2,823 research outputs found
Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels
Achieving optimal program performance requires deep insight into the
interaction between hardware and software. For software developers without an
in-depth background in computer architecture, understanding and fully utilizing
modern architectures is close to impossible. Analytic loop performance modeling
is a useful way to understand the relevant bottlenecks of code execution based
on simple machine models. The Roofline Model and the Execution-Cache-Memory
(ECM) model are proven approaches to performance modeling of loop nests. In
comparison to the Roofline model, the ECM model can also describes the
single-core performance and saturation behavior on a multicore chip. We give an
introduction to the Roofline and ECM models, and to stencil performance
modeling using layer conditions (LC). We then present Kerncraft, a tool that
can automatically construct Roofline and ECM models for loop nests by
performing the required code, data transfer, and LC analysis. The layer
condition analysis allows to predict optimal spatial blocking factors for loop
nests. Together with the models it enables an ab-initio estimate of the
potential benefits of loop blocking optimizations and of useful block sizes. In
cases where LC analysis is not easily possible, Kerncraft supports a cache
simulator as a fallback option. Using a 25-point long-range stencil we
demonstrate the usefulness and predictive power of the Kerncraft tool.Comment: 22 pages, 5 figure
Automatic Loop Kernel Analysis and Performance Modeling With Kerncraft
Analytic performance models are essential for understanding the performance
characteristics of loop kernels, which consume a major part of CPU cycles in
computational science. Starting from a validated performance model one can
infer the relevant hardware bottlenecks and promising optimization
opportunities. Unfortunately, analytic performance modeling is often tedious
even for experienced developers since it requires in-depth knowledge about the
hardware and how it interacts with the software. We present the "Kerncraft"
tool, which eases the construction of analytic performance models for streaming
kernels and stencil loop nests. Starting from the loop source code, the problem
size, and a description of the underlying hardware, Kerncraft can ideally
predict the single-core performance and scaling behavior of loops on multicore
processors using the Roofline or the Execution-Cache-Memory (ECM) model. We
describe the operating principles of Kerncraft with its capabilities and
limitations, and we show how it may be used to quickly gain insights by
accelerated analytic modeling.Comment: 11 pages, 4 figures, 8 listing
Performance and resource modeling for FPGAs using high-level synthesis tools
High-performance computing with FPGAs is gaining momentum with the advent of sophisticated High-Level Synthesis (HLS) tools. The performance of a design is impacted by the input-output bandwidth, the code optimizations and the resource consumption, making the performance estimation a challenge. This paper proposes a performance model which extends the roofline model to take into account the resource consumption and the parameters used in the HLS tools. A strategy is developed which maximizes the performance and the resource utilization within the area of the FPGA. The model is used to optimize the design exploration of a class of window-based image processing application
Study of combining GPU/FPGA accelerators for high-performance computing
This contribution presents the performance modeling of a super desktop with GPU and FPGA accelerators, using OpenCL for the GPU and a high-level synthesis compiler for the FPGAs. The performance model is used to evaluate the different high-level synthesis optimizations, taking into account the resource usage, and to compare the compute power of the FPGA with the GP
Approximate FPGA-based LSTMs under Computation Time Constraints
Recurrent Neural Networks and in particular Long Short-Term Memory (LSTM)
networks have demonstrated state-of-the-art accuracy in several emerging
Artificial Intelligence tasks. However, the models are becoming increasingly
demanding in terms of computational and memory load. Emerging latency-sensitive
applications including mobile robots and autonomous vehicles often operate
under stringent computation time constraints. In this paper, we address the
challenge of deploying computationally demanding LSTMs at a constrained time
budget by introducing an approximate computing scheme that combines iterative
low-rank compression and pruning, along with a novel FPGA-based LSTM
architecture. Combined in an end-to-end framework, the approximation method's
parameters are optimised and the architecture is configured to address the
problem of high-performance LSTM execution in time-constrained applications.
Quantitative evaluation on a real-life image captioning application indicates
that the proposed methods required up to 6.5x less time to achieve the same
application-level accuracy compared to a baseline method, while achieving an
average of 25x higher accuracy under the same computation time constraints.Comment: Accepted at the 14th International Symposium in Applied
Reconfigurable Computing (ARC) 201
- …