance
and simplicity was to use the probabilities of activation in each unit instead of a
stochastic method (which requires averaging and therefore multiple passes). Thus
an evaluation is simply a matter of performing a sampling as before, except with no
random component required as this is replaced by multiplications. Thus, for a single
layer the cost is 2IH +HT +H and this is shown in Table 7.10.
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Table 7.7: Summary of DBN computational cost tuning second 100 epochs (Hinton
MNIST)

Layer Inputs Units UpPhaseMF DownPhaseMF All Epochs (GFlops)
1-2 768 500 3 11 65031
2-3 500 500 2 7 42451
3-4 500 2000 9 0 39864
4-5 2000 10 0 0 1004
TOTAL - - - - 148350

Table 7.8: Summary of DBN computational cost tuning third 100 epochs (Hinton
MNIST)

Layer Inputs Units UpPhaseMF DownPhaseMF All Epochs (GFlops)
1-2 768 500 3 18 92510
2-3 500 500 2 11 60403
3-4 500 2000 9 0 39864
4-5 2000 10 0 0 1004
TOTAL - - - - 193781

Table 7.9: Summary of DBN computational cost tunining, final 60 epochs (Hinton
MNIST)

Layer Inputs Units UpPhaseMF DownPhaseMF All Epochs (GFlops)
1-2 768 500 3 18 75690
2-3 500 500 2 11 49421
3-4 500 2000 9 0 32616
4-5 2000 10 0 0 822
TOTAL - - - - 158549
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Table 7.10: Summary of DBN computational cost post-training (Hinton MNIST)

Layer Inputs Units MFlops
1-2 768 500 0.774
2-3 500 500 0.5055
3-4 500 2000 2.022
4-5 2000 10 0.040
TOTAL -- -- 3.34

7.1.4 Summary of computational resources

We used our implementation of DeSTIN to provide guidelines regarding the processing
time and computational load of the system. We also summarized and compared
similar parameters for the CNN and DBN deep learning architectures, based on
seminal papers on these technologies which also used the same MNIST data set.
In our approach we established “design equations” for these methods, then compared
our actual load based on our experimental results and the results reported in the
literature.
The supervised learning system we used for our DeSTIN results is the largest

computational element here, requiring roughly 15 TFlops, dwarfing the feature
extraction training cost which is only 290 GFlops for the tabular method or 452
GFlops for the function approximation method; in contrast, the CNNmethod requires
approximately 1 TFlop. The DBN on the other hand seems to require over 600
TFlops. Once the networks are trained, DeSTIN requires the most computations
to produce an output at 100 MFlops, with the DBN requiring 3.34 MFlops and the
CNN requiring 0.6 MFlops. Thus, the DeSTIN computational load is larger than the
DBN and CNN for running responses after training the feature extractor. However,
we note that this is largely because most of our experiments were done using values
for A, K, and L which are fairly large. We saw in Chapter 6 that we could achieve
good results with smaller values, so it is possible that a more fair comparison can be
made, but we preferred to use our “default” setting here.
These results suggest we have not accomplished our goal of creating an architecure

suitable for online learning, but in reality we should point out that our main goal
here was to focus and constrain ourselves to this domain for the feature generation.
Incorporating a supervised learning system more directly could save significant
computation, as well as trying to perform other optimizations. We also should point
out that the DeSTIN topology used here is very generic, and was used for all the data
sets from Chapter 6. By the same token, the training procedure followed by the DBN
of Hinton et al. (2006) seems customized for the problem, although in fairness their
training could have been terminated at the pre-training phase, which still yielded an
error rate of 2.48 % or 97.51 % accuracy.
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7.2 Noise analysis

There are three main areas where noise in the system can cause degradation in
performance. First, in the clustering itself, a system trained with a certain noise level
which is subjected to signals with more noise will began to mis-identify observations
as different cluster labels. Second, the exponential distribution of distances to cluster
centroids which has a learned standard deviation will began to become “less true”, as
more observations fall at less likely distances than expected. Third, the P ass table or
function approximation will begin to yield less likely beliefs, as the transitions from
state to state with each advice become less like the learned values during network
training.
There are a few advantages to DeSTIN which combat this degradation. First,

the multple observations through different spatial shifts amount to different signal
observations and thus can combat noise; if the noise is independent from observation
to observation, the noise immunity should fall as 1√

N
. A second strategy employed

by DeSTIN is the use of multiple nodes; again, if the noise is independent from node
to node, the immunity again gains by the same factor. However, we must note that
there is a degree of correlation between observation and node, especially since the
observations are mostly spatially shifted versions of one another and the belief of a
node is dependent on the beliefs of its children.
Thus for this analysis, we will investigate the degradation at a single node through

the three main mechanisms of: clustering errors; the degradation in the integrity of an
exponential PDF in the presence of noise; and the degradation in the dynamic system
in the presence of noise. We will then use these results and experimental analysis on
the MNIST data set to estimate the performance of DeSTIN in the presence of noise,
then follow with experimental results with different noise levels on a full DeSTIN and
supervised learning stage.

7.2.1 Clustering

The clustering performance is definitely degraded by noise, as the composite mean-
square-error becomes larger when more noise is added to a system. Note that the
supposition here is that the DeSTIN network is trained without noise to extract
features, and then the response to noisy signals is obtained and used in supervised
learning. Thus, we expect that added noise will cause observations to drift from the
“true” cluster and misclassifications will occur.
However, we note that the DeSTIN mechanism of approximating the distances to

the centroid library helps reduce the effect of these errors. In effect this mechanism
“fuzzifies” the belief value by using the distance computed to ALL centroids in the
library, as opposed to simply taking the winner as a binary label. The exact effect
of this quality is difficult to quantify as it depends very highly on the initial data
spread, the number of centroids used, the feature dimensionality, and the noise levels.
For illustration purposes, however, we performed a simple experiment where a 2D
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data set of 4 distinct classes was clustered and then data was presented with different
noise levels. At each noise level, we score the performance of a binary classification
measuring similarity to each library member against a system using an estimate of
the similarity as S = 1 − d. We use the data set from the first set of experiments
from Chapter 4, which is repeated here for convenience. In this case there are 4
clusters in 2D space and the data set uses Gaussian noise with a standard deviation
of 0.10, illustrated in Figure 7.1 with the derived exponentials shown in Figure 7.2.
The estimated exponential distributions of the distance from this case use a λ of 771,
154, 117, and 343 each.

Figure 7.1: Data and centroids of test case to illustrate cluster noise immunity by
distance modeling.

For our comparison, at each additive noise level from 0 to 2.0 in steps of 0.1
we evaluated 1000 samples from each centroid class. The basic “winner take all”
clustering was performed to achieve a binary result, then for comparison the similarity
metric was used and normalized, then the mean-square-error between the output
vectors and the ideal case (a vector with a single non-zero element, vi = 1 for ω = i).
This was then averaged across all the samples. The result is shown in Figure 7.3.
We see that at low noise levels the error from the single non-zero element case is,
in fact, smaller as expected since so long as the classifications are correct they will
be absolutely correct, with no residual error. At higher noise levels, however, the
distance-based case is more robust and yields a better result. The impact of this in
DeSTIN is the means of allowing softer decisions which over multiple observations
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Figure 7.2: Estimated distributions for sample case.

have a higher chance of yielding meaningful features and more reliable classifications
at the supervised learning level.

7.2.2 Estimates of P (o|s)
The exponential distribution we use to model the P (o|s) component of Equation 3.13
uses a single parameter, λ, which is estimated during the training procedure for the
network. As a result, intuitively when the observations are made that are from the
original estimate of the exponential distribution, fit that exponential distribution,
the PDF of the samples are exactly the distribution of choice. However, when the
observations have changed to a noisier situation, the PDF of the new observations
changes. Therefore, we would like to compute the PDF of the new observation
space. Our original P (o|s) estimate is made by using a small region in the cumulative
distribution, such that P (o|s) is given as

P (o = d|s) =
� d+δ

d−δ

λse
−λsxdx (7.21)

P (o = d|s) = −e−λsx


d+δ

d−δ
(7.22)

P (o|s) = − exp (−λs(d+ δ)) + exp (−λs(d− δ)) (7.23)
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Figure 7.3: Mean-square-error at different noise levels for hard-threshold on
distributions for sample case.

P (o|s) = exp (−λsd) [− exp (−λsδ) + exp (λsδ)] (7.24)

We note that the PDF of this signal is simply a scaled exponential distribution given
that we use a fixed δ. We show some examples in Figure 7.4.
We can model additive noise through a very simple mechanism here to a first-order

approximation. Let the noise be denoted as an additive value to the true distance
which we will denote here as ω. Thus, the probability is now

P (d+ ω|s) = exp (−λsd+ ω) [− exp (−λsδ) + exp (λsδ)] (7.25)

P (d+ ω|s) = exp (−λsω)P (d|s) (7.26)

Thus, the noisy probability is simply the original probablity scaled by a factor that
is a function of the original estimated model parameter λs. Note that the additive
factor ω is the result of the original additive noise, and its exact form again depends
on the centroids used. We also note the dependence on the original model parameter
λs is such that when λs is larger, the scaling factor gets smaller, and thus reduces the
overall probability of seeing a particular observation; the noise corrupts the system
into thinking common occurrences are actually rarities, so the overall probability goes
down. To some degree this is mitigated by some of the normalization factors.
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Figure 7.4: Example of the probability of a particular distance with different lambda
values and delta set to 0.01.

We can attempt to get a bound on this additive noise by performing a
transformation of random variables. We effectively have a relationship given as

y = exp (−λsx) (7.27)

In this equation x is a random variable which has been transformed through an
exponential function. Solve this for x to get

x = − ln (y)
λs

(7.28)

To find the P (Y ≤ y) we integrate over the distribution of x, which we will assume
is an exponential distribution with parameter λ2. Since y is decreasing, we establish
the lower bound with our definition and the upper bound as ∞. We therefore see
that

P (Y ≤ y) = P


x ≥ − ln y

λs

�
(7.29)

This is written in integral form as

P (Y ≤ y) =
� ∞

− ln y
λs

λ2e
−λ2xdx (7.30)
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Solve the integral, and noting that λs is always positive, to get

P (Y ≤ y) = −e−λ2x


∞
− ln y

λs

(7.31)

P (Y ≤ y) = exp


λ2
λs
ln y

�
(7.32)

The PDF is found by differentiating:

p (y) =
λ2
yλs

exp



λ2
λs
ln y

�
(7.33)

Note that the exponent is always negative, since 0 ≤ y ≤ 1. We can find the expected
value also by integrating:

E (y) =

� 1

0

y



λ2
yλs

exp



λ2
λs
ln y

��
dy (7.34)

E (y) =

� 1

0

y



λ2
yλs

exp
�
ln y

λ2
λs

��
dy (7.35)

E (y) =

� 1

0

y



λ2
yλs

y
λ2
λs

�
dy (7.36)

E (y) =
λ2
λs

� 1

0

y
λ2
λs dy (7.37)

E (y) =
λ2
λs

1

1 + λ2
λs

y
λ2
λs




1
0

(7.38)

E (y) =
λ2

λ2 + λs
(7.39)

When λ2 = λs the result is simply P (Y ≤ y) = y, which means the PDF of y is a
uniform distribution and overall the mean of the distribution is 0.5. When λ2 is less
than λs, the mean is closer to 0 which makes sense since the noise is greater (recall
the mean of an exponential distribution with parameter λ is 1

λ
). Finally, when λ2

> λs, the expectation tends to be greater than 0.5, up to a maximum of 1.0 which
means the noise is negligible.

7.2.3 Propagation through P ass mechanisms

In this section we consider the system dynamics and normalization factors, and
summarize their susceptibility to noise processes. As shown in Chapter 5, the belief
in each state vector b(s) is then propagated through a probability transition matrix
or equivalent function which we have termed P ass for brevity. The P

a
ss calculation is

denoted in the following manner
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b = PosP
a
ss b

� (7.40)

where Pos is the vector of probabilities P (o|s) calculated as above with a scalar
“noise” factor for each element. The overall vector with noise has the form

Pd|s =

⎛⎜⎜⎜⎝
exp(−λ1ω1)P (d1|s1)
exp(−λ2ω2)P (d2|s2)

...
exp(−λmωm)P (dm|sm)

⎞⎟⎟⎟⎠ (7.41)

As the final analysis step, we compile the composite expression B(a) by the
summation of the beliefs found for a given advice a across all possible states at
movement m as stated in Equation 5.7. The effect here is again a composite scaling,
but the factor is a weighted summation (with weights given by the noise terms
exp(−λsωs) and thus cannot be generalized with any added insight. However, we can
consider extreme cases, where the belief is noise-free and simplistic compared to with
a noisy situation. In the case of a noise-free, clear belief, the state-to-state transition
is absolute, with a probability of 1 for the transition from state sm−1 to state sm and
probability of 0 (or a small non-zero value � for regularization) for all other possible
transitions. The new belief will therefore be essentially equal to the previous belief,
with P (d|sm) as the dominant belief. As this accumulates for all movements, the B(a)
term for the “correct” advice becomes dominant. However, with noise, the value of
P (d|sm) is reduced by the exponential scaling factor we found earlier. If no other
beliefs are possible, based on past learning for the P ass transition matrix, then the
normalization effect will effectively remove the noise for this particular advice state!
In this case, the past learned experience is the dominant factor, and can be regarded
as a learned prior with 100% probability. Unfortunately, this will only be effective so
long as all other advice states have a zero probability of occuring for this set of P (d|s)
values. For other advice states, the normalization actually works against us, as the
beliefs tend to become smaller (since the exponential scaling factor reduces the value
of P (d|s) for all states) and thus the normalization tends them toward uniformity.
Thus the resulting features have less value as they no longer embody the learned
states associated with the sequence of observations, and performance is degraded.

7.2.4 Experimental Results

The MNIST images were used for these experiments. For each image, Gaussian-
distributed noise was added with zero mean and a standard deviation ranging from
0.3 to 4.0, then the images were thresholded to a range of 0 to 1. There are not
really very robust means of specifying the true signal to noise ratio in images, since
image interpretation is highly subjective Winkler and Mohandas (2008), but the use
of mean-square-error or MSE and associated power-signal noise ratio (PSNR) are
commonly used. The MSE was computed on a per-image basis using Equation 7.42.
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y =
m�
j=1

n�
i=1

(oi − wni)2 (7.42)

We then averaged the MSE across the entire training set for the composite MSE
value. Note that for additive noise of 0 standard deviation, the MSE will also be 0.
For noise analysis, a network was created using evolving clusters with 25 maximum

as discussed earlier. We then performed a variety of tests where the source images
from the MNIST dataset were corrupted with additive noise applied to both the
training and testing images. The noise was added as Gaussian noise, zero mean, with
varying values of sigma. The values were thresholded so that the signal ranged from
0 to 1, where values less than 0 were set to 0 and values greater than 1 were set
to 1. The resulting noise level was characterized by the mean-square-error from the
original image level, with the average taken across all images in the MNIST training
set. The results are shown in Table 7.11 for a sample DeSTIN network with the neural
network ensemble supervised learning system. In addition, we show the results of a
kNN approach using the same DeSTIN features, and also the results using the raw
image data alone for comparison. The results are plotted in Figure 7.10.

Figure 7.5: Example MNIST images with no added noise.
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Figure 7.6: Example MNIST images with added noise STD 0.3.

Figure 7.7: Example MNIST images with added noise STD 0.7.
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Figure 7.8: Example MNIST images with added noise STD 1.6.

Figure 7.9: Example MNIST images with added noise STD 4.0.

176



Table 7.11: Summary of noise analysis study

STD DeSTIN NN DeSTIN kNN Image kNN MSE
0 98.26 96.574 94.527 0
0.3 96.68 93.1233 88.9 0.0434905
0.5 93.17 88.735 80.78 0.10842
0.6 89.9 85.765 72.5 0.14104
0.7 87.4 81.67 68.1 0.170584
0.8 83.78 77.4667 60.25 0.196356
0.9 80.14 72.6733 54.8 0.21869
1 75.48 67.9433 48.6 0.237925
1.2 66.71 58.2892 42 0.269062
1.4 59.26 50.3512 34.8 0.292909
1.6 52.49 43.965 29.3 0.31163
1.8 46.76 38.3475 25.2 0.326546
2 42.15 33.4323 21.4 0.338739
4 23.4 17.238 14.1 0.395787

Figure 7.10: Performance of DeSTIN supervised learning with increasing image
noise.
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7.2.5 Summary of Noise Analysis

From our analysis and results, we see that there is some susceptibility to noise in the
DeSTIN architecture. We traced the response of a single node in the presence of noise
through the belief formulation process, and found the main effect is in the reduction
of the P (o|s) term which propagates to the B(a) output value for each node. The
multiple observer model, through the multiple movements at a single node and then
through the use of multiple nodes, should provide some level of noise resistance and
our experimental results seem to validate this, where the kNN classification of DeSTIN
features outperformed the kNN on raw image data especially in the moderate noise
levels (where the MSE was between 0.15 to 0.25). Visually, noise levels above this
made a classification by human observer very difficult. However, the noise reduction
obtained was not nearly as robust as predicted by a 1√

MN
result, which is largely due

to correlations in the noise and signal from observation to observation.
The analysis performed here was fairly rudimentary, but it highlights the

mechanisms where noise in the DeSTIN architecture can cause issues and means
by which DeSTIN mitigates these effects. We note that further experiments and a
more rigorous analysis are certainly possible, but we also note that there are additional
mechanisms which could be undertaken to help reduce the effect of noise even further,
in particular a non-fixed number of movements which would allow longer “staring”
times which could permit better feature extraction and decision making, especially
when coupled with a supervised learning system providing online feedback on the
quality of the classification.
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Chapter 8

Conclusions

8.1 Summary

In this work we have presented the Deep Spatio-Temporal INference Network
or DeSTIN, a biologically-inspired, unsupervised feature extraction deep learning
architecture, that uses multiple layers of identical circuits or nodes. DeSTIN
learns feature representations from repeated observations of spatial patterns that
are changed over time either through active scanning (for the results shown in this
dissertation) or through other forms of motion. We introduced the basic conceptual
formulation of DeSTIN, along with background on other deep learning architectures
in the literature. We presented a variety of details on DeSTIN, including its basic
implementation details, the static elements of the DeSTIN method including online
clustering and the use of probabilistic mixture models in our belief formulation
process, the dynamic elements of the DeSTIN process from both a tabular and
function approximation approach, the use of online clustering for advice formulation
from parental nodes, and a multiple observer model for the creating of a single
temporal representation for a node’s belief states. We then presented methods for
the selection of nodes for supervised learning, and showed the results of the DeSTIN
architecture on the MNIST data set (for handwritten digit recognition), the CBCL
Face Database 1 from the MIT Center for Biological and Computational Learning (for
face detection), and an optic nerve detection task (using the Messidor data set and a
private set) . We found that DeSTIN compared favorably to state-of-the-art results
in the literature, with little or no tuning for these domains. Finally, we performed
an analysis of the effects of noise on the DeSTIN architecture and compared the
computational load of DeSTIN to other deep learning methods.
The main DeSTIN software is written in C++ and can be compiled under both

Microsoft Windows Visual Studio and Linux environments. The core software consists
of a series of classes which include a clustering engine, a network node, a network
layer, a raw data file format, and various other utility classes needed to implement
a DeSTIN network. The function of the software is to produce a trained DeSTIN
network with a given hierarchical structure using a training data set, and generate
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the network output responses to a testing data set. These output responses are then
used with a group of MATLAB scripts to generate supervised learning performance
results. Much of the software is being vetted and developed for more general use by
the OpenCOG software community Foundation (2012), with a broad release targeted
at the end of 2012.

8.2 Future Directions

Overall, DeSTIN is a fertile ground for further research efforts in deep machine
learning. In addition, there are many areas of general machine learning that could
be valuable research topics in DeSTIN, both advancing the architecture itself and the
body of research for these areas.

8.2.1 Similarity measures and data representation

In this work we used the basic cosine similarity measurement to establish the
similarity of observations to one another and to our basic prototypes of our clustering
representation of the data. Other metrics could be used, and indeed in conjunction
with different data representation methods besides clustering may prove beneficial.
We envision a system where the actual concept of similarity can be dynamically
learned from some family of possible functions or kernel methods, in particular where
the concept of temporal closeness can be used to constrain an optimization process.
In addition, while we chose to represent our belief “state” using online clustering,
there are other data representation methods that could be utilized as well, including
various factor analysis methods and even other clustering mechanisms with different
objective functions. This is a fertile field for additional improvements to the DeSTIN
architecture and methods.

8.2.2 System Dynamics

The system dynamics of the DeSTIN method were explored through initial temporal
sampling and later through a multiple-observer model where the belief in an “advice
state” was created over multiple movements or observations. In our work we utilized a
fixed pattern of temporal scans, and used the entire pre-known scan sequence to create
the advice which was generated by a parent and projected down to child nodes after
each set of scans was completed. An interesting alternative could be to generate the
scan sequence on-the-fly and create the advice on-the-fly, as we originally intended in
our earlier DeSTIN formulations. The evolving belief formulation could then attempt
to modify the scan itself using some kind of “action” rule as in reinforcement learning,
with a goal of reaching a conclusion as early as possible, or with a certain level of
confidence.
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8.2.3 Supervised learning

We believe the supervised learning phase of DeSTIN can be directly incorporated
into the architecture, much as it is done for CNNs and DBNs. This would be a very
valuable contribution as our current approach is essentially an unsupervised feature
extraction method that does not draw from all known characteristics of the data to
optimize the feature extraction process. There are a few easily obvious methods for
incorporating supervised learning. One method is to use the supervision as labels that
replace or augment the advice during the training process. The advice formulation in
our work here could then be used for a joint probability where unsupervised learning
generates state labels as we do here, but the supervised label represents an additional
“dimension” in a joint probability. Another method could be to use the labels as an
additional constraint in the data representation process, where the clustering process
distance or similarity measurement could be influenced by supervised learning. The
use of partially labeled data (for semi-supervised learning) would be a fruitful area of
research as well.

8.2.4 Control problems

We have investigated the use of DeSTIN in the context of image classification, but
the signals and learning methods used here could also be adapted for control. In
this operation the decisions made from the features learned could be used to guide a
control process, and thus DeSTIN could fit into a robotics or other RL scenario as
a feature extractor. This type of application could utilize the other future directions
mentioned here as well.

8.2.5 Other inputs

While there are advantages to working with images from the “raw pixel” level, other
representations may be useful. The SIFT method and its relatives have been shown to
have good generalization properties; we envision that DeSTIN could be constructed
to work with these representations instead, or in addition to, the raw pixel data
itself. Other image processing algorithms such as edge detection and thresholding
could be simple, generic early pre-processing operations that could be combined with
DeSTIN to produce better results or extend the capabilities of the architecture. This
may actually represent a more biologically-inspired approach, since there is evidence
from neuroscience that the human visual system performs some basic processing
steps which are inherent to the mammalian sensory process (i.e., they are an evolved
product of biology as opposed to a learned process).
Finally, DeSTIN itself need not be limited to image processing. Other types of

input data, such as acoustic or hyperspectral signals, or sensory arrays featuring a
variety of different signal types, could be interesting fields of application for DeSTIN
as well. There may be some required changes in the topology, since some of these
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fields may not actually have a “spatial” nature, but this general topic is worth future
investigation.
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Appendix A

Appendix: DBN PseudoCode

In this section we show matlab implementations of the pseudocode for DBN greedy
layer-by-layer training from Bengio (2009). This is not intended to be a full
implementation of a DBN, but rather is a means of clarifying the process. We show
functions for the implementation and then a screen print of the code itself.

function d = sigm( x )
d =exp(x)./(1+exp(x));

end

function h1 = SampleFromRBM( x1, W, b )

h1 = zeros(size(W,1),1);
for i=1:size(W,1)

Sm=0;
for j=1:size(W,2)

Sm = Sm+W(i,j)*x1(j);
end;
Sm=Sm+b(i);
Qof1=sigm(Sm);
%I think Qof1 is a probability of being 1. So do a rand()
%and set it...
r=rand(1);
if ( r<Qof1 )

h1(i)=1;
else

h1(i)=-1;
end;
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end;

end



function [ Wout bout cout ] = RBMUpdate( x1,eps,W,b,c )

%from Bengiio’s RBMUpdate pseudo-code
% W = zeros(3,2);
% x1=[1 -1]’;
% b=zeros(size(W,1),1);
% c=zeros(size(W,2),1);
% eps = 0.01;

NumberOfHiddenUnits = size(W,1);
NumberOfInputs = size(W,2);

h1=SampleFromRBM(x1,W,b);

%now go through the visible units
x2=SampleFromRBM(h1,W’,c);

%finally go back through the hidden units...
% this generates the update
%rule, and is NOT a sampling!!
Qofh2Equals1 = zeros(size(W,1),1);
for i=1:size(W,1)

Sm=0;
for j=1:size(W,2)

Sm = Sm+W(i,j)*x2(j);
end;
Sm=Sm+b(i);
Qofh2Equals1(i)=sigm(Sm);

end;

Wout = W+eps*(h1*x1’-Qofh2Equals1*x2’);
bout = b+eps*(h1-Qofh2Equals1);
cout = c+eps*(x1-x2);

end

clc;



clear all;

%loop through...
InputSize = 2;
HiddenSize = [3 3 3 3 3];
L=5;
jj=0;
Wcell=cell(L,1);
bcell=cell(L,1);
hcell=cell(L,1);
eps = 0.01;

b0=zeros(InputSize,1); %this is the bias level applied to
% the input, which is h0

for l=1:L
%initialize the weights and biases
if ( l>1 )

W=zeros(HiddenSize(l),HiddenSize(l-1));
b=zeros(HiddenSize(1),1);

else
W=zeros(HiddenSize(l),InputSize);
b=zeros(HiddenSize(1),1);

end;

Wcell{l}=W;
bcell{l}=b;

end;

for l=1:L

fprintf(1,’On layer %d\n’,l);

StopCriteria=0;
SamplesShown=0;
while ( StopCriteria==0 )

SamplesShown = SamplesShown+1;
%Get an input vector and put it for h0
x=zeros(InputSize,1);
h0=x;



fprintf(1,’Got sample %d from the inputs\n’,
SamplesShown);

for k=1:l-1
if ( k==1 )

h=h0;
InputLayerIndex=0;

else
h=hcell{k-1};
InputLayerIndex=k-1;

end;
W=Wcell{k};
b=bcell{k};
hNext=SampleFromRBM(h,W,b);
hcell{k}=hNext;
fprintf(1,’Generated a sample from RBM layer %d using

sample from
%d as input\n’,k,InputLayerIndex);

end;

if (l==1 )
bPrev=b0;

else
bPrev=bcell{l-1};

end;

if ( l==1 )
hPrev=h0;

else
hPrev=hcell{l-1};

end;

W=Wcell{l};
b=bcell{l};

[ Wout bout cout ] = RBMUpdate( hPrev,eps,W,b,bPrev );

Wcell{l}=Wout;
bcell{l}=bout;
fprintf(1,’Updated weights and bias for layer %d\n’,l);

if ( l==1 )
b0=cout;

else



bcell{l-1}=cout;
end;

if ( SamplesShown == 10 )
StopCriteria=1;

end;

end; %while (not stop)

end;

On layer 1
Got sample 1 from the inputs
Updated weights and bias for layer 1
Got sample 2 from the inputs
Updated weights and bias for layer 1
Got sample 3 from the inputs
Updated weights and bias for layer 1
Got sample 4 from the inputs
Updated weights and bias for layer 1
Got sample 5 from the inputs
Updated weights and bias for layer 1
Got sample 6 from the inputs
Updated weights and bias for layer 1
Got sample 7 from the inputs
Updated weights and bias for layer 1
Got sample 8 from the inputs
Updated weights and bias for layer 1
Got sample 9 from the inputs
Updated weights and bias for layer 1
Got sample 10 from the inputs
Updated weights and bias for layer 1
On layer 2
Got sample 1 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Updated weights and bias for layer 2
Got sample 2 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Updated weights and bias for layer 2
Got sample 3 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input



Updated weights and bias for layer 2
Got sample 4 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Updated weights and bias for layer 2
Got sample 5 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Updated weights and bias for layer 2
Got sample 6 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Updated weights and bias for layer 2
Got sample 7 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Updated weights and bias for layer 2
Got sample 8 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Updated weights and bias for layer 2
Got sample 9 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Updated weights and bias for layer 2
Got sample 10 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Updated weights and bias for layer 2
On layer 3
Got sample 1 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Updated weights and bias for layer 3
Got sample 2 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Updated weights and bias for layer 3
Got sample 3 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Updated weights and bias for layer 3
Got sample 4 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Updated weights and bias for layer 3
Got sample 5 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Updated weights and bias for layer 3



Got sample 6 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Updated weights and bias for layer 3
Got sample 7 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Updated weights and bias for layer 3
Got sample 8 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Updated weights and bias for layer 3
Got sample 9 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Updated weights and bias for layer 3
Got sample 10 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Updated weights and bias for layer 3
On layer 4
Got sample 1 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Updated weights and bias for layer 4
Got sample 2 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Updated weights and bias for layer 4
Got sample 3 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Updated weights and bias for layer 4
Got sample 4 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Updated weights and bias for layer 4
Got sample 5 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input



Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Updated weights and bias for layer 4
Got sample 6 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Updated weights and bias for layer 4
Got sample 7 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Updated weights and bias for layer 4
Got sample 8 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Updated weights and bias for layer 4
Got sample 9 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Updated weights and bias for layer 4
Got sample 10 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Updated weights and bias for layer 4
On layer 5
Got sample 1 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Generated a sample from RBM layer 4 using sample from 3 as input
Updated weights and bias for layer 5
Got sample 2 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Generated a sample from RBM layer 4 using sample from 3 as input
Updated weights and bias for layer 5
Got sample 3 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input



Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Generated a sample from RBM layer 4 using sample from 3 as input
Updated weights and bias for layer 5
Got sample 4 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Generated a sample from RBM layer 4 using sample from 3 as input
Updated weights and bias for layer 5
Got sample 5 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Generated a sample from RBM layer 4 using sample from 3 as input
Updated weights and bias for layer 5
Got sample 6 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Generated a sample from RBM layer 4 using sample from 3 as input
Updated weights and bias for layer 5
Got sample 7 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Generated a sample from RBM layer 4 using sample from 3 as input
Updated weights and bias for layer 5
Got sample 8 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Generated a sample from RBM layer 4 using sample from 3 as input
Updated weights and bias for layer 5
Got sample 9 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input
Generated a sample from RBM layer 3 using sample from 2 as input
Generated a sample from RBM layer 4 using sample from 3 as input
Updated weights and bias for layer 5
Got sample 10 from the inputs
Generated a sample from RBM layer 1 using sample from 0 as input
Generated a sample from RBM layer 2 using sample from 1 as input



Generated a sample from RBM layer 3 using sample from 2 as input
Generated a sample from RBM layer 4 using sample from 3 as input
Updated weights and bias for layer 5
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