20,495 research outputs found

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    The effect of the color filter array layout choice on state-of-the-art demosaicing

    Get PDF
    Interpolation from a Color Filter Array (CFA) is the most common method for obtaining full color image data. Its success relies on the smart combination of a CFA and a demosaicing algorithm. Demosaicing on the one hand has been extensively studied. Algorithmic development in the past 20 years ranges from simple linear interpolation to modern neural-network-based (NN) approaches that encode the prior knowledge of millions of training images to fill in missing data in an inconspicious way. CFA design, on the other hand, is less well studied, although still recognized to strongly impact demosaicing performance. This is because demosaicing algorithms are typically limited to one particular CFA pattern, impeding straightforward CFA comparison. This is starting to change with newer classes of demosaicing that may be considered generic or CFA-agnostic. In this study, by comparing performance of two state-of-the-art generic algorithms, we evaluate the potential of modern CFA-demosaicing. We test the hypothesis that, with the increasing power of NN-based demosaicing, the influence of optimal CFA design on system performance decreases. This hypothesis is supported with the experimental results. Such a finding would herald the possibility of relaxing CFA requirements, providing more freedom in the CFA design choice and producing high-quality cameras

    Orthogonal-Array based Design Methodology for Complex, Coupled Space Systems

    Get PDF
    The process of designing a complex system, formed by many elements and sub-elements interacting between each other, is usually completed at a system level and in the preliminary phases in two major steps: design-space exploration and optimization. In a classical approach, especially in a company environment, the two steps are usually performed together, by experts of the field inferring on major phenomena, making assumptions and doing some trial-and-error runs on the available mathematical models. To support designers and decision makers during the design phases of this kind of complex systems, and to enable early discovery of emergent behaviours arising from interactions between the various elements being designed, the authors implemented a parametric methodology for the design-space exploration and optimization. The parametric technique is based on the utilization of a particular type of matrix design of experiments, the orthogonal arrays. Through successive design iterations with orthogonal arrays, the optimal solution is reached with a reduced effort if compared to more computationally-intense techniques, providing sensitivity and robustness information. The paper describes the design methodology in detail providing an application example that is the design of a human mission to support a lunar base

    Robustness considerations in selecting efficient two-color microarray designs

    Get PDF
    The main goal of microarray experiments is to select a small subset of genes that are differentially expressed among competing mRNA samples. For a given set of such mRNA samples, it is possible to consider a number of two-color cDNA microarray designs with a fixed number of arrays. Appropriate criteria can be used to select an efficient design from such a set of alternative experimental designs. In practice, however, microarray expression data often contain missing observations and the most efficient design (with complete observations) for a specific setup may not be efficient in the presence of missing observations. In this article, we propose two criteria to address the robustness of microarray designs against missing observations. We demonstrate the simultaneous use of efficiency and robustness criteria to select good microarray designs for both one-factor and multi-factor experiments. Contact: [email protected]

    Optimal designs for random effect models with correlated errors with applications in population pharmacokinetics

    Get PDF
    We consider the problem of constructing optimal designs for population pharmacokinetics which use random effect models. It is common practice in the design of experiments in such studies to assume uncorrelated errors for each subject. In the present paper a new approach is introduced to determine efficient designs for nonlinear least squares estimation which addresses the problem of correlation between observations corresponding to the same subject. We use asymptotic arguments to derive optimal design densities, and the designs for finite sample sizes are constructed from the quantiles of the corresponding optimal distribution function. It is demonstrated that compared to the optimal exact designs, whose determination is a hard numerical problem, these designs are very efficient. Alternatively, the designs derived from asymptotic theory could be used as starting designs for the numerical computation of exact optimal designs. Several examples of linear and nonlinear models are presented in order to illustrate the methodology. In particular, it is demonstrated that naively chosen equally spaced designs may lead to less accurate estimation.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS324 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Robust Optimal Design when Missing Data Happen at Random

    Full text link
    In this article, we investigate the robust optimal design problem for the prediction of response when the fitted regression models are only approximately specified, and observations might be missing completely at random. The intuitive idea is as follows: We assume that data are missing at random, and the complete case analysis is applied. To account for the occurrence of missing data, the design criterion we choose is the mean, for the missing indicator, of the averaged (over the design space) mean squared errors of the predictions. To describe the uncertainty in the specification of the real underlying model, we impose a neighborhood structure on the regression response and maximize, analytically, the \textbf{M}ean of the averaged \textbf{M}ean squared \textbf{P}rediction \textbf{E}rrors (MMPE), over the entire neighborhood. The maximized MMPE is the ``worst'' loss in the neighborhood of the fitted regression model. Minimizing the maximum MMPE over the class of designs, we obtain robust ``minimax'' designs. The robust designs constructed afford protection from increases in prediction errors resulting from model misspecifications.Comment: 22 pages. Submitte
    • …
    corecore