505 research outputs found

    3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration

    Full text link
    In this paper, we propose the 3DFeat-Net which learns both 3D feature detector and descriptor for point cloud matching using weak supervision. Unlike many existing works, we do not require manual annotation of matching point clusters. Instead, we leverage on alignment and attention mechanisms to learn feature correspondences from GPS/INS tagged 3D point clouds without explicitly specifying them. We create training and benchmark outdoor Lidar datasets, and experiments show that 3DFeat-Net obtains state-of-the-art performance on these gravity-aligned datasets.Comment: 17 pages, 6 figures. Accepted in ECCV 201

    Similarity reasoning for local surface analysis and recognition

    Get PDF
    This thesis addresses the similarity assessment of digital shapes, contributing to the analysis of surface characteristics that are independent of the global shape but are crucial to identify a model as belonging to the same manufacture, the same origin/culture or the same typology (color, common decorations, common feature elements, compatible style elements, etc.). To face this problem, the interpretation of the local surface properties is crucial. We go beyond the retrieval of models or surface patches in a collection of models, facing the recognition of geometric patterns across digital models with different overall shape. To address this challenging problem, the use of both engineered and learning-based descriptions are investigated, building one of the first contributions towards the localization and identification of geometric patterns on digital surfaces. Finally, the recognition of patterns adds a further perspective in the exploration of (large) 3D data collections, especially in the cultural heritage domain. Our work contributes to the definition of methods able to locally characterize the geometric and colorimetric surface decorations. Moreover, we showcase our benchmarking activity carried out in recent years on the identification of geometric features and the retrieval of digital models completely characterized by geometric or colorimetric patterns

    Report on shape analysis and matching and on semantic matching

    No full text
    In GRAVITATE, two disparate specialities will come together in one working platform for the archaeologist: the fields of shape analysis, and of metadata search. These fields are relatively disjoint at the moment, and the research and development challenge of GRAVITATE is precisely to merge them for our chosen tasks. As shown in chapter 7 the small amount of literature that already attempts join 3D geometry and semantics is not related to the cultural heritage domain. Therefore, after the project is done, there should be a clear ‘before-GRAVITATE’ and ‘after-GRAVITATE’ split in how these two aspects of a cultural heritage artefact are treated.This state of the art report (SOTA) is ‘before-GRAVITATE’. Shape analysis and metadata description are described separately, as currently in the literature and we end the report with common recommendations in chapter 8 on possible or plausible cross-connections that suggest themselves. These considerations will be refined for the Roadmap for Research deliverable.Within the project, a jargon is developing in which ‘geometry’ stands for the physical properties of an artefact (not only its shape, but also its colour and material) and ‘metadata’ is used as a general shorthand for the semantic description of the provenance, location, ownership, classification, use etc. of the artefact. As we proceed in the project, we will find a need to refine those broad divisions, and find intermediate classes (such as a semantic description of certain colour patterns), but for now the terminology is convenient – not least because it highlights the interesting area where both aspects meet.On the ‘geometry’ side, the GRAVITATE partners are UVA, Technion, CNR/IMATI; on the metadata side, IT Innovation, British Museum and Cyprus Institute; the latter two of course also playing the role of internal users, and representatives of the Cultural Heritage (CH) data and target user’s group. CNR/IMATI’s experience in shape analysis and similarity will be an important bridge between the two worlds for geometry and metadata. The authorship and styles of this SOTA reflect these specialisms: the first part (chapters 3 and 4) purely by the geometry partners (mostly IMATI and UVA), the second part (chapters 5 and 6) by the metadata partners, especially IT Innovation while the joint overview on 3D geometry and semantics is mainly by IT Innovation and IMATI. The common section on Perspectives was written with the contribution of all

    Texture analysis and Its applications in biomedical imaging: a survey

    Get PDF
    Texture analysis describes a variety of image analysis techniques that quantify the variation in intensity and pattern. This paper provides an overview of several texture analysis approaches addressing the rationale supporting them, their advantages, drawbacks, and applications. This survey’s emphasis is in collecting and categorising over five decades of active research on texture analysis.Brief descriptions of different approaches are presented along with application examples. From a broad range of texture analysis applications, this survey’s final focus is on biomedical image analysis. An up-to-date list of biological tissues and organs in which disorders produce texture changes that may be used to spot disease onset and progression is provided. Finally, the role of texture analysis methods as biomarkers of disease is summarised.Manuscript received February 3, 2021; revised June 23, 2021; accepted September 21, 2021. Date of publication September 27, 2021; date of current version January 24, 2022. This work was supported in part by the Portuguese Foundation for Science and Technology (FCT) under Grants PTDC/EMD-EMD/28039/2017, UIDB/04950/2020, PestUID/NEU/04539/2019, and CENTRO-01-0145-FEDER-000016 and by FEDER-COMPETE under Grant POCI-01-0145-FEDER-028039. (Corresponding author: Rui Bernardes.)info:eu-repo/semantics/publishedVersio

    What You Give Is What You Get: Multitype Querying for Pottery

    Get PDF

    A Framework for the Semantics-aware Modelling of Objects

    Get PDF
    The evolution of 3D visual content calls for innovative methods for modelling shapes based on their intended usage, function and role in a complex scenario. Even if different attempts have been done in this direction, shape modelling still mainly focuses on geometry. However, 3D models have a structure, given by the arrangement of salient parts, and shape and structure are deeply related to semantics and functionality. Changing geometry without semantic clues may invalidate such functionalities or the meaning of objects or their parts. We approach the problem by considering semantics as the formalised knowledge related to a category of objects; the geometry can vary provided that the semantics is preserved. We represent the semantics and the variable geometry of a class of shapes through the parametric template: an annotated 3D model whose geometry can be deformed provided that some semantic constraints remain satisfied. In this work, we design and develop a framework for the semantics-aware modelling of shapes, offering the user a single application environment where the whole workflow of defining the parametric template and applying semantics-aware deformations can take place. In particular, the system provides tools for the selection and annotation of geometry based on a formalised contextual knowledge; shape analysis methods to derive new knowledge implicitly encoded in the geometry, and possibly enrich the given semantics; a set of constraints that the user can apply to salient parts and a deformation operation that takes into account the semantic constraints and provides an optimal solution. The framework is modular so that new tools can be continuously added. While producing some innovative results in specific areas, the goal of this work is the development of a comprehensive framework combining state of the art techniques and new algorithms, thus enabling the user to conceptualise her/his knowledge and model geometric shapes. The original contributions regard the formalisation of the concept of annotation, with attached properties, and of the relations between significant parts of objects; a new technique for guaranteeing the persistence of annotations after significant changes in shape's resolution; the exploitation of shape descriptors for the extraction of quantitative information and the assessment of shape variability within a class; and the extension of the popular cage-based deformation techniques to include constraints on the allowed displacement of vertices. In this thesis, we report the design and development of the framework as well as results in two application scenarios, namely product design and archaeological reconstruction

    A generic formalism for the semantic modeling and representation of architectural elements

    Get PDF
    This article presents a methodological approach to the semantic description of architectural elements based both on theoretical reflections and research experiences. To develop this approach, a first process of extraction and formalization of architectural knowledge on the basis of the analysis of architectural treaties is proposed. Then, the identified features are used to produce a template shape library dedicated to buildings surveying. Finally, the problem of the overall model structuring and organization using semantic information is addressed for user handling purposes
    • …
    corecore