303 research outputs found

    Graphene as a flexible electrode: review of fabrication approaches

    Get PDF
    In recent years, the technological advancement of supercapacitors has been increasing exponentially due to the high demand in electronic consumer products. As so, researchers have found a way to meet that demand by fabricating graphene. As developments are made toward the future, two big advancements to be made are large-scale fabrication of graphene and fabricating graphene as a flexible electrode. This would allow for use in larger products and for manipulation of the unique properties of graphene to accommodate superior design alternatives. While large scale production is still mentioned, this review is specifically focusing on different methods used to fabricate graphene as a flexible electrode. Various fabrication methods, such as Hummers\u27 method, chemical vapor deposition, epitaxial growth, and exfoliation of graphite oxide, used to fabricate graphene in such a way that allows flexibility and utilization of graphene\u27s mechanical and electrical properties are discussed. Additionally, a section on environmentally friendly fabrication approaches is presented and discussed

    Synthesis and Gas Sensing Properties of Transition Metal Dichalcogenides materials (TMDs)

    Get PDF
    En el procés de monitorització industrial, el control d'emissions dels cotxes, la seguretat de la qualitat de l'aire interior i exterior i la protecció del medi ambient, la detecció contínua i fiable de diversos gasos és fonamental. Els òxids metàl·lics semiconductors, els materials més utilitzats en aplicacions de detecció de gasos, tenen limitacions substancials com ara un alt consum d'energia, una mala estabilitat a llarg termini, una selectivitat limitada i, sobretot, una alta sensibilitat creuada a la humitat. Els materials nous que permeten un funcionament a baixa temperatura poden resoldre problemes relacionats amb l'energia, donant lloc a xarxes de sensors millors i més fiables. Com a resultat, materials 2D com els dicalcogenurs de metalls de transició (TMD) han sorgit com a opcions viables per a la detecció de gasos. Aquests materials de nova generació tenen el potencial de millorar les propietats de detecció dels materials sensibles als gasos, com ara la sensibilitat, la selectivitat, l'estabilitat i la velocitat (temps de resposta-recuperació). Això es deu a les seves propietats úniques inherents, que inclouen el gruix a nanoescala, una gran superfície específica, abundants llocs de vora actiu i una alta sensibilitat a les molècules de gas a temperatures més baixes i fins i tot a temperatura ambient. La tesi actual intenta augmentar la fabricació d'aquests materials en capes 2D de nova generació i utilitzar-los per a aplicacions de detecció de gasos en aquest camp d'estudi. A més, els materials de detecció de gasos investigats en aquesta tesi tenen el potencial d'abordar l'esmentat anteriorment en la seva forma prístina o després d'alguna funcionalització. En aquest sentit, aquesta tesi proposa sensors de gas quimioresistius basats en diversos materials TMD.En el proceso de monitoreo industrial, el control de emisiones de automóviles, la seguridad de la calidad del aire interior y exterior y la protección del medio ambiente, la detección continua y confiable de varios gases es fundamental. Los óxidos de metales semiconductores, los materiales más utilizados en aplicaciones de detección de gases, tienen limitaciones sustanciales, como un alto consumo de energía, poca estabilidad a largo plazo, selectividad limitada y, sobre todo, alta sensibilidad cruzada a la humedad. Los nuevos materiales que permiten el funcionamiento a baja temperatura podrían resolver los problemas relacionados con la energía, lo que daría como resultado redes de sensores mejores y más fiables. Como resultado, los materiales 2D como los dicalcogenuros de metales de transición (TMD) han surgido como opciones viables para la detección de gases. Estos materiales de próxima generación tienen el potencial de mejorar las propiedades de detección de los materiales sensibles al gas, como la sensibilidad, la selectividad, la estabilidad y la velocidad (tiempo de respuesta-recuperación). Esto se debe a sus propiedades únicas inherentes, que incluyen espesor a nanoescala, gran área de superficie específica, abundantes sitios de borde activos y alta sensibilidad a las moléculas de gas a temperaturas más bajas e incluso a temperatura ambiente. La tesis actual intenta ampliar la fabricación de estos materiales en capas 2D de próxima generación y utilizarlos para aplicaciones de detección de gases en este campo de estudio. Además, los materiales de detección de gases investigados en esta tesis tienen el potencial de abordar lo mencionado anteriormente, ya sea en su forma original o después de alguna funcionalización. En este sentido, esta tesis propone sensores de gas quimiorresistivos basados en varios materiales TMDs.In the industrial monitoring process, car emission control, indoor and outdoor air quality safety, and environmental protection, continuous and reliable detection of various gases is critical. Semiconducting metal oxides, the most extensively used materials in gas sensing applications, have substantial limitations such as high power consumption, poor long-term stability, limited selectivity, and, most notably, high humidity cross-sensitivity. Novel materials that allow for low-temperature operation might solve power-related issues, resulting in better and more reliable sensor networks. As a result, 2D materials like transition-metal dichalcogenides (TMDs) have emerged as viable options for gas sensing. These next-generation materials have the potential to improve gas-sensitive materials' sensing properties such as sensitivity, selectivity, stability, and speed (response-recovery time).This is owing to their inherent unique properties, which include nanoscale thickness, large specific surface area, abundant active edge sites, and high sensitivity to gas molecules at lower temperatures and even at room temperature. The current thesis attempts to scale up the fabrication of these next-generation 2D layered materials and utilise them for gas sensing applications in this field of study. Furthermore, the gas sensing materials investigated in this thesis have the potential to address the aforementioned either in their pristine form or after some functionalization. In this regard, this thesis proposes chemoresistive gas sensors based on several TMDs materials

    탄질화물, 붕화물 및 전이금속 전구체의 단일 염소반응 공정을 통한 고기능성 이종원소 치환 다공성 탄소소재 합성 및 응용과 열역학을 통한 구조 제어 인자의 이해

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 재료공학부, 2021. 2. 정인호.The introduction of heteroatoms to the porous carbon materials is one of the most effective strategies to boost the surface reactivity of the porous carbon materials for energy and environment applications. The doping of nitrogen atom to the carbon structure has been studied extensively in the past decades, and the co-doping of other heteroatoms, including boron and transition metals to nitrogen-doped carbon(CN) has gained great interest to enhance the surface reactivity of CN. However, there is still a lack of research for the development of the facile synthetic methodology to the synthesis of the heteroatoms co-doped porous carbon materials based on the comprehensive understanding of the synthesis-structure-property relationship. The conventional carbide-derived carbon (CDC) synthesized via the chlorination process is one of the representative methods for producing the nanoporous carbon using the selective extraction of the metal or metalloid atom in the carbide lattice. The CDC is favorable to synthesizing highly nanoporous structure as well as controlling the nano-pore size. However, to extract the metal atom, a reactive etchant, such as the halogen element (Cl2), is required inevitably; thus, it is challenging to incorporate the heteroatom component into carbon structure. Previously, our research group has demonstrated the availability of the chlorination process to produce heteroatoms-doped (nitrogen and boron) porous carbon materials. However, it is still insufficient to apply the chlorination process to synthesize the high functional heteroatoms-doped porous carbon materials. In this thesis, new approaches to the development of heteroatom-doped porous carbon materials synthesis, which is based on the thermodynamic and experiments are introduced. The critical factors that decide 1) the incorporation of the h-BN phase in the porous carbon in the synthesis of the CNB and 2) the atomic dispersion of metals in the synthesis of the M-CNB via the chlorination method and pyrolysis method are predicted by the thermodynamic calculations and demonstrated by the experiments. The structure and composition of CNB and M-CNB materials can be precisely controlled by the synthetic parameters such as the raw powder composition and heat-treatment temperature. In the first part, we focus on the development of the novel synthetic route to synthesizing B-C-N materials using one-pot chlorination of Ti(C1-x,Nx)-TiB2 mixture. The influence of boron during the formation process of the boron-doped porous carbon (CB) and boron and nitrogen co-doped porous carbon (CNB) is discussed. Boron content supplied from TiB2. It is demonstrated that boron atoms supplied into the carbon structure by the solid-state diffusion serve as the carbon structure linker as well as the dopant. Thus, boron atoms facilitate the development of the heteroatoms-rich carbon layer, which can effectively enhance the electrocatalytic activity. The oxygen-rich carbon layer in CB and nitrogen-rich carbon shell in CNB result in the increase in the 2e- pathway and 4e- pathway oxygen reduction reaction (ORR) performance. Furthermore, we successfully synthesized BN nanodomains embedded porous carbon by the one-pot chlorination of nitrogen-rich Ti(C,N)-TiB2. The formation of h-BN phase and the influence of boron to CN structure are predicted using the thermodynamic calculations. Based on the calculations, the facile synthesis method (direct bond method) that maximizes the contactability of Ti(C,N) and TiB2 (C, N, and B precursors, respectively) is introduced. Supplied boron atoms serve as the carbon structure linker as well as the BN formation source, which is the key to the significant development of the h-BN-carbon interface. The abundant h-BN-carbon interfaces in highly porous carbon structure significantly improve the electrocatalytic activity of 2e- pathway ORR performance. Thus, the h-BN nanodomains embedded porous carbon shows outstanding operation performance in the custom-made full flow cell. In the second part, we discuss the novel synthesis method for atomically dispersed M-CNB (M= Fe and Ni) via the one-pot chlorination of Ti(C,N)-TiB2-M(acac)x (M= Fe and Ni) mixture. The addition of boron to M (M= Fe and Ni)-CNB causes the formation of metal boride nanoparticles, which is predicted by thermodynamic calculation and demonstrated by the experiments. The formation of boride nanoparticles greatly changes the melting temperature of nanoparticles, which is a major parameter that determines the atomic dispersion of metal in the porous carbon structure. It is revealed that the introduction of boron facilitates the single Fe atom dispersion in the Fe-CNB system. Hence, Fe-CNB shows superior ORR performance. In contrast, in the Ni-CNB, doping boron is detrimental for the atomic dispersion of Ni, rather intensifies the graphitization of the Ni-CNB, unhelpful to the electrocatalytic properties. Finally, the novel synthesis method for atomically dispersed M-CNB (M= Fe and Ni) via the one-pot pyrolysis of polyethylene glycol-urea-boric acid-metal nitrate (Fe and Ni) is investigated. It is demonstrated that the addition of boric acid results in the formation of a liquid boron oxide protective layer. The liquid boron oxide layer induces the formation of the heteroatoms-doped carbon nanotube and inhibits the formation of the metal-based nanoparticles during the pyrolysis process, which is predicted by the thermodynamic calculation and verified by the experiments. Metal contents (Fe and Ni) readily incorporates into micro- and mesoporous CNB. Thus, M-Nx active sites are well-developed in M-CNB (Fe and Ni), and Fe-CNB and Ni-CNB show the excellent electrocatalytic activity for the oxygen reduction reaction (ORR) and CO2 reduction reaction (CO2RR). All these results can provide the guidelines for the synthesis of the high functional heteroatoms-doped porous carbon materials, which can be used to various applications, including energy and environment.다공성 나노 탄소소재에 이종 원자를 치환하는 방법은 탄소소재의 표면 반응성을 특정 응용분야에 적합하게 극대화 시키는 대표적인 방법이다. 지난 수 십 년간, 질소를 비롯한 비 금속 원자들 및 전이 금속 원자들의 치환에 대한 연구가 여러 방면으로 진행되어 왔다. 그러나, 현재까지도 합성-구조-물성 관계의 종합적인 이해를 바탕으로 한 실용적인 이종 원자가 치환된 다공성 나노탄소소재의 합성법 개발에 대한 연구는 부족한 실정이다. 염화반응을 통한 탄화물에서 유도된 탄소소재 (CDC) 합성법은 다공성 나노탄소소재를 손쉽게 합성할 수 있는 대표적인 방법이다. 염소 기체 분자와 탄화물 구조 내에 금속 원자들 간의 선택적인 제거 반응을 통하여, CDC 소재에 수 nm 이내의 미세기공들을 다량으로 발달 시킬 수 있다. 또한, 정밀한 합성 조건 조절을 통하여 미세기공들을 옹스트롬 (Å) 단위로 조절하는 것이 가능하다. 이러한 장점들 때문에 CDC 방법을 통해 합성된 다공성 나노 탄소소재는 에너지 저장 분야에서 폭넓게 연구되었다. 그러나, CDC 소재를 합성하는 과정에서 불가피하게 염소와 같은 반응성 높은 부식성 화학물질을 사용하는 공정을 수반한다. 이 때문에, CDC 소재에 탄소 이외에 다른 이종 원자를 담지하는 것에 한계가 있어왔다. 본 연구 그룹을 포함한 몇몇 연구에서 탄화물이 아닌 탄질화물 및 붕화물의 염화반응을 통해 이종 원자가 치환된 다공성 나노 탄소소재를 합성하는 연구가 보고 되었지만, 이종원자의 치환량 및 종류에 한계가 있는 실정이다. 본 학위논문에서는 기존의 CDC 합성법의 한계를 넘어, 열역학 계산과 실험을 바탕으로 한 이종원자가 치환된 다공성 나노 탄소 소재 합성의 새로운 접근법을 제시하고자 한다. 평형 열역학 계산을 통하여 탄소소재 합성과정에서 이종 원자 치환에 핵심이 되는 공정인자들을 예측하고 이를 실험적으로 증명한다. 또한, 합성된 탄소 소재들의 전기화학반응 촉매제로의 응용가능성에 대하여 평가한다. 첫 번째 주제는 타이타늄 탄질화물과 붕화물 혼합물(Ti(C1-x,Nx)-TiB2)의 원-팟(one-pot) 염화반응을 이용한 다공성 나노 B-C-N 소재의 합성이다. 먼저, 다공성 나노 탄소소재의 구조 형성과정에서 붕소를 도입 시 붕소가 탄소소재의 구조와 표면특성 변화에 미치는 영향에 대해 논의하였다. 염화반응 과정에서 붕화물-탄질화물 계면 형성을 통해 붕소 원자들을 고상 확산을 통해 탄소 구조 형성 과정에 효과적으로 공급하였으며, 공급된 붕소 원자들이 탄소 구조 연결자 역할을 하여 질소 혹은 산소 원자들이 담지된 탄소층의 형성을 촉진하는 것을 실험적으로 규명하였다. 또한, 이러한 붕소 공급 방법을 통하여, 질소 혹은 산소가 원자 단위로 다량으로 다공성 탄소체들에 담지 할 수 있음을 보이고, 이 탄소체들이 높은 산소 환원 반응 촉매 활성도를 갖는 것을 규명하였다. 더 나아가, Ti(C1-x,Nx)-TiB2의 원-팟(one-pot) 염화반응을 통한, 나노의 크기의 질화붕소 상(h-BN)이 다량으로 담지된 다공성 나노 탄소소재의 합성법 개발에 대해 논의한다. 평형 열역학 계산을 통하여, Ti(C1-x,Nx)-TiB2의 염화 반응에서 핵심 반응식과 h-BN 상 담지에 적합한 합성 조건을 예측하였다. 이를 바탕으로 원-팟(one-pot) 염화 반응 합성법 설계하였다. 공급된 붕소의 탄소 구조 연결자 역할이 탄소 구조에 h-BN 상을 담지를 가능케 함을 규명하였다. 또한, 다량의 h-BN-탄소 층 계면 형성이 2전자 산소 환원 반응의 촉매 활성도를 향상시키는 핵심인자임을 규명하였다. 이를 이용하여, 대량 생산에 적합한 플로우 셀 (flow cell) 환경에서 높은 과산화수소 생산효율을 갖는 h-BN 상이 나노 크기로 담지된 다공성 탄소 촉매 소재가 합성가능함을 보였다. 두 번째 주제에서는 타이타늄 탄질화물, 붕화물, 전이 금속을 포함한 전구체 혼합물(Ti(C,N)-TiB2-M(acac)x)의 원-팟(one-pot) 염화 반응을 이용한 전이 금속이 원자 단위로 담지된 다공성 나노 Fe-CNB 소재의 합성에 대해 논의한다. 평형 열역학 계산과 나노 효과를 고려한 평형 열역학 상태도 계산을 통하여, 전이 금속을 포함한 전구체에 의해 형성된 전이 금속 기반 나노 입자에 공급된 붕소가 금속 기반 나노 입자의 녹는점의 변화를 유발함을 예측하였다. 또한, Fe-CNB 시스템과 Ni-CNB 시스템의 대조 실험을 통하여, 붕소의 도입을 통한 금속 기반 나노의 입자의 녹는점 상승이 탄소 구조체 내에 전이 금속 원자를 원자 단위로 분산 시키는 핵심인자임을 규명하였다. 이를 통하여, 우수한 4전자 산소 환원 반응 활성도를 갖는 원자 단위로 분산된 Fe-CNB 촉매 소재를 (Ti(C,N)-TiB2-M(acac)x)의 원-팟(one-pot) 염화 반응을 통해 합성가능함을 보였다. 마지막으로, 에틸렌 글라이콜-붕산-전이 금속 질산염의 원-팟(one-pot) 열분해를 통한 원자 단위로 분산된 M-CNB (M= Fe 와 Ni) 소재의 합성에 대해 논의한다. 평형 열역학 계산을 이용하여, 열분해 과정에서 분산이 액상의 산화 붕소 층으로 상변화하여 전이금속 기반 나노 입자의 형성을 억제 할 수 있음을 예측하였다. 또한, 붕산의 도입이 전이 금속을 질소와 붕소가 치환되어 있는 다공성 탄소 구조체에 원자 단위로 전이 금속을 분산 시킬 수 있는 핵심 요인임을 실험을 통하여 입증하였다. 이를 통하여, 전이 금속이 원자 단위로 분산된 Fe-CNB와 Ni-CNB 소재를 원-팟(one-pot) 열분해 방법을 통해 합성 가능함을 보였으며, 이 소재들이 각각 우수한 산소 환원 반응 촉매 성능과 이산화탄소 환원 반응 촉매 성능을 나타냄을 확인하였다. 본 학위논문이 이종 원자가 치환된 고기능성 다공성 나노 탄소소재 합성법 개발에 새로운 관점을 제시하고, 다공성 나노 탄소소재의 활용가능성을 한층 높일 수 있을 것으로 기대한다.Abstract iii List of Tables xi List of Figures xii Chapter 1. Introduction 1 1.1. Demand for functional porous carbon materials for a sustainable society 1 1.2. Issue in porous carbon materials 6 1.3. Objectives of the thesis 18 1.4. Organization of the thesis 23 Chapter 2. General background 25 2.1. Carbide derived carbon (CDC) 25 2.2. Role of boron in carbon structure 39 2.3. Borocabonitrides (BCN) material 42 2.4. Graphitization 49 2.5. Pore structure 52 2.6. Electrochemistry 57 2.7. Thermodynamic tools 69 Chapter 3. Experimental 74 3.1. Chlorination 74 3.2. Preparation of CB/CNB materials via the one-pot chlorination process 75 3.3. Preparation of BN embedded porous carbon via one-pot chlorination process 78 3.4. Preparation of M-CN/CNB materials via the one-pot chlorination process 80 3.5. Preparation of M-CN/CNB materials via the one-pot pyrolysis process 81 3.6. Characterization 83 3.7. Theromdynamic calculation 89 3.8. Oxidation stability 91 Chapter 4. Synthesis of heteroatoms (B, N, and O) doped carbon via one-pot chlorination process 92 4.1. Research highlight 92 4.2. Introduction 93 4.3. Structural variation of CBs and CNBs 97 4.4. Surface chemistry variation of CBs and CNBs 104 4.5. Oxidation stability of CBs and CNBs 106 4.6. Influence of boron in CBs and CNBs 107 4.7. Electrocatalytic properties of CBs and CNBs for oxygen reduction reaction 111 4.8. Conclusions 121 Chapter 5. Synthesis of BN embedded porous carbon via one-pot chlorination process and its application for the H2O2 production 123 5.1. Research highlight 123 5.2. Introduction 124 5.3. Thermodynamic analysis on the chlorination reaction of carbonitride and boride mixture 128 5.4. Challenging in h-BN implant in porous carbon substrate 132 5.5. Variation of D-BNC characteristics with chlorination temperature 134 5.6. Variation of D-BNC characteristics with raw powder composition 147 5.7. Formation mechanism of BNC 153 5.8. Oxygen reduction reaction performance of D-BNC 155 5.9. Conclusions 161 Chapter 6. Synthesis of atomically dispersed metal-CNB via one step chlorination 163 6.1. Research highlight 163 6.2. Introduction 164 6.3. The ORR activity of Fe-CN/CNB and Ni-CN/CNB 167 6.4. Structural variation of Fe-CN/CNB and Ni- CN/CNB 169 6.5. Formation of metal-based particles during the synthetic process of Fe-CN/CNB and Ni-CN/CNB 179 6.6. Thermodynamic calculation for the chlorination process 183 6.7. Phase diagrams for the nano-sized M-C and MxB-C systems 187 6.8. The proposed formation mechanism of Fe-CNB and Ni-CNB 191 6.9. Conclusions 194 Chapter 7. Synthesis of atomically dispersed M (Fe or Ni)-CNB via one-pot pyrolysis method 196 7.1. Research highlight 196 7.2. Introduction 197 7.3. Structural analysis of Fe-CN/CNB 199 7.4. Chemical configuration of Fe–CN/CNB 207 7.5. Effect of boric acid for atomic dispersion of Fe in CNB 210 7.6. Proposed formation mechanism of Fe-CNB 220 7.7. Electrocatalytic performance evaluation 222 7.8. Synthesis of Ni-CNB 223 7.9. Conclusions 229 Chapter 8. Overall Conclusion 230 8.1. Summary of results 230 8.2. Original contribution 235 8.3. Future suggestion 237 Reference i 요약 (국문 초록) xxviii Appendix xxxiiiDocto

    Heterojunctions of rGO/metal oxide nanocomposites as promising gas-sensing materials—A review

    Get PDF
    Monitoring environmental hazards and pollution control is vital for the detection of harmful toxic gases from industrial activities and natural processes in the environment, such as nitrogen dioxide (NO2), ammonia (NH3), hydrogen (H2), hydrogen sulfide (H2S), carbon dioxide (CO2), and sulfur dioxide (SO2). This is to ensure the preservation of public health and promote workplace safety. Graphene and its derivatives, especially reduced graphene oxide (rGO), have been designated as ideal materials in gas-sensing devices as their electronic properties highly influence the potential to adsorb specified toxic gas molecules. Despite its exceptional sensitivity at low gas concentrations, the sensor selectivity of pristine graphene is relatively weak, which limits its utility in many practical gas sensor applications. In view of this, the hybridization technique through heterojunction configurations of rGO with metal oxides has been explored, which showed promising improvement and a synergistic effect on the gas-sensing capacity, particularly at room temperature sensitivity and selectivity, even at low concentrations of the target gas. The unique features of graphene as a preferential gas sensor material are first highlighted, followed by a brief discussion on the basic working mechanism, fabrication, and performance of hybridized rGO/metal oxide-based gas sensors for various toxic gases, including NO2, NH3, H2, H2S, CO2, and SO2. The challenges and prospects of the graphene/metal oxide-based based gas sensors are presented at the end of the review

    Engineered Graphene and Metal-Organic Framework Nanocomposites for Supercapacitor and Sensing Applications

    Get PDF
    The thesis focuses on the preparation of pristine graphene (pG), graphene oxide (GO) and graphene oxide quantum dots (GOQDs), and their nanocomposites with metal-organic frameworks (MOFs) including Cu-1,3,5 benzenetricarboxylate (BTC) framework (HKUST-1), zeolitic imidazolate framework (ZIF-8), and Zr6O4(OH)4(C8H4O4)6 framework (UiO-66), for supercapacitors and sensors applications. These engineered composite materials will find applications, firstly for supercapacitors; the GO/HKUST-1 composite material was laser-scribed, forming a novel morphology, highly porous and conductive L-rGO-C-MOF structure. As a result, the nano-porous architecture material displays a high capacitance of 390 F/g. Secondly, for sensor application, the pG-MOF nanocomposites show acceptable sensing responses towards different chemical vapours and their discriminations. In short, the thesis is dealing with extensive experiments of synthesis and characterisation of nanocomposite materials based on graphene derivatives and MOFs. The remarkable properties of these materials are expected to place them as promising materials for energy storage and sensing devices.Thesis (MPhil) -- University of Adelaide, School of Chemical Engineering and Advanced Materials, 201

    Metal Oxide Nanomaterials

    Get PDF
    This is a timely collection of recent diverse work on metal oxide nanomaterials, connecting their fundamental aspects and application perspectives in a concise fashion to give a broad view of the current status of this fascinating field. This book presents eight original research articles and two comprehensive reviews to highlight the recent development and understanding of different types of metal oxide nanoparticles and their use for applications in luminescence, photocatalysis, water–oil separation, optoelectronics, gas sensors, energy-saving smart windows, etc. It presents just the tip of the iceberg of the broad, dynamic, and active fundamental research and applications in the developing field of metal oxide nanomaterials by collecting a few examples of the latest advancements

    Mesoporous Metal Oxide Films

    Get PDF
    This book, entitled “Mesoporous Metal Oxide Films”, contains an editorial and a collection of ten research articles covering fundamental studies and applications of different metal oxide films. Mesoporous materials have been widely investigated and applied in many technological applications owing to their outstanding structural and physical properties. In this book, important developments in this fast-moving field are presented from various research groups around the world. Different preparation methods and applications of these novel and interesting materials have been reported, and it was demonstrated that mesoporosity has a direct impact on the properties and potential applications of such materials. The potential use of mesoporous metal oxide films and coatings with different morphology and structures is demonstrated in many technological applications, particularly chemical and electrochemical sensors, supercapacitors, solar cells, photoelectrodes, bioceramics, photonic switches, and anticorrosion agents

    State-of-the-art materials science in Belgium 2017

    Get PDF
    This book is a collection of both review and original research papers which appeared in a Special Issue of the open access journal, Materials, “State-of-the-Art Materials Science in Belgium 2017”. It covers a wide range of selected material topics, currently under investigation at universities throughout Belgium. As a country, Belgium has hardly any physical resources which can be exploited in materials research and development or industry. However, the resource drawback is compensated by focussing on highly technological fields of research, not requiring vast amounts of raw material. This ‘high-tech’ approach includes the development of new analytical methods for the characterization of materials, research into new advanced functional materials, as well as defining new industrial processes for existing materials. As such, the book presents a contemporary view on materials research activities in Belgium
    corecore