239 research outputs found

    Rotationally and Illumination Invariant Descriptor Based On Intensity Order

    Get PDF
    In this thesis, a novel method for local feature description where local features are grouped in normalized support regions with the intensity orders is proposed. Local features extracted using this kind of method are not only gives advantage of invariant to rotation and illumination changes, but also converts the image information into the descriptor. These features are calculated with different ways, one is based on gradient and other one is based on the intensity order. Local features calculated by the method of the gradient performs well in most of the cases such as blur, rotation and large illuminations and it overcome the problem of orientation estimation which is the major error source for false negatives in SIFT. In order to overcome mismatching problem, method of multiple support regions are introduced in the proposed method instead of using single support region which performs better than the single support region, even though single support region is better than SIFT. The idea of intensity order pooling is inherently rotational invariant without estimating a reference orientation. Experimental results show that the idea of intensity order pooling is efficient than the other descriptors, which are based on estimated reference orientation for rotational invariance

    Dynamic texture recognition using time-causal and time-recursive spatio-temporal receptive fields

    Full text link
    This work presents a first evaluation of using spatio-temporal receptive fields from a recently proposed time-causal spatio-temporal scale-space framework as primitives for video analysis. We propose a new family of video descriptors based on regional statistics of spatio-temporal receptive field responses and evaluate this approach on the problem of dynamic texture recognition. Our approach generalises a previously used method, based on joint histograms of receptive field responses, from the spatial to the spatio-temporal domain and from object recognition to dynamic texture recognition. The time-recursive formulation enables computationally efficient time-causal recognition. The experimental evaluation demonstrates competitive performance compared to state-of-the-art. Especially, it is shown that binary versions of our dynamic texture descriptors achieve improved performance compared to a large range of similar methods using different primitives either handcrafted or learned from data. Further, our qualitative and quantitative investigation into parameter choices and the use of different sets of receptive fields highlights the robustness and flexibility of our approach. Together, these results support the descriptive power of this family of time-causal spatio-temporal receptive fields, validate our approach for dynamic texture recognition and point towards the possibility of designing a range of video analysis methods based on these new time-causal spatio-temporal primitives.Comment: 29 pages, 16 figure

    An evaluation of recent local image descriptors for real-world applications of image matching

    Get PDF
    This paper discusses and compares the best and most recent local descriptors, evaluating them on increasingly complex image matching tasks, encompassing planar and non-planar scenarios under severe viewpoint changes. This evaluation, aimed at assessing descriptor suitability for real-world applications, leverages the concept of approximated overlap error as a means to naturally extend to non-planar scenes the standard metric used for planar scenes. According to the evaluation results, most descriptors exhibit a gradual performance degradation in the transition from planar to non-planar scenes. The best descriptors are those capable of capturing well not only the local image context, but also the global scene structure. Data-driven approaches are shown to have reached the matching robustness and accuracy of the best hand-crafted descriptor

    WxBS: Wide Baseline Stereo Generalizations

    Full text link
    We have presented a new problem -- the wide multiple baseline stereo (WxBS) -- which considers matching of images that simultaneously differ in more than one image acquisition factor such as viewpoint, illumination, sensor type or where object appearance changes significantly, e.g. over time. A new dataset with the ground truth for evaluation of matching algorithms has been introduced and will be made public. We have extensively tested a large set of popular and recent detectors and descriptors and show than the combination of RootSIFT and HalfRootSIFT as descriptors with MSER and Hessian-Affine detectors works best for many different nuisance factors. We show that simple adaptive thresholding improves Hessian-Affine, DoG, MSER (and possibly other) detectors and allows to use them on infrared and low contrast images. A novel matching algorithm for addressing the WxBS problem has been introduced. We have shown experimentally that the WxBS-M matcher dominantes the state-of-the-art methods both on both the new and existing datasets.Comment: Descriptor and detector evaluation expande

    Affine Subspace Representation for Feature Description

    Full text link
    This paper proposes a novel Affine Subspace Representation (ASR) descriptor to deal with affine distortions induced by viewpoint changes. Unlike the traditional local descriptors such as SIFT, ASR inherently encodes local information of multi-view patches, making it robust to affine distortions while maintaining a high discriminative ability. To this end, PCA is used to represent affine-warped patches as PCA-patch vectors for its compactness and efficiency. Then according to the subspace assumption, which implies that the PCA-patch vectors of various affine-warped patches of the same keypoint can be represented by a low-dimensional linear subspace, the ASR descriptor is obtained by using a simple subspace-to-point mapping. Such a linear subspace representation could accurately capture the underlying information of a keypoint (local structure) under multiple views without sacrificing its distinctiveness. To accelerate the computation of ASR descriptor, a fast approximate algorithm is proposed by moving the most computational part (ie, warp patch under various affine transformations) to an offline training stage. Experimental results show that ASR is not only better than the state-of-the-art descriptors under various image transformations, but also performs well without a dedicated affine invariant detector when dealing with viewpoint changes.Comment: To Appear in the 2014 European Conference on Computer Visio

    Segmentation of Static and Dynamic Atomic-Resolution Microscopy Data Sets with Unsupervised Machine Learning Using Local Symmetry Descriptors

    Get PDF
    We present an unsupervised machine learning approach for segmentation of static and dynamic atomic-resolution microscopy data sets in the form of images and video sequences. In our approach, we first extract local features via symmetry operations. Subsequent dimension reduction and clustering analysis are performed in feature space to assign pattern labels to each pixel. Furthermore, we propose the stride and upsampling scheme as well as separability analysis to speed up the segmentation process of image sequences. We apply our approach to static atomic-resolution scanning transmission electron microscopy images and video sequences. Our code is released as a python module that can be used as a standalone program or as a plugin to other microscopy packages. Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America
    corecore