90,813 research outputs found

    Ultrafast Consensus in Small-World Networks

    Get PDF
    In this paper, we demonstrate a phase transition phenomenon in algebraic connectivity of small-world networks. Algebraic connectivity of a graph is the second smallest eigenvalue of its Laplacian matrix and a measure of speed of solving consensus problems in networks. We demonstrate that it is possible to dramatically increase the algebraic connectivity of a regular complex network by 1000 times or more without adding new links or nodes to the network. This implies that a consensus problem can be solved incredibly fast on certain small-world networks giving rise to a network design algorithm for ultra fast information networks. Our study relies on a procedure called "random rewiring" due to Watts & Strogatz (Nature, 1998). Extensive numerical results are provided to support our claims and conjectures. We prove that the mean of the bulk Laplacian spectrum of a complex network remains invariant under random rewiring. The same property only asymptotically holds for scale-free networks. A relationship between increasing the algebraic connectivity of complex networks and robustness to link and node failures is also shown. This is an alternative approach to the use of percolation theory for analysis of network robustness. We also show some connections between our conjectures and certain open problems in the theory of random matrices

    Belief Consensus Algorithms for Fast Distributed Target Tracking in Wireless Sensor Networks

    Full text link
    In distributed target tracking for wireless sensor networks, agreement on the target state can be achieved by the construction and maintenance of a communication path, in order to exchange information regarding local likelihood functions. Such an approach lacks robustness to failures and is not easily applicable to ad-hoc networks. To address this, several methods have been proposed that allow agreement on the global likelihood through fully distributed belief consensus (BC) algorithms, operating on local likelihoods in distributed particle filtering (DPF). However, a unified comparison of the convergence speed and communication cost has not been performed. In this paper, we provide such a comparison and propose a novel BC algorithm based on belief propagation (BP). According to our study, DPF based on metropolis belief consensus (MBC) is the fastest in loopy graphs, while DPF based on BP consensus is the fastest in tree graphs. Moreover, we found that BC-based DPF methods have lower communication overhead than data flooding when the network is sufficiently sparse

    Starling flock networks manage uncertainty in consensus at low cost

    Get PDF
    Flocks of starlings exhibit a remarkable ability to maintain cohesion as a group in highly uncertain environments and with limited, noisy information. Recent work demonstrated that individual starlings within large flocks respond to a fixed number of nearest neighbors, but until now it was not understood why this number is seven. We analyze robustness to uncertainty of consensus in empirical data from multiple starling flocks and show that the flock interaction networks with six or seven neighbors optimize the trade-off between group cohesion and individual effort. We can distinguish these numbers of neighbors from fewer or greater numbers using our systems-theoretic approach to measuring robustness of interaction networks as a function of the network structure, i.e., who is sensing whom. The metric quantifies the disagreement within the network due to disturbances and noise during consensus behavior and can be evaluated over a parameterized family of hypothesized sensing strategies (here the parameter is number of neighbors). We use this approach to further show that for the range of flocks studied the optimal number of neighbors does not depend on the number of birds within a flock; rather, it depends on the shape, notably the thickness, of the flock. The results suggest that robustness to uncertainty may have been a factor in the evolution of flocking for starlings. More generally, our results elucidate the role of the interaction network on uncertainty management in collective behavior, and motivate the application of our approach to other biological networks.Comment: 19 pages, 3 figures, 9 supporting figure
    • …
    corecore