645 research outputs found

    The Electronic Spectrum of Fullerenes from the Dirac Equation

    Full text link
    The electronic spectrum of sheets of graphite (plane honeycomb lattice) folded into regular polihedra is studied. A continuum limit valid for sufficiently large molecules and based on a tight binding approximation is derived. It is found that a Dirac equation describes the flat graphite lattice. Curving the lattice by insertion of odd numbered rings can be mimicked by coupling effective gauge fields. In particular the C60C_{60} and related molecules are well described by the Dirac equation on the surface of a sphere coupled to a color monopole sitting at its center.Comment: 29 pages, 7 figures. IASSNS-HEP-92/5

    Multi-black holes from nilpotent Lie algebra orbits

    Get PDF
    For N \ge 2 supergravities, BPS black hole solutions preserving four supersymmetries can be superposed linearly, leading to well defined solutions containing an arbitrary number of such BPS black holes at arbitrary positions. Being stationary, these solutions can be understood via associated non-linear sigma models over pseudo-Riemaniann spaces coupled to Euclidean gravity in three spatial dimensions. As the main result of this paper, we show that whenever this pseudo-Riemanniann space is an irreducible symmetric space G/H*, the most general solutions of this type can be entirely characterised and derived from the nilpotent orbits of the associated Lie algebra Lie(G). This technique also permits the explicit computation of non-supersymmetric extremal solutions which cannot be obtained by truncation to N=2 supergravity theories. For maximal supergravity, we not only recover the known BPS solutions depending on 32 independent harmonic functions, but in addition find a set of non-BPS solutions depending on 29 harmonic functions. While the BPS solutions can be understood within the appropriate N=2 truncation of N=8 supergravity, the general non-BPS solutions require the whole field content of the theory.Comment: Corrected version for publication, references adde

    Spontaneous synchronization of two bistable pyridine-furan nanosprings connected by an oligomeric bridge

    Full text link
    The intensive development of nanodevices acting as two-state systems has motivated the search for nanoscale molecular structures whose long-term conformational dynamics are similar to the dynamics of bistable mechanical systems such as Euler arches and Duffing oscillators. Collective synchrony in bistable dynamics of molecular-sized systems has attracted immense attention as a potential pathway to amplify the output signals of molecular nanodevices. Recently, pyridin-furan oligomers of helical shape that are a few nanometers in size and exhibit bistable dynamics similar to a Duffing oscillator have been identified through molecular dynamics simulations. In this article, we present the case of dynamical synchronization of these bistable systems. We show that two pyridine-furan springs connected by a rigid oligomeric bridge spontaneously synchronize vibrations and stochastic resonance enhances the synchronization effect

    Applications of dynamical systems with symmetry

    Get PDF
    This thesis examines the application of symmetric dynamical systems theory to two areas in applied mathematics: weakly coupled oscillators with symmetry, and bifurcations in flame front equations. After a general introduction in the first chapter, chapter 2 develops a theoretical framework for the study of identical oscillators with arbitrary symmetry group under an assumption of weak coupling. It focusses on networks with 'all to all' Sn coupling. The structure imposed by the symmetry on the phase space for weakly coupled oscillators with Sn, Zn or Dn symmetries is discussed, and the interaction of internal symmetries and network symmetries is shown to cause decoupling under certain conditions. Chapter 3 discusses what this implies for generic dynamical behaviour of coupled oscillator systems, and concentrates on application to small numbers of oscillators (three or four). We find strong restrictions on bifurcations, and structurally stable heteroclinic cycles. Following this, chapter 4 reports on experimental results from electronic oscillator systems and relates it to results in chapter 3. In a forced oscillator system, breakdown of regular motion is observed to occur through break up of tori followed by a symmetric bifurcation of chaotic attractors to fully symmetric chaos. Chapter 5 discusses reduction of a system of identical coupled oscillators to phase equations in a weakly coupled limit, considering them as weakly dissipative Hamiltonian oscillators with very weakly coupling. This provides a derivation of example phase equations discussed in chapter 2. Applications are shown for two van der Pol-Duffing oscillators in the case of a twin-well potential. Finally, we turn our attention to the Kuramoto-Sivashinsky equation. Chapter 6 starts by discussing flame front equations in general, and non-linear models in particular. The Kuramoto-Sivashinsky equation on a rectangular domain with simple boundary conditions is found to be an example of a large class of systems whose linear behaviour gives rise to arbitrarily high order mode interactions. Chapter 7 presents computation of some of these mode interactions using competerised Liapunov-Schmidt reduction onto the kernel of the linearisation, and investigates the bifurcation diagrams in two parameters

    The "Coulomb phase" in frustrated systems

    Full text link
    The "Coulomb phase" is an emergent state for lattice models (particularly highly frustrated antiferromagnets) which have local constraints that can be mapped to a divergence-free "flux". The coarse-grained version of this flux or polarization behave analogously to electric or magnetic fields; in particular, defects at which the local constraint is violated behave as effective charges with Coulomb interactions. I survey the derivation of the characteristic power-law correlation functions and the pinch-points in reciprocal space plots of diffuse scattering, as well as applications to magnetic relaxation, quantum-mechanical generalizations, phase transitions to long-range-ordered states, and the effects of disorder.Comment: 30 pp, 5 figures (Sub. to Annual Reviews of Condensed Matter Physics

    Dynamics and Synchronization of Weak Chimera States for a Coupled Oscillator System

    Get PDF
    This thesis is an investigation of chimera states in a network of identical coupled phase oscillators. Chimera states are intriguing phenomena that can occur in systems of coupled identical phase oscillators when synchronized and desynchronized oscillators coexist. We use the Kuramoto model and coupling function of Hansel for a specific system of six oscillators to prove the existence of chimera states. More precisely, we prove analytically there are chimera states in a small network of six phase oscillators previously investigated numerically by Ashwin and Burylko [8]. We can reduce to a two-dimensional system within an invariant subspace, in terms of phase differences. This system is found to have an integral of motion for a specific choice of parameters. Using this we prove there is a set of periodic orbits that is a weak chimera. Moreover, we are able to confirmthat there is an infinite number of chimera states at the special case of parameters, using the weak chimera definition of [8]. We approximate the Poincaré return map for these weak chimera solutions and demonstrate several results about their stability and bifurcation for nearby parameters. These agree with numerical path following of the solutions. We also consider another invariant subspace to reduce the Kuramoto model of six coupled phase oscillators to a first order differential equation. We analyse this equation numerically and find regions of attracting chimera states exist within this invariant subspace. By computing eigenvalues at a nonhyperbolic point for the system of phase differences, we numerically find there are chimera states in the invariant subspace that are attracting within full system.Republic of Iraq, Ministry of Higher Education and Scientific Research

    Symmetry breaking yields chimeras in two small populations of Kuramoto-type oscillators

    Full text link
    Despite their simplicity, networks of coupled phase oscillators can give rise to intriguing collective dynamical phenomena. However, the symmetries of globally and identically coupled identical units do not allow solutions where distinct oscillators are frequency-unlocked -- a necessary condition for the emergence of chimeras. Thus, forced symmetry breaking is necessary to observe chimera-type solutions. Here, we consider the bifurcations that arise when full permutational symmetry is broken for the network to consist of coupled populations. We consider the smallest possible network composed of four phase oscillators and elucidate the phase space structure, (partial) integrability for some parameter values, and how the bifurcations away from full symmetry lead to frequency-unlocked weak chimera solutions. Since such solutions wind around a torus they must arise in a global bifurcation scenario. Moreover, periodic weak chimeras undergo a period doubling cascade leading to chaos. The resulting chaotic dynamics with distinct frequencies do not rely on amplitude variation and arise in the smallest networks that support chaos

    Design of a YIG-tuned oscillator

    Get PDF
    A technique for designing YIG (yttrium-iron garnet) tuned transistor oscillators, tunable over the range of frequencies from 500 to 950 MHZ, is presented. The approach taken differs appreciably from that used in the design of conventional LC-tuned oscillators. One major difference is that the YIG tuning mechanism is electrically controlled. The YIG tuning element is treated as a single unit and is not resolved into an equivalent LC circuit. Instead, a direct method using reflection coefficients measured at network terminals to characterize various design stages is applied. The transistor is also characterized by reflection and transmission coefficients, i.e., S-parameters. Thus the Smith Chart becomes a useful tool and network calculations are greatly simplified by means of signal flow analysis with application of Mason\u27s rule. Because S-parameters are measured when the device is terminated in the characteristic impedance of the measuring system, they are more accurately determined at high frequencies than other parameters requiring open and short circuit terminations for their measurement. Furthermore, the availability of network analyzers, such as the Hewlett-Packard S-Parameter Test Set, simplifies such measurements. As a result, a concise method using S-parameters is most applicable for the design of transistor YIG-tuned oscillators
    corecore