42,836 research outputs found

    Clustering-based Source-aware Assessment of True Robustness for Learning Models

    Full text link
    We introduce a novel validation framework to measure the true robustness of learning models for real-world applications by creating source-inclusive and source-exclusive partitions in a dataset via clustering. We develop a robustness metric derived from source-aware lower and upper bounds of model accuracy even when data source labels are not readily available. We clearly demonstrate that even on a well-explored dataset like MNIST, challenging training scenarios can be constructed under the proposed assessment framework for two separate yet equally important applications: i) more rigorous learning model comparison and ii) dataset adequacy evaluation. In addition, our findings not only promise a more complete identification of trade-offs between model complexity, accuracy and robustness but can also help researchers optimize their efforts in data collection by identifying the less robust and more challenging class labels.Comment: Submitted to UAI 201

    Generalization Error in Deep Learning

    Get PDF
    Deep learning models have lately shown great performance in various fields such as computer vision, speech recognition, speech translation, and natural language processing. However, alongside their state-of-the-art performance, it is still generally unclear what is the source of their generalization ability. Thus, an important question is what makes deep neural networks able to generalize well from the training set to new data. In this article, we provide an overview of the existing theory and bounds for the characterization of the generalization error of deep neural networks, combining both classical and more recent theoretical and empirical results
    • …
    corecore