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ABSTRACT

The main goal of microarray experiments is to select a small subset
of genes that are differentially expressed among competing mRNA
samples. For a given set of such mRNA samples, it is possible to
consider a number of two-color cDNA microarray designs with a
fixed number of arrays. Appropriate criteria can be used to select
an efficient design from such a set of alternative experimental
designs. In practice, however, microarray expression data often
contain missing observations and the most efficient design (with
complete observations) for a specific setup may not be efficient in
the presence of missing observations. In this article, we propose
two criteria to address the robustness of microarray designs against
missing observations. We demonstrate the simultaneous use of
efficiency and robustness criteria to select good microarray designs
for both one-factor and multi-factor experiments.
Contact: mlatif@isrt.ac.bd

1 INTRODUCTION
The statistical design of microarray experiments plays a vital role in
allocating mRNA samples under investigation to the available arrays.
The application of classical experimental designs to microarray
experiments was first investigated by Kerr et al. (2000). Microarray
experiments can be considered as incomplete block experiments
of block size two when comparisons of more than two mRNA
samples are of interest. For a given set of competing mRNA samples,
a number of different experimental designs can be considered
for a fixed number of arrays. Among the experimental designs
used in microarrays, the Common Reference (CR) design (Callow
et al., 2000) is the most commonly used design where competing
treatments (i.e. mRNA samples) are compared indirectly via a
common reference sample. For this design, half of the samples
are used for the estimation of the parameters of interest although
the information from the reference sample is not of interest itself.
Moreover, the indirect comparison inflates the variance of the
relevant parameter estimates. Kerr and Churchill (2001) proposed
Circular Loop (CL) designs instead, which compare the treatments of
interest directly by connecting every pair of treatments sequentially.
Due to its construction, CL designs can be used to estimate the
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parameters of interest with less variance in comparison with the
corresponding CR design of the same size (Kerr and Churchill,
2001). Besides CR and CL designs, the Dye-Swap (DS) design,
which compares each pair of treatments twice with forward and
reverse dye comparisons, is also used in microarray experiments.
A general overview of statistical designs in microarray experiments
can be found in Landgrebe et al. (2006).

The problem of selecting a good experimental design from a set
of candidate designs is one of the key questions studied in optimum
experimental design theory (Atkinson et al., 2007; Pukelsheim,
1993). An experimental design is said to be optimum/efficient if the
estimated variance of the relevant parameter estimate is the smallest
among the alternative designs. Efficiency of a design is measured
by a design criterion (also known as efficiency criterion), which is a
function of the information matrix corresponding to the underlying
statistical model.

Different design criteria, such as A-, D- and E-optimality, have
been proposed in the context of microarray experiments. For one-
factor microarray experiments, Kerr and Churchill (2001) reported
A-optimum designs considering all pairwise treatment comparisons
as the effects of interest. Yang and Speed (2002) compared the
efficiency of competing loop designs in 2×2 factorial layouts using
an A-optimality criterion. Landgrebe et al. (2006) used a minimax
approach based on E-optimality to select efficient designs for 2×2
and 3×2 microarray experiments. More recently, Stanzel (2008)
provided the theoretical basis for some of the empirical results of
Landgrebe et al. (2006). Glonek and Solomon (2004) considered a
similar model as Yang and Speed (2002) and used an admissibility
concept to select efficient multi-factorial microarray designs. Their
numerical algorithm is based on a complete search of all possible
designs and becomes computationally challenging for a large
number of arrays and conditions. To avoid the exhaustive search,
Wit et al. (2005) used simulated annealing to find near-optimal (A-
and D-optimal) microarray designs in one-factor experiments. Latif
(2005) considered a model similar to Landgrebe et al. (2006) and
used genetic algorithms to search for near-optimal designs in both
one-factor and multi-factor experiments. Gupta (2006) discussed
a systematic way to find efficient balanced factorial designs for
microarray experiments. There are only a few papers on optimum
microarray designs based on mixed effects models, although such
analysis methods have been used for several years (Wolfinger et al,
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2001). Tsai et al. (2006) considered a statistical model that allows
intensities between different hybridization to be correlated and
described a heuristic algorithm to obtain A-optimal designs for one-
factor experiment. Bueno Filho et al. (2006) discussed efficient
designs of microarray experiments for 3×3 factorial layouts using
linear mixed effects models. See also Tempelman (2008) and Passos
et al. (2009) for recent works on microarray designs using mixed
effects models.

All of the above investigations of selecting efficient microarray
designs used complete observations to calculate the efficiency
criteria of the competing microarray designs. However, microarray
expression data often contain missing observations due to various
reasons including image resolution, image corruption, dust or
scratches on the intended array, etc. (Troyanskaya et al., 2001).
Homemade arrays, which are still used by many laboratories, are
more prone to missing observations than commercial arrays. Missing
observations can lead to a complete breakdown of an efficient
design (i.e. the parameters of interest cannot be estimated unbiasedly
anymore) or to a substantial loss in precision of the relevant
parameter estimates (Herzberg and Andrews, 1976). In this article,
we investigate the robustness of microarray design with respect to
missing observations. The importance of robustness in the context
of microarray experiments has been stressed in several papers (e.g.
Bailey, 2007; Churchill, 2002; Kerr, 2003; Simon et al., 2002), but
to date no attempts have been made to investigate systematically
the robustness considerations in selecting microarray designs. One
of the reasons for this could be the absence of any criterion that
can quantify the robustness properties of a design. Low et al. (1999)
presented a method for assessing the robustness of crossover designs
to subjects dropping out for studies involving more than two periods.
Dey (1993) investigated the robustness of incomplete block design
against missing data (John, 1976; Prescott and Mansson, 2001).
Tempelman (2005) compared robustness properties of common
reference and loop designs, and Tsai et al. (2006) mentioned that
the optimum designs they constructed for one-factor experiments are
robust against one or two missing arrays. None of these approaches
suggested any criterion by which robustness properties of a design
can be quantified.

The main objective of this article is to formalize different
robustness criteria and illustrate their use in selecting good
microarray designs for different one-factor and multi-factor
experiments. We suggest two robustness criteria, namely, breakdown
number and residual efficiency measure for quantifying the
robustness properties of a design. Section 2 contains the necessary
technical background and the main methodological results. Section 3
illustrates the usefulness of the proposed robustness criteria in
selecting good microarray designs from a given set of candidate
designs for different one-factor and multi-factor experiments.Ashort
conclusion is given in Section 4.

2 METHODS

2.1 Statistical models
The selection of an efficient microarray design depends on the underlying
statistical model and the research questions under investigation. In this
section, we describe the statistical model that will be used later to define the
efficiency and robustness criteria. Let n denote the number of available arrays
from a microarray experiment and let K denote the number of treatments

under investigation. For a multi-factor experiment, K can be considered as the
total number of treatment combinations (e.g. K =6 for a 3×2 experiment).

For a specific gene, we model the n-dimensional vector Z of normalized
log ratios (Huber et al., 2002; Yang et al., 2002) as

Z=Xβ+ε, (1)

where X denotes the n×(K +2) design matrix, β = (δ1,δ2,τ1,...,τK )′
denotes the (K +2)-dimensional vector of parameters and ε denotes the
n-dimensional vector of independent random errors with mean 0 and variance
σ2. The parameter vector β contains the fixed dye effects δ1 and δ2

corresponding to the Cy3 and Cy5 channels, respectively, and τk denotes
the k-th treatment mean, k =1,...,K . The model of the form (1) has been
proposed by Landgrebe et al. (2006) and can be deduced from the global
ANOVA model introduced by Kerr and Churchill (2001).

The dye effect is included in our gene-specific model (1) because the
standard normalization procedures (Lee et al., 2002; Yang et al., 2002) can
only adjust the overall dye effect, but not the gene-specific dye effect. The
gene-specific dye bias is displayed by the genes which do not fall into the
overall pattern of the dye effect that characterizes the majority of the genes
(Dobbin et al., 2003). It was pointed out that even when using normalized
data, the dye effects could be significant for some of the genes (Dobbin et al.,
2003; Kerr, 2003; Landgrebe et al., 2006). Thus, we keep the dye effects in
the gene-specific model (1).

2.2 Estimability and variance factor
In practice, the research questions of interest can be expressed in terms of
a vector of linear functions of the regression parameters β, e.g. C′β, where
C denotes a (K +2)×d contrast matrix and the value of d (≥1) depends
on the experimental question. A matrix C is said to be a contrast matrix
if C′1d =0d , where 1d and 0d are d-dimensional vectors with all elements
equal to 1 and 0, respectively. Examples for contrast matrices describing
relevant experimental questions, such as pairwise treatment comparisons or
analysis of interactions, are given in Searle (1971).

Because of the inclusion of the dye effects in the gene-specific model (1)
and the fact that the treatment and dye effects are confounded in a single array
(Kerr and Churchill, 2001), estimability of the effects of interest becomes
an issue. The least squares estimate β̂ of the regression parameter β, which
is a solution of the consistent system of linear equations X′Xβ =X′Z, is not
unique for a non-full rank model similar to (1). However, the estimate of
a parametric function C′β is unique, if it is an estimable function. A linear
function C′β is said to be estimable, if there exists a linear combination
t′Z of the response that can be used as an unbiased estimate of C′β, i.e.
E(t′Z)=C′β. A necessary and sufficient condition for the estimability of the
linear function C′β is

C′(X′X)−(X′X)=C′, (2)

where (X′X)− denotes a generalized inverse of the moment matrix X′X
(Searle, 1971, §5.4). The concept of estimability is crucial: if a linear
function C′β is not estimable, the associated experimental question cannot
be answered unbiasedly, i.e. any estimate of C′β deviates from the true
value by a systematic, unknown quantity. We call an experimental design
with associated design matrix X connected, if all the linear functions under
investigation are estimable with respect to X.

Following the Gauss–Markov theorem, the best linear unbiased estimator
of an estimable linear function C′β is

C′β̂ =C′(X′X)−X′Z,

which is unique, i.e. C′β̂ does not depend on the choice of the generalized
inverse of X′X (Searle, 1971, p. 181). The variance of the estimator C′β̂ is

Var(C′β̂)=σ2{C′(X′X)−C
}
, (3)

where C′(X′X)−C is called a variance factor which is a non-negative definite
square matrix if d >1.
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2.3 Efficiency criteria
For a given contrast matrix C, the efficiency of an experimental design
can be quantified by considering the variance factor as a function of the
design matrix X. To keep the discussion focused, we follow Landgrebe et al.
(2006) and use E-optimality to introduce several robustness criteria further
below. We note, however, that the methods proposed in this article are equally
applicable to other optimality criteria than E-optimality. The E-optimality
criterion uses the largest eigenvalue of the variance factor C′(X′X)−C after
a suitable standardization. Unlike A- or D-optimality, E-optimality does not
depend on the dimension of the variance factor. Morgan (2007) discussed
some advantages of E-optimality criterion over the A-optimality criterion in
constructing optimal incomplete block designs.

In practice, investigators are often interested in more than one research
question from a microarray experiment, e.g. all pairwise treatment
comparisons, main effects and interactions, etc. Let �={C′

1β, …, C′
Qβ}

denote the set of linear functions corresponding to the Q individual
research questions under investigation. Assume that the experimental design
corresponding to the design matrix X is connected with respect to each of
the linear functions of the set �. For the given set of linear functions �, the
E-optimality criterion of the design X is given by the efficiency measure

�(X,�)=
Q∑

q=1

Q−1
{ tr

(
C′

qCq
)

λmax
(
C′

q(X′X)−Cq
)
}
, (4)

where λmax(V) and tr(V) denote the largest eigenvalue and the trace of the
square matrix V, respectively. The numerator of the expression (4) is used as
a normalizing constant to ensure the invariance of the function � under scalar
multiplication, i.e. �(X,rC′

1β)=�(X,C′
1β) for any scalar r. The efficiency

measure � is the average of e-efficiencies, defined in Landgrebe et al. (2006),
calculated for the Q research questions. Note that in (4) all research questions
are weighted equally. If some of the questions are more important than others
then one can use a weighted average with unequal weights instead of the
simple average used in (4).

2.4 Efficient designs and missing observations
For the robustness considerations in this section, we assume that missing
expression values occur completely at random, e.g. missing due to technical
reasons. That means, the probability of observing a missing expression
measurement is equal across all spots of an array and are constant over
different arrays. In the sequel, the gene-specific model (1) is assumed and
for a specific gene, each array contributes only one datapoint to the analysis.

It has already been mentioned in Section 1 that missing observations may
lead to substantially less efficient or even non-estimable estimates of the
effects of interest. We now illustrate the loss of efficiency with a numerical
example. Consider two different microarray designs for comparing K =3
treatments, namely, 2CR and DS, each of which has six arrays. The graphical
representations of these two designs are given in Figure 1, where 1, 2 and 3
denote the treatments to be compared and R denotes the common reference
sample. The 2CR design denotes a design consisting of two replications of
the basic common reference CR design. The DS design compares each pair
of the treatment conditions twice by reversing the dye label.

In our example, the DS design is found to be more efficient than the 2CR
design when the effect of interest is the treatment difference τ1 −τ2. The
corresponding values of the efficiency measure �, from Equation (4), are

1 2 3

R
���

��
�

���
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�
�� �� ����
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����
��
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����
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�� ��������

��������
���

��
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�

DS

Fig. 1. Graphical representations of 2CR and DS designs for comparing
K =3 treatments where 2CR denotes a design consisting of two replications
of the basic CR design of the type.

6.0 and 2.0 for the designs DS and 2CR, respectively. That means, in terms
of the relative efficiency, the 2CR design needs to be replicated three times
to attain the same efficiency as the DS design for estimating τ1 −τ2. In other
words, the CR design requires 18 arrays to attain the same efficiency of the
DS design which has six arrays.

First, consider the case of one missing observation. For the 2CR design,
assume that an array either of the type 1−→R or the type 2−→R is missing.
In this case, the efficiency measure � for the comparison τ1 −τ2 reduces to
1.3. Note that the efficiency remains unchanged if an array of type 3−→R
is missing. For the DS design, � reduces to 3.6 if an array of type 1−→2 is
missing and reduces to 5.1 if the missing observation is associated with the
arrays connecting the treatment 3 with any other treatments. This numerical
example illustrates that a missing observation may reduce the efficiency of
the estimates and the amount of the reduction depends on which array leads
to a missing observation. As a side comment, note that these small designs
with very low replications will typically have small degrees of freedom and
consequently yield poor estimates of the experimental error; and this is before
the loss of any arrays.

Consider now the case of more than one missing observation. For two
missing observations, the effect τ1 −τ2 is not estimable anymore with the
2CR design if the missing observations come both from either 1−→R or
2−→R. If one missing observation comes from 1−→R and another from
2−→R then the efficiency measure reduces to 1.0. The 2CR design will not
lose any efficiency if both arrays of type 3−→R are missing. In contrast, the
effect τ1 −τ2 remains estimable with the DS design for any combination of
two missing observations (with less efficiency though). If more than three
observations are missing, the effect τ1 −τ2 is not estimable anymore using
the DS design, leading to a breakdown of DS design.

So far, no attempts have been made to investigate systematically the
robustness of microarray designs with respect to missing observations.
In the following section, we propose two robustness criteria to measure
the robustness property of an experimental design for given experimental
questions. All of the following robustness criteria depend on the possible
array constellations for a fixed number of missing arrays.

2.5 Robustness criteria
Let Xn denote the design matrix describing a microarray experiment for
which the robustness properties shall be investigated, where n is the size of
the design matrix, i.e. the number of arrays used in the experiment. Consider
the situation where m out of n observations are missing, i.e. m out of n rows
of the design matrix Xn are missing. Let

Rm(Xn)=
{

X(−m)
n,1 ,X(−m)

n,2 ,...,X(−m)
n,T

}
(5)

denotes the set of all possible T =(n
m

)
residual design matrices (Dey, 1993)

that can be constructed from the design Xn by leaving m out of n rows. Each
residual design has (n−m) arrays, where X(−m)

n,t denotes the design matrix
corresponding to the t-th residual design, t =1,...,T . For example, when
m=0, the set R0(Xn) contains only the design matrix Xn. Further, define
θq =C′

qβ, q=1,...,Q, and let

R�
m(Xn,θq)⊆Rm(Xn) (6)

denotes the set of design matrices for which the linear functions θq are
estimable. In other words, among all the residual designs constructed from
the initial design Xn with m missing arrays, R�

m(Xn,θq) is defined as the set
of all connected residual designs with respect to the linear function θq. For
notational simplicity, we denote the sets R�

m(Xn,θq) and Rm(Xn) by R�
m and

Rm, respectively. Also, we let T � (≤T ) denote the cardinality of R�
m(Xn,θq).

2.6 Breakdown number
For a given linear function θq, the breakdown number of a design denotes
the minimum number of missing observations that lead to at least one
disconnected residual design. More specifically, the breakdown number m0
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(say) states that the effect of interest is estimable for all the residual designs
with (m0 −1) missing observations, but there exists at least one residual
design with m0 missing observations for which the effect is no longer
estimable. Formally, the breakdown number of a design Xn for a given linear
function θq is defined as

BdN(Xn,θq)=min
m

{
T � <T

}
, (7)

where T � and T are as defined above. A large value of the breakdown number
indicates larger robustness. For example, to estimate the effect τ1 −τ2 in
the example from Section 2.4, the breakdown number of the 2CR design
is 2, since two missing observations may already lead to non-estimable
comparisons, whereas the breakdown number of the DS design is 4. This
indicates a larger robustness of the DS design as compared with the 2CR
design to estimate τ1 −τ2. If more than one linear function is of interest,
the minimum of the corresponding breakdown numbers can be used as a
robustness criterion, i.e.

BdN(Xn,�)=min
{
BdN(Xn,θq),q=1,...,Q)

}
, (8)

where � is already defined for Equation (4). Note that the breakdown number
does not depend on the optimality criterion but depends on the estimability
of the linear function under investigation. Table 1 gives the pseudo code to
compute the breakdown number for a given design and research question.

2.7 Residual efficiency measure
For a given design, the breakdown number provides the minimum number of
missing observations that lead to at least one disconnected residual design. In
practice, one may need to select a good design among several designs having
the same breakdown number. In such a situation, the average efficiency for
all residual designs with a fixed number of missing observations can be used
to select a good design and it can be used as a robustness criterion. For a
given linear function θq, the residual efficiency measure of the design Xn

with m missing arrays is defined as

�m(Xn,θq)=
⎧⎨
⎩

∑
X∈Rm

T−1�(X,θq), ifm<BdN

∞, otherwise.
(9)

Note that the residual efficiency measure can only be computed if the
number of missing arrays is less than the corresponding breakdown number.
Similar to the efficiency measure �, larger values of the residual efficiency
measure indicate larger robustness. For a fixed number m of missing arrays,
the residual efficiency measure can be used to compare the robustness
characteristics of two or more designs provided their individual breakdown
numbers are all greater than m. For more than one linear function, the
average of the corresponding residual efficiency measures (9) can be used as
a robustness criterion. Note that if there are no missing observations, �=�0,
i.e. the efficiency measure and the residual efficiency measure are equal.

Table 1. Pseudo code to compute breakdown number and residual efficiency
measure for a given design and research question (the residual efficiency
measure will be introduced in the following section)

• Check that the linear function θ=C′β is estimable for the
design matrix Xn

• Set m=1
REPEAT

{
• generate the set of possible T =(n

m

)
residual design

matrices Rm(Xn) as shown in (5)
• check estimability of θ for each X∈Rm using (2)
• IF θ is estimable for each X∈Rm THEN

{
• compute �m(Xn,θ) using (9)
•m=m+1}

ELSE BdN=m and STOP}
UNTIL m<n

If the number of missing arrays is greater than or equal to the
corresponding breakdown number, the residual efficiency measure cannot be
used as robustness criterion. In such situations, the proportion of connected
designs (ratio of T � to T ) can be used as a robustness criterion [see Latif
(2005) for further details].

Table 1 also gives the pseudo code to compute the residual efficiency
measure for a given design and research question. A related R Development
Core Team (2008) package that implements the pseudo code from Table 1
for A-, D- and E-optimality is available from the first author upon request.

Biological replications are often used in microarray experiments to enable
researchers making inferences about treatment effects for the populations
included in the experiment. To analyse microarray data with biological
replications, linear mixed effects models need to be used instead of
fixed effects models of the type (1). Note, however, that the robustness
criteria considered in this section can be extended to include also mixed
effects models. For instance, the breakdown number can be defined under
mixed effects models using the definition of estimable linear function
given in Passos et al. (2009). In principle, the methods from this article
can thus be extended to microarray experiments including biological
replications. However, more theoretical work is required to formalize
optimality considerations for mixed effects models.

3 RESULTS
In this section, we illustrate the methods from Section 2 by
comparing the efficiency and robustness of several designs for
one- and two-factor experiments. The basic designs for each
of the experimental layouts are defined first and replications or
combinations thereof are used to construct composite designs. By
replication, we mean here technical replications.

We have already used the notation 2CR for the design that consists
of two replications of the basic CR design. In general, we will use
the following notation:

(i) bXX denotes a design that consists of b (=2,3,...)
replications of the XX design.

(ii) XX denotes the design that uses the reverse dye labelling of
the XX design.

(iii) bXX/XX denotes the design that consists of the arrays of the
bXX and XX designs.

3.1 One-factor experiments
We now investigate the robustness of some microarray designs to
compare all pairwise combinations of K =4 treatments. The basic
microarray designs considered here are CR and CL, each of which
consists of four arrays. The corresponding DS design has 12 arrays,
see Figure 2. The CL (CR) design, which uses the opposite dye
labelling protocol of the CL (CR) design, is considered here to
examine the effect of having different dye labelling protocols in
different replications of the CL (CR) design.
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4 3
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���� ����

��������
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1 2

4 3

��

����

��
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1 2

4 3

�� ��
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����

��

�����
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��
��

���������������
��
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Fig. 2. Graphical representations of the microarray designs with four arrays
(CR and CL) and 12 arrays (DS) for comparing K =4 treatments.
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Table 2. Robustness and efficiency criteria �m for selected designs with
eight arrays for all pairwise comparisons of K =4 treatments

Design BdN �0 �1 �2 �3

2CR 2 2.00 1.67 – –
CR/CR 2 2.00 1.60 – –
2CL 2 4.89 4.04 – –
CL/CL 4 4.89 4.04 3.19 2.33

Table 3. Robustness and efficiency criteria �m for selected designs with 12
arrays for all pairwise comparisons of K =4 treatments

Design BdN �0 �1 �2 �3 �4 �5

3CR 3 3.00 2.70 2.40 – – –
3CL 3 7.33 6.59 5.84 – – –
2CL/CL 6 7.33 6.59 5.84 5.08 4.32 3.55
DS 6 8.00 7.18 6.36 5.54 4.72 3.06

3.1.1 Scenario I Consider the situation where we are only
interested in the designs with eight arrays. Four composite designs
with eight arrays are constructed from the basic CR and CL designs
(Fig. 2): 2CR, CR/CR, 2CL and CL/CL.

Table 2 shows the corresponding BdN values and residual
efficiency measures �m, m<BdN. Among the designs with eight
arrays, the loop designs 2CL and CL/CL are found to be more
efficient (�0 =4.89) than the common reference designs 2CR and
CR/CR (�0 =2.00) for m=0. The CL/CL design is found to be
more robust (BdN=4) than the other three designs (BdN=2).
Clearly, reverse dye labelling for different replications can improve
substantially the robustness for some designs, such as the loop
design. This example also demonstrates the usefulness of the
breakdown number in comparing the two designs 2CL and CL/CL
which are equally efficient if there are no missing observations.

3.1.2 Scenario II Assume now that we are interested in the four
designs 3CR, 3CL, 2CL/CL and DS, where each of them uses 12
arrays. As seen from Table 3, the 3CR design (�0 =3.00) is less
efficient than the loop designs (�0 =7.33) if no observation is
missing (i.e. m=0). Among the competing designs, the 2CL/CL
and DS designs are more robust (BdN=6) as compared with the
3CL and 3CR designs (BdN=3). For this setup, the DS design
is recommended because it is slightly more efficient than the
2CL/CL design, even after accounting for the possibility of missing
observations.

3.2 Two-factor experiments
In this section, we consider two-factor experiments. To be more
precise, we consider the efficiency and robustness of several designs
for a 3×2 experiment. In a 3×2 experiment, one factor (say, A)
has three levels and the other (say, B) has two levels. We assume
that the effects of interest are the two main effects (A, B) and the
interaction (A×B). Landgrebe et al. (2006) discussed some basic
types of the microarray designs, namely, circular loop (CL), cross–
loop (XL), triangular loop (TL), A-loop (AL), B-swap (BS) and
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Fig. 3. Graphical representation of basic microarray designs for the 3×2
experimental layout, each of which has six arrays. Treatment combinations
are specified by a pair of the treatment labels corresponding to the factors
A and B.

star-swap (RS) (Fig. 3) and reported efficient composite designs for
different combinations of the effects of interest.

3.2.1 Scenario I Among the basic designs with six arrays, the
main effects (A and B) and interaction (A×B) are only found
estimable with the designs CR, XL and CL. The XL design is found to
be more efficient than the CR design for estimating the main effects
A (�=6.00 versus �=2.00) and B (�=4.00 versus �=1.00).
The CL design is more efficient than the CR design for estimating
the main effect B (�=1.10 versus �=1.00) and interaction A×B
(�=6.00 versus �=2.00). If all three effects are of equal interest,
the XL design is found to be the most efficient design. The CL design
is found to be the best design if only the interaction is of interest. For
the CR, XL and CL designs the breakdown number is 1 irrespective
of the effects A, B and A×B.

3.2.2 Scenario II The designs with 12 arrays for the 3×2
experiment are constructed from combinations and/or replications
of the basic designs as shown in Figure 3. In this case, the concept
of the admissible designs (Glonek and Solomon, 2004) is used to
reduce the number of candidate designs. Among the 21 possible
designs with 12 arrays, six designs are found to be admissible. The
efficiency measures and breakdown numbers of the six admissible
designs are reported in Table 4. For comparison purposes, the values
of the efficiency measures and robustness criteria corresponding to
the designs 2CR and XL/XL are also reported in Table 4.

If all three effects are of equal interest, the 2XL, AL/XL, AL/BS,
XL/XL and XL/BS designs are most efficient (�0 =8.00) and among
these designs, the 2XL design is found to be less robust as compared
with the other four designs in terms of the minimum breakdown
numbers. Table 5 displays a comparison between these four equally
efficient (�0 =8.00) and robust (BdN=4) designs on the basis of
the residual efficiency measure �m, m<4. Table 5 shows that the
design XL/BS outperforms the other three designs.

If only the effect A×B is of interest, the design AL/BS is found
to be the most efficient (�=14.00) and robust (BdN=4). If the
effects A and A×B are of interest, the CL/AL, AL/XL and AL/BS
designs are most efficient ones (�=10.00), however, the CL/AL
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Table 4. Efficiency measure and breakdown number for designs with 12
arrays in a 3×2 experiment

Design � BdN

A B A×B average A B A×B min

2CR 4.00 2.00 4.00 3.33 2 2 2 2
CL/AL 8.00 1.10 12.00 7.03 4 2 4 2
CL/XL 8.00 5.14 8.00 7.05 4 4 4 4
2XL 12.00 8.00 4.00 8.00 2 2 2 2
AL/XL 12.00 4.00 8.00 8.00 4 4 4 4
XL/XL 12.00 8.00 4.00 8.00 4 4 4 4
XL/BS 6.00 8.00 10.00 8.00 4 4 4 4
AL/BS 6.00 4.00 14.00 8.00 4 4 4 4

Table 5. Residual efficiency measures for the selected designs from a 3×2
experiment when the main effects and interaction are of equal interest

Design �0 �1 �2 �3

XL/BS 8.00 6.42 5.20 4.08
XL/XL 8.00 6.29 5.10 3.98
AL/BS 8.00 6.25 5.10 3.97
AL/XL 8.00 6.20 5.00 3.81

Table 6. For different combinations of effects, the best designs for 3×2
experiment with 6 and 12 of arrays

Number of
arrays (n)

Effect combinations of interest

A×B A×B, A A×B, B A×B, A, B

6 CL CL, XL CL XL
12 AL/BS AL/XL, AL/BS AL/BS, XL/BS AL/BS, XL/XL

AL/XL, XL/BS

design is less robust (BdN=2) compared with the other two designs
(BdN=4). The AL/BS and XL/BS designs are found to be the best
designs (�=9.00) when the effects A×B and B are of interest and
both of these designs are equally robust (BdN=4).

Table 6 shows the efficient and robust designs for 3×2
experiments with 6 and 12 arrays for different combinations of
effects of interest. This result shows that one could find more
efficient and robust designs than the CR design for 3×2 experiments.

4 CONCLUSIONS
Many papers have been published in selecting good/efficient
microarray designs for both one-factor and multi-factor experiments.
Though missing values are often observed in microarray
experiments, so far no attempts have been made to include the
possibility of having missing observations in the selection procedure
of good microarray designs. In this article, two robustness criteria
(breakdown number and residual efficiency measure) are proposed
that can be used to quantify the robustness characteristics of a

design. The use of the proposed robustness criteria in selecting
good microarray designs from a set of candidate designs has been
illustrated with designs for both the one- and two-factor experiments.

For pairwise treatment comparisons, the common reference
designs are less efficient as compared with loop designs in one-factor
experiments. However, the common reference design is equally
robust to the loop design only if the number of arrays is equal to the
number of treatments. Reverse dye labelling improves the robustness
of the loop designs, but does not do the same for the corresponding
common reference design.

Selection of good designs depends on both the research questions
under investigation and the number of arrays the experimenter intend
to use. In this study, we only consider designs that are replicates
of initially considered basic designs. A more general procedure
is required to find good designs with any number of arrays. The
novel approach of using both efficiency and robustness criteria in
selecting good microarray designs can be easily tailored to such
general questions.
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